Deck 11: Limits of Functions

Full screen (f)
exit full mode
Question
Find limx83xx+5\lim _ { x \rightarrow 8 } \frac { 3 x } { \sqrt { x + 5 } } by direct substitution.
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the limit by direct substitution.
limx3(12x103x+14)\lim _ { x \rightarrow - 3 } \left( \frac { 12 x - 10 } { 3 x + 14 } \right)
Question
Find the limit (if it exists). Use a graphing utility to verify your result graphically.
limx4x2+10x+24x+4\lim _ { x \rightarrow - 4 } \frac { x ^ { 2 } + 10 x + 24 } { x + 4 }
Question
Find the limit (if it exists).
limy6y4y2+4\lim _ { y \rightarrow \infty } \frac { 6 y ^ { 4 } } { y ^ { 2 } + 4 }
Question
Find the limit.
limx01e7xx\lim _ { x \rightarrow 0 } \frac { 1 - e ^ { - 7 x } } { x }
Question
Select the correct function for the graph using oblique asymptotes as aids. Select the correct function for the graph using oblique asymptotes as aids.   ​<div style=padding-top: 35px>
Question
Find the limit by direct substitution.
limx515xx+4\lim _ { x \rightarrow 5 } \frac { 15 x } { \sqrt { x + 4 } }
Question
Use the graph to find limx02sin(π10x)\lim _ { x \rightarrow 0 } 2 \sin \left( \frac { \pi } { 10 x } \right) .  Use the graph to find  \lim _ { x \rightarrow 0 } 2 \sin \left( \frac { \pi } { 10 x } \right)  .   ​<div style=padding-top: 35px>
Question
Select the correct graph for the following function using a graphing utility. Determine whether the limit exists or not. f(x)=sin5πxf ( x ) = \sin 5 \pi x , limx2f(x)\lim _ { x \rightarrow 2 } f ( x )
Question
Find the limit (if it exists).
limx4x24x1249x7x2\lim _ { x \rightarrow - \infty } \frac { 4 x ^ { 2 } - 4 x - 12 } { 4 - 9 x - 7 x ^ { 2 } }
Question
Complete the table and numerically estimate the limit as x approaches infinity for f(x)=xx2+3f ( x ) = x - \sqrt { x ^ { 2 } + 3 } .


x100101102103104105106f(x)\begin{array} { | c | c | c | c | c | c | c | c | } \hline x & 10 ^ { 0 } & 10 ^ { 1 } & 10 ^ { 2 } & 10 ^ { 3 } & 10 ^ { 4 } & 10 ^ { 5 } & 10 ^ { 6 } \\\hline f ( x ) & & & & & & & \\\hline\end{array}
Question
Use asymptotes to match f(x)=4x2x2+1f ( x ) = \frac { 4 x ^ { 2 } } { x ^ { 2 } + 1 } with its graph.
Question
Graph the function. Determine the limit (if it exists) by evaluating the corresponding one-sided limits.
limx51x2+5\lim _ { x \rightarrow 5 } \frac { 1 } { x ^ { 2 } + 5 }
Question
Find limx5[g(x)f(x)]\lim _ { x \rightarrow 5 } [ g ( x ) - f ( x ) ] for f(x)=5x3f ( x ) = 5 x ^ { 3 } and g(x)=x2+93x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 9 } } { 3 x ^ { 2 } } .
Question
Find the limit (if it exists). Use a graphing utility to verify your result graphically.
limx04x+41x\lim _ { x \rightarrow 0 } \frac { \frac { 4 } { x + 4 } - 1 } { x }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/15
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: Limits of Functions
1
Find limx83xx+5\lim _ { x \rightarrow 8 } \frac { 3 x } { \sqrt { x + 5 } } by direct substitution.
2413\frac { 24 } { \sqrt { 13 } }
2
Find the limit by direct substitution.
limx3(12x103x+14)\lim _ { x \rightarrow - 3 } \left( \frac { 12 x - 10 } { 3 x + 14 } \right)
limx3(12x103x+14)=465\lim _ { x \rightarrow - 3 } \left( \frac { 12 x - 10 } { 3 x + 14 } \right) = - \frac { 46 } { 5 }
3
Find the limit (if it exists). Use a graphing utility to verify your result graphically.
limx4x2+10x+24x+4\lim _ { x \rightarrow - 4 } \frac { x ^ { 2 } + 10 x + 24 } { x + 4 }
limx4x2+10x+24x+4=2\lim _ { x \rightarrow - 4 } \frac { x ^ { 2 } + 10 x + 24 } { x + 4 } = 2
\lim _ { x \rightarrow - 4 } \frac { x ^ { 2 } + 10 x + 24 } { x + 4 } = 2  ​ ​   ​
4
Find the limit (if it exists).
limy6y4y2+4\lim _ { y \rightarrow \infty } \frac { 6 y ^ { 4 } } { y ^ { 2 } + 4 }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
5
Find the limit.
limx01e7xx\lim _ { x \rightarrow 0 } \frac { 1 - e ^ { - 7 x } } { x }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
6
Select the correct function for the graph using oblique asymptotes as aids. Select the correct function for the graph using oblique asymptotes as aids.   ​
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
7
Find the limit by direct substitution.
limx515xx+4\lim _ { x \rightarrow 5 } \frac { 15 x } { \sqrt { x + 4 } }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
8
Use the graph to find limx02sin(π10x)\lim _ { x \rightarrow 0 } 2 \sin \left( \frac { \pi } { 10 x } \right) .  Use the graph to find  \lim _ { x \rightarrow 0 } 2 \sin \left( \frac { \pi } { 10 x } \right)  .   ​
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
9
Select the correct graph for the following function using a graphing utility. Determine whether the limit exists or not. f(x)=sin5πxf ( x ) = \sin 5 \pi x , limx2f(x)\lim _ { x \rightarrow 2 } f ( x )
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
10
Find the limit (if it exists).
limx4x24x1249x7x2\lim _ { x \rightarrow - \infty } \frac { 4 x ^ { 2 } - 4 x - 12 } { 4 - 9 x - 7 x ^ { 2 } }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
11
Complete the table and numerically estimate the limit as x approaches infinity for f(x)=xx2+3f ( x ) = x - \sqrt { x ^ { 2 } + 3 } .


x100101102103104105106f(x)\begin{array} { | c | c | c | c | c | c | c | c | } \hline x & 10 ^ { 0 } & 10 ^ { 1 } & 10 ^ { 2 } & 10 ^ { 3 } & 10 ^ { 4 } & 10 ^ { 5 } & 10 ^ { 6 } \\\hline f ( x ) & & & & & & & \\\hline\end{array}
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
12
Use asymptotes to match f(x)=4x2x2+1f ( x ) = \frac { 4 x ^ { 2 } } { x ^ { 2 } + 1 } with its graph.
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
13
Graph the function. Determine the limit (if it exists) by evaluating the corresponding one-sided limits.
limx51x2+5\lim _ { x \rightarrow 5 } \frac { 1 } { x ^ { 2 } + 5 }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
14
Find limx5[g(x)f(x)]\lim _ { x \rightarrow 5 } [ g ( x ) - f ( x ) ] for f(x)=5x3f ( x ) = 5 x ^ { 3 } and g(x)=x2+93x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 9 } } { 3 x ^ { 2 } } .
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
15
Find the limit (if it exists). Use a graphing utility to verify your result graphically.
limx04x+41x\lim _ { x \rightarrow 0 } \frac { \frac { 4 } { x + 4 } - 1 } { x }
Unlock Deck
Unlock for access to all 15 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 15 flashcards in this deck.