Deck 4: Polynomial and Rational Functions

Full screen (f)
exit full mode
Question
Find the y-intercept for the graph of the quadratic function.
f(x)=(x+2)24f ( x ) = ( x + 2 ) ^ { 2 } - 4

A) (4,0)( 4,0 )
B) (0,4)( 0 , - 4 )
C) (0,4)( 0,4 )
D) (0,0)( 0,0 )
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the x-intercepts (if any)for the graph of the quadratic function.
f(x)=(x3)29f ( x ) = ( x - 3 ) ^ { 2 } - 9

A) (0,0)( 0,0 ) and (6,0)( 6,0 )
B) (0,0)( 0,0 ) and (9,0)( - 9,0 )
C) (0,0)( 0,0 ) and (6,0)( - 6,0 )
D) (6,0)( - 6,0 ) and (6,0)( 6,0 )
Question
Sketch the graph of the quadratic function.
f(x)=x26x9f ( x ) = x ^ { 2 } - 6 x - 9

A) (3,18)( 3 , - 18 )
В) (3,18)( - 3,18 )
C) (3,36)( 3 , - 36 )
D) (6,63)( - 6,63 )
Question
Find the coordinates of the vertex of the quadratic function.
f(x)=x24x+6f ( x ) = - x ^ { 2 } - 4 x + 6

A) x=2x = 2
B) x=2x = - 2
C) x=4x = - 4
D) x=10x = 10
Question
Find the y-intercept for the graph of the quadratic function.
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)  <div style=padding-top: 35px> A)
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)  <div style=padding-top: 35px>
B)
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)  <div style=padding-top: 35px>
C)
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)  <div style=padding-top: 35px>
D)
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)  <div style=padding-top: 35px>
Question
Find the y-intercept for the graph of the quadratic function.
f(x)=(x+4)2+6f ( x ) = ( x + 4 ) ^ { 2 } + 6
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)  <div style=padding-top: 35px>
A)
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)  <div style=padding-top: 35px>

B)
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)  <div style=padding-top: 35px>

C)
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)  <div style=padding-top: 35px>
D)
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)  <div style=padding-top: 35px>
Question
Find the range of the quadratic function in interval notation.
f(x)=7(x3)26f ( x ) = - 7 ( x - 3 ) ^ { 2 } - 6

A) (,6]( - \infty , - 6 ]
В) [6,)[ - 6 , \infty )
C) (,3]( - \infty , 3 ]
D) [3,)[ - 3 , \infty )
Question
The logistic growth functi models the number of people who have become ill with a
f(x)=(x+2)2+8f ( x ) = ( x + 2 ) ^ { 2 } + 8

A) [2,)[ 2 , \infty )
B) [2,)[ - 2 , \infty )
C) [8,)[ - 8 , \infty )
D) [8,)[ 8 , \infty )
Question
Find the range of the quadratic function in interval notation.
f(x)=x24f ( x ) = x ^ { 2 } - 4

A) (4,0)( - 4,0 )
B) (2,0)( 2,0 )
C) (2,0)( - 2,0 ) and (2,0)( 2,0 )
D) No x-intercepts
Question
The logistic growth functi describes the population of a species of butterflies t months
f(x)=11(x4)2+6f ( x ) = 11 ( x - 4 ) ^ { 2 } + 6

A) x=4x = - 4
B) x=4x = 4
C) x=6x = 6
D) x=11x = 11
Question
Sketch the graph of the quadratic function.
f(x)=x28x+1f ( x ) = - x ^ { 2 } - 8 x + 1

A) (8,1)( - 8,1 )
B) (4,17)( - 4,17 )
C) (4,47)( 4 , - 47 )
D) (4,15)( 4 , - 15 )
Question
Find the coordinates of the vertex of the quadratic function.
f(x)=4x28x9f ( x ) = - 4 x ^ { 2 } - 8 x - 9

A) (1,21)( 1 , - 21 )
B) (2,41)( 2 , - 41 )
C) (2,17)( - 2 , - 17 )
D) (1,5)( - 1 , - 5 )
Question
The logistic growth functi models the number of people who have become ill with a
f(x)=11(x3)2+8f ( x ) = 11 ( x - 3 ) ^ { 2 } + 8

A) [8,)[ - 8 , \infty )
B) (,8]( - \infty , 8 ]
C) [8,)[ 8 , \infty )
D) [3,)[ 3 , \infty )
Question
The logistic growth functi models the number of people who have become ill with a
f(x)=7(x2)25f ( x ) = - 7 ( x - 2 ) ^ { 2 } - 5

A) x=2x = - 2
B) x=2x = 2
C) x=7x = - 7
D) x=5x = - 5
Question
The logistic growth functi describes the population of a species of butterflies t months
f(x)=(x+3)2+9f ( x ) = - ( x + 3 ) ^ { 2 } + 9

A) x=9x = - 9
B) x=3x = 3
C) x=3x = - 3
D) x=9x = 9
Question
The logistic growth functi describes the population of a species of butterflies t months
f(x)=(x+4)26f ( x ) = ( x + 4 ) ^ { 2 } - 6

A) x=4x = - 4
B) x=6x = 6
C) x=4x = 4
D) x=6x = - 6
Question
Find the coordinates of the vertex of the quadratic function.
f(x)=x24x1f ( x ) = x ^ { 2 } - 4 x - 1

A) x=2x = 2
B) x=4x = - 4
C) x=5x = - 5
D) x=2x = - 2
Question
Sketch the graph of the quadratic function.
f(x)=1(x+1)2f ( x ) = 1 - ( x + 1 ) ^ { 2 }
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)  <div style=padding-top: 35px>
A)
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
The logistic growth functi models the number of people who have become ill with a
f(x)=(x+4)29f ( x ) = ( x + 4 ) ^ { 2 } - 9

A) [4,)[ - 4 , \infty )
B) (,4]( - \infty , - 4 ]
C) (,9]( - \infty , - 9 ]
D) [9,)[ - 9 , \infty )
Question
The logistic growth functi models the number of people who have become ill with a
f(x)=(x+4)2+5f ( x ) = - ( x + 4 ) ^ { 2 } + 5

A) (,4]( - \infty , 4 ]
B) (,5]( - \infty , 5 ]
C) [4,)[ - 4 , \infty )
D) [5,)[ 5 , \infty )
Question
Rewrite the quadratic function in standard form by completing the square.
f(x)=9x22x12f ( x ) = - 9 x ^ { 2 } - 2 x - 12

A) No x-intercepts; No yy -intercepts
B) x-intercepts: 19- \frac { 1 } { 9 } and 1079;y- \frac { 107 } { 9 } ; y -intercept: 12
C) xx -intercepts: 19\frac { 1 } { 9 } and 1079;y\frac { 107 } { 9 } ; y -intercept: 12- 12
D) No xx -intercepts; yy -intercept: 12- 12
Question
Find the axis of symmetry of the quadratic function.
f(x)=x28xf ( x ) = x ^ { 2 } - 8 x

A) f(x)=(x+8)28f ( x ) = ( x + 8 ) ^ { 2 } - 8
B) f(x)=(x+4)24f ( x ) = ( x + 4 ) ^ { 2 } - 4
C) f(x)=(x4)216f ( x ) = ( x - 4 ) ^ { 2 } - 16
D) f(x)=(x8)264f ( x ) = ( x - 8 ) ^ { 2 } - 64
Question
Find the axis of symmetry of the quadratic function.
f(x)=x2+6x4f ( x ) = x ^ { 2 } + 6 x - 4

A) f(x)=(x+6)240f ( x ) = ( x + 6 ) ^ { 2 } - 40
B) f(x)=(x+3)2+13f ( x ) = ( x + 3 ) ^ { 2 } + 13
C) f(x)=(x+3)213f ( x ) = ( x + 3 ) ^ { 2 } - 13
D) f(x)=(x+6)2+40f ( x ) = ( x + 6 ) ^ { 2 } + 40
Question
Find the axis of symmetry of the quadratic function.
f(x)=x26x+7f ( x ) = x ^ { 2 } - 6 x + 7

A) f(x)=(x+3)2+2f ( x ) = ( x + 3 ) ^ { 2 } + 2
B) f(x)=(x3)2+2f ( x ) = ( x - 3 ) ^ { 2 } + 2
C) f(x)=(x+3)22f ( x ) = ( x + 3 ) ^ { 2 } - 2
D) f(x)=(x3)22f ( x ) = ( x - 3 ) ^ { 2 } - 2
Question
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=x2+8x+6f ( x ) = x ^ { 2 } + 8 x + 6

A) (,42]( - \infty , - 42 ]
B) [10,)[ - 10 , \infty )
C) [4,)[ 4 , \infty )
D) (,10]( - \infty , - 10 ]
Question
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+18x+66f ( x ) = x ^ { 2 } + 18 x + 66 \quad Give your answers in exact form.

A) x-intercepts: 915- 9 - \sqrt { 15 } and 9+15;y- 9 + \sqrt { 15 } ; y -intercept: 66
B) x-intercepts: 1866- 18 - \sqrt { 66 } and 18+66;- 18 + \sqrt { 66 } ; y-intercept: 66- 66
C) x-intercepts: 9669 - \sqrt { 66 } and 9+66;y9 + \sqrt { 66 } ; y -intercept: 66
D) xx -intercepts: 9+15;y9 + \sqrt { 15 } ; y -intercept: 66- 66
Question
Rewrite the quadratic function in standard form by completing the square.
f(x)=2x2+10x48f ( x ) = 2 x ^ { 2 } + 10 x - 48

A) xx -intercepts: 6 and 4 ; No yy -intercepts
B) x-intercepts: 6 and 4;y- 4 ; y -intercept: 10- 10
C) xx -intercepts: 8- 8 and 3 ; yy -intercept: 48- 48
D) xx -intercepts: 8- 8 and 3;y- 3 ; y -intercept: 48
Question
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+17x72f ( x ) = - x ^ { 2 } + 17 x - 72

A) xx -intercepts: 8 and 9;y- 9 ; y -intercept: 17
B) xx -intercepts: 8- 8 and 9;y- 9 ; y -intercept: 72
C) xx -intercepts: 8 and 9;y9 ; y -intercept: 72- 72
D) No x-intercepts; y-intercept: 72- 72
Question
Find the axis of symmetry of the quadratic function.
f(x)=x2+3x+1f ( x ) = x ^ { 2 } + 3 x + 1

A) f(x)=(x+32)2+54f ( x ) = \left( x + \frac { 3 } { 2 } \right) ^ { 2 } + \frac { 5 } { 4 }
B) f(x)=(x+3)39f ( x ) = ( x + 3 ) ^ { 3 } - 9
C) f(x)=(x3)39f ( x ) = ( x - 3 ) ^ { 3 } - 9
D) f(x)=(x+32)254f ( x ) = \left( x + \frac { 3 } { 2 } \right) ^ { 2 } - \frac { 5 } { 4 }
Question
Rewrite the quadratic function in standard form by completing the square.
f(x)=2x2+28x+90f ( x ) = 2 x ^ { 2 } + 28 x + 90

A) xx -intercepts: 5- 5 and 9 ; yy -intercept: 0
B) x-intercepts: 5 and 9;y9 ; y -intercept: 90- 90
C) xx -intercepts: 5- 5 and 9;y- 9 ; y -intercept: 90
D) xx -intercepts: 5 and 9;y- 9 ; y -intercept: 28- 28
Question
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=3x2+10x+4f ( x ) = 3 x ^ { 2 } + 10 x + 4 \quad Give your answers in exact form.

A) xx -intercepts: 10133\frac { - 10 - \sqrt { 13 } } { 3 } and 10+133;y\frac { - 10 + \sqrt { 13 } } { 3 } ; y -intercept: 0
B) x-intercepts: 5136\frac { - 5 - \sqrt { 13 } } { 6 } and 5+136;y\frac { - 5 + \sqrt { 13 } } { 6 } ; y -intercept: 4
C) xx -intercepts: 5133\frac { - 5 - \sqrt { 13 } } { 3 } and 5133;y\frac { - 5 - \sqrt { 13 } } { 3 } ; y -intercept: 4
D) xx -intercepts: 5373\frac { - 5 - \sqrt { 37 } } { 3 } and 5+373;y\frac { - 5 + \sqrt { 37 } } { 3 } ; y -intercept: 0
Question
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=x2+14x+2f ( x ) = - x ^ { 2 } + 14 x + 2

A) [7,)[ 7 , \infty )
B) (,7]( - \infty , 7 ]
C) (,51]( - \infty , 51 ]
D) [51,)[ 51 , \infty )
Question
Find the axis of symmetry of the quadratic function.
f(x)=3x26x+8f ( x ) = - 3 x ^ { 2 } - 6 x + 8

A) x=2x = - 2
B) x=1x = - 1
C) x=1x = 1
D) x=11x = 11
Question
Find the axis of symmetry of the quadratic function.
f(x)=x218xf ( x ) = x ^ { 2 } - 18 x

A) f(x)=(x+18)218f ( x ) = ( x + 18 ) ^ { 2 } - 18
B) f(x)=(x18)2324f ( x ) = ( x - 18 ) ^ { 2 } - 324
C) f(x)=(x+9)29f ( x ) = ( x + 9 ) ^ { 2 } - 9
D) f(x)=(x9)281f ( x ) = ( x - 9 ) ^ { 2 } - 81
Question
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+5x+2f ( x ) = x ^ { 2 } + 5 x + 2

A) f(x)=(x+52)2174f ( x ) = \left( x + \frac { 5 } { 2 } \right) ^ { 2 } - \frac { 17 } { 4 }
B) f(x)=(x52)2+174f ( x ) = \left( x - \frac { 5 } { 2 } \right) ^ { 2 } + \frac { 17 } { 4 }
C) f(x)=(x5)2+23f ( x ) = ( x - 5 ) ^ { 2 } + 23
D) f(x)=(x+5)223f ( x ) = ( x + 5 ) ^ { 2 } - 23
Question
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=4x22x9f ( x ) = 4 x ^ { 2 } - 2 x - 9

A) [14,)\left[ \frac { 1 } { 4 } , \infty \right)
B) (,374]\left( - \infty , - \frac { 37 } { 4 } \right]
C) [374,)\left[ - \frac { 37 } { 4 } , \infty \right)
D) (,14]\left( - \infty , \frac { 1 } { 4 } \right]
Question
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+3x+2f ( x ) = x ^ { 2 } + 3 x + 2

A) xx -intercepts: 1- 1 and 2;y2 ; y -intercept: 2
B) x-intercepts: 1- 1 and -2; y-intercept: 2
C) x-intercepts: 1 and 2; yy -intercept: 1- 1
D) xx -intercepts: 1 and -2; yy -intercept: 0
Question
Find the axis of symmetry of the quadratic function.
f(x)=3x24xf ( x ) = 3 x ^ { 2 } - 4 x

A) f(x)=3(x23)243f ( x ) = 3 \left( x - \frac { 2 } { 3 } \right) ^ { 2 } - \frac { 4 } { 3 }
B) f(x)=3(x23)2+49f ( x ) = 3 \left( x - \frac { 2 } { 3 } \right) ^ { 2 } + \frac { 4 } { 9 }
C) f(x)=3(x+43)2+169f ( x ) = 3 \left( x + \frac { 4 } { 3 } \right) ^ { 2 } + \frac { 16 } { 9 }
D) f(x)=3(x+43)2169f ( x ) = 3 \left( x + \frac { 4 } { 3 } \right) ^ { 2 } - \frac { 16 } { 9 }
Question
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+12x+36f ( x ) = x ^ { 2 } + 12 x + 36

A)x-intercepts: 6; y-intercept: 36
B)No x-intercepts; y-intercept: 72
C)x-intercepts: -6; y-intercept: 36
D)x-intercepts: -6; y-intercept: 72
Question
Find the axis of symmetry of the quadratic function.
f(x)=x2+10x+33f ( x ) = x ^ { 2 } + 10 x + 33

A) f(x)=(x5)28f ( x ) = ( x - 5 ) ^ { 2 } - 8
B) f(x)=(x5)2+8f ( x ) = ( x - 5 ) ^ { 2 } + 8
C) f(x)=(x+5)28f ( x ) = ( x + 5 ) ^ { 2 } - 8
D) f(x)=(x+5)2+8f ( x ) = ( x + 5 ) ^ { 2 } + 8
Question
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=2x24xf ( x ) = - 2 x ^ { 2 } - 4 x

A) (,2]( - \infty , 2 ]
B) (,2]( - \infty , - 2 ]
C) (,1]( - \infty , 1 ]
D) (,1]( - \infty , - 1 ]
Question
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>  A) vertex (3,1)( 3 , - 1 )
intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( 2,0 ) , ( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>
B) vertex (3,1)( - 3 , - 1 )
intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( - 2,0 ) , ( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>
C) vertex (3,1)( 3,1 )
intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>
D) vertex (3,1)( - 3,1 )
intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>
Question
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=x2+2x8f ( x ) = x ^ { 2 } + 2 x - 8
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )    <div style=padding-top: 35px>

A) vertex (1,9)( 1,9 )
intercepts (2,0),(4,0),(0,8)( - 2,0 ) , ( 4,0 ) , ( 0,8 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )    <div style=padding-top: 35px>
B) vertex (1,9)( 1 , - 9 )
intercepts (2,0),(4,0),(0,8)( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )    <div style=padding-top: 35px>
C) vertex (1,9)( - 1 , - 9 )
intercepts (2,0),(4,0),(0,8)( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )    <div style=padding-top: 35px>
D) vertex (1,9)( - 1,9 )
intercepts (2,0),(4,0),(0,8)( 2,0 ) , ( - 4,0 ) , ( 0,8 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )    <div style=padding-top: 35px>
Question
Find the range of the quadratic function in interval notation.
f(x)=3x2+36x102f ( x ) = - 3 x ^ { 2 } + 36 x - 102

A) minimum at (6,0)( - 6,0 )
B) minimum at (0,6)( 0 , - 6 )
C) maximum: (6,6)( 6,6 )
D) maximum at (6,6)( - 6 , - 6 )
Question
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
(x)=x2+2x(x)=-x^{2}+2 x
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )    <div style=padding-top: 35px>

A) vertex (1,1)( - 1 , - 1 )
intercept (0,2)( 0 , - 2 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )    <div style=padding-top: 35px>
B) vertex (1,1)( - 1,1 )
intercepts (0,0),(2,0)( 0,0 ) , ( - 2,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )    <div style=padding-top: 35px>
C) vertex (1,1)( 1 , - 1 )
intercept (0,2)( 0 , - 2 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )    <div style=padding-top: 35px>
D) vertex (1,1)( 1,1 )
intercepts (0,0),(2,0)( 0,0 ) , ( 2,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )    <div style=padding-top: 35px>
Question
Find the range of the quadratic function in interval notation.
f(x)=x2+4x3f ( x ) = x ^ { 2 } + 4 x - 3

A) maximum at (7,2)( - 7 , - 2 )
B) minimum at (2,7)( - 2 , - 7 )
C) maximum at (0,2)( 0 , - 2 )
D) minimum at (7,0)( - 7,0 )
Question
Find the range of the quadratic function in interval notation.
f(x)=4x2+8xf ( x ) = 4 x ^ { 2 } + 8 x

A) minimum at (1,4)( - 1 , - 4 )
B) maximum at (1,4)( 1 , - 4 )
C) minimum; (ii) (1,4)( 1 , - 4 )
D) maximum at (1,4)( - 1 , - 4 )
Question
Find the range of the quadratic function in interval notation.
f(x)=x218x+87f ( x ) = x ^ { 2 } - 18 x + 87

A) minimum at (9,6)( 9,6 )
B) maximum at (6,0)( 6,0 )
C) maximum at (6,9)( 6,9 )
D) minimum at (0,9)( 0,9 )
Question
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=x2+12x+36f ( x ) = x ^ { 2 } + 12 x + 36
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )    <div style=padding-top: 35px>

A) vertex (6,0)( - 6,0 )
intercepts (0,36),(6,0)( 0,36 ) , ( - 6,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )    <div style=padding-top: 35px>
B) vertex (6,36)( - 6,36 )
intercept (0,72)( 0,72 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )    <div style=padding-top: 35px>
C) vertex (6,0)( 6,0 )
intercepts (0,36),(6,0)( 0,36 ) , ( 6,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )    <div style=padding-top: 35px>
D) vertex (6,36)( 6,36 )
intercept (0,72)( 0,72 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )    <div style=padding-top: 35px>
Question
Find the range of the quadratic function in interval notation.
f(x)=3x2+3x9f ( x ) = 3 x ^ { 2 } + 3 x - 9

A) minimum at (12,394)\left( - \frac { 1 } { 2 } , - \frac { 39 } { 4 } \right)
B) minimum at (394,12)\left( - \frac { 39 } { 4 } , - \frac { 1 } { 2 } \right)
C) maximum at (12,394)\left( - \frac { 1 } { 2 } , - \frac { 39 } { 4 } \right)
D) maximum at (394,12)\left( - \frac { 39 } { 4 } , - \frac { 1 } { 2 } \right)
Question
Find the range of the quadratic function in interval notation.
f(x)=9x2+36x+27f ( x ) = 9 x ^ { 2 } + 36 x + 27

A) maximum at (9,2)( - 9 , - 2 )
B) minimum at (2,0)( - 2,0 )
C) maximum at (9,0)( - 9,0 )
D) minimum at (2,9)( - 2 , - 9 )
Question
Find the range of the quadratic function in interval notation.
f(x)=x24x7f ( x ) = - x ^ { 2 } - 4 x - 7

A) maximum at (-2,-3)
B) minimum at (3,0)( 3,0 )
C) minimum at (0,2)( 0,2 )
D) maximum at (3,2)( 3,2 )
Question
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>  A) vertex (3,1)( - 3 , - 1 )
intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( - 2,0 ) , ( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>
B) vertex (3,1)( 3,1 )
intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>
D) vertex (3,1)( 3 , - 1 )
intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( 2,0 ) , ( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>
C) vertex (3,1)( - 3,1 )
intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )   <div style=padding-top: 35px>
Question
Find the range of the quadratic function in interval notation.
f(x)=3x236x+113f ( x ) = 3 x ^ { 2 } - 36 x + 113

A) maximum at (5,6)( 5,6 )
B) minimum at (6,5)( 6,5 )
C) minimum at (6,0)( 6,0 )
D) maximum at (5,0)( 5,0 )
Question
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=x24x3f(x)=-x^{2}-4 x-3
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )    <div style=padding-top: 35px>

A) vertex (2,1)( - 2,1 )
intercepts (1,0),(3,0),(0,3)( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )    <div style=padding-top: 35px>
B) vertex (2,1)( - 2 , - 1 )
intercepts (1,0),(3,0),(0,3( - 1,0 ) , ( - 3,0 ) , ( 0,3
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )    <div style=padding-top: 35px>
C) vertex (2,1)( 2,1 )
intercepts (1,0),(3,0),(0,3)( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )    <div style=padding-top: 35px>
D) vertex (2,1)( 2 , - 1 )
intercepts (1,0),(3,0),(0,3)( 1,0 ) , ( 3,0 ) , ( 0,3 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )    <div style=padding-top: 35px>
Question
Find the range of the quadratic function in interval notation.
f(x)=2x212x27f ( x ) = - 2 x ^ { 2 } - 12 x - 27

A) minimum at (9,0)( 9,0 )
B) minimum at (0,3)( 0,3 )
C) maximum at (9,3)( 9,3 )
D) maximum at (3,9)( - 3 , - 9 )
Question
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=x26xf(x)=x^{2}-6 x
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )    <div style=padding-top: 35px>

A) vertex (3,9)( 3,9 )
intercept (0,18)( 0,18 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )    <div style=padding-top: 35px>
B) vertex (3,9)( - 3,9 )
intercept (0,18)( 0,18 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )    <div style=padding-top: 35px>
C) vertex (3,9)( - 3 , - 9 )
intercepts (0,0),(6,0)( 0,0 ) , ( - 6,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )    <div style=padding-top: 35px>
D) vertex (3,9)( 3 , - 9 )
intercepts (0,0),(6,0)( 0,0 ) , ( 6,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )    <div style=padding-top: 35px>
Question
Find the range of the quadratic function in interval notation.
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )   <div style=padding-top: 35px>  A) vertex (110,6910)\left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)
intercept (0,7)( 0,7 )
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )   <div style=padding-top: 35px>
B) vertex (110,6910)\left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)
intercept (0,7)( 0 , - 7 )
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )   <div style=padding-top: 35px>
C) vertex (110,6910)\left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)
intercept (0,7)( 0 , - 7 )
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )   <div style=padding-top: 35px>
D) vertex (110,6910)\left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)

intercept (0,7)( 0,7 )
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )   <div style=padding-top: 35px>
Question
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=4x28x+8f ( x ) = 4 x ^ { 2 } - 8 x + 8
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)   <div style=padding-top: 35px>
A) vertex (1,4)( - 1,4 )
intercept (0,8)( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)   <div style=padding-top: 35px>
B) vertex (1,4)( 1,4 )
intercept (0,8)( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)   <div style=padding-top: 35px>
C) vertex (1,4)( - 1,4 )
intercept (0,174)\left( 0 , \frac { 17 } { 4 } \right)
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)   <div style=padding-top: 35px>
D) vertex (1,4)( 1,4 )
intercept (0,174)\left( 0 , \frac { 17 } { 4 } \right)
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)   <div style=padding-top: 35px>
Question
Find the range of the quadratic function in interval notation.
f(x)=x2+6x+3f ( x ) = x ^ { 2 } + 6 x + 3

A) minimum at (3,6)( - 3 , - 6 )
B) minimum at (0,3)( 0 , - 3 )
C) maximum at (6,3)( - 6 , - 3 )
D) maximum at (6,0)( - 6,0 )
Question
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  f ( x ) = \frac { 1 } { 2 } ( x - 2 ) ^ { 2 } + 5  B)  f ( x ) = - 2 ( x - 2 ) ^ { 2 } + 5  C)  f ( x ) = 2 ( x - 2 ) ^ { 2 } + 5  D)  f ( x ) = - \frac { 1 } { 2 } ( x - 2 ) ^ { 2 } + 5  <div style=padding-top: 35px>

A) f(x)=12(x2)2+5f ( x ) = \frac { 1 } { 2 } ( x - 2 ) ^ { 2 } + 5
B) f(x)=2(x2)2+5f ( x ) = - 2 ( x - 2 ) ^ { 2 } + 5
C) f(x)=2(x2)2+5f ( x ) = 2 ( x - 2 ) ^ { 2 } + 5
D) f(x)=12(x2)2+5f ( x ) = - \frac { 1 } { 2 } ( x - 2 ) ^ { 2 } + 5
Question
Solve the problem.
Consider the quadratic model h(t)=16t2+40t+50h ( t ) = - 16 t ^ { 2 } + 40 t + 50 for the height (in feet), hh , of an object tt seconds after the object has been projected straight up into the air. Find the maximum height attained by the object. How much time does it take to fall back to the ground? Assume that it takes the same time for going up and coming down.

A)maximum height = 75 ft; time to reach ground = 2.5 seconds
B)maximum height = 50 ft; time to reach ground = 1.25 seconds
C)maximum height = 75 ft; time to reach ground = 1.25 seconds
D)maximum height = 50 ft; time to reach ground = 2.5 seconds
Question
Solve the problem.
The owner of a video store has determined that the profits P of the store are approximately given by P(x)=x2+50x+62P ( x ) = - x ^ { 2 } + 50 x + 62 where x is the number of videos rented daily. Find the maximum profit to the nearest dollar.

A)$1312
B)$625
C)$1250
D)$687
Question
Find the range of the quadratic function in interval notation.
f(x)=12x2+4x4f ( x ) = \frac { 1 } { 2 } x ^ { 2 } + 4 x - 4

A) minimum at (4,12)( - 4 , - 12 )
B) maximum at (4,6)( 4,6 )
C) minimum at (4,12)( 4,12 )
D) maximum at (4,4)( - 4 , - 4 )
Question
Solve the problem.
The owner of a video store has determined that the cost C, in dollars, of operating the store is approximately given by C(x)=2x228x+600C ( x ) = 2 x ^ { 2 } - 28 x + 600 , where x is the number of videos rented daily. Find the lowest cost to the nearest dollar.

A)$698
B)$502
C)$208
D)$404
Question
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.   </strong> A)  f ( x ) = - ( x + 3 ) ^ { 2 }  B)  f ( x ) = ( x + 3 ) ^ { 2 }  C)  f ( x ) = ( x - 3 ) ^ { 2 }  D)  f ( x ) = - ( x - 3 ) ^ { 2 }  <div style=padding-top: 35px>

A) f(x)=(x+3)2f ( x ) = - ( x + 3 ) ^ { 2 }
B) f(x)=(x+3)2f ( x ) = ( x + 3 ) ^ { 2 }
C) f(x)=(x3)2f ( x ) = ( x - 3 ) ^ { 2 }
D) f(x)=(x3)2f ( x ) = - ( x - 3 ) ^ { 2 }
Question
Solve the problem.
A projectile is fired from a cliff 600 feet above the water at an inclination of 4545 ^ { \circ } to the horizontal, with a muzzle velocity of 120 feet per second. The height hh of the projectile above the water is given by h(x)=32x2(120)2+x+600h ( x ) = \frac { - 32 x ^ { 2 } } { ( 120 ) ^ { 2 } } + x + 600 , where xx is the horizontal distance of the projectile from the base of the cliff. How far from the base of the cliff is the height of the projectile a maximum?

A)712.5 ft
B)225 ft
C)937.5 ft
D)112.5 ft
Question
Use the quadratic function to determine if the function has a maximum or minimum value and then find this maximum or minimum value.
f(x)=x245x+6f ( x ) = - x ^ { 2 } - \frac { 4 } { 5 } x + 6

A) minimum at (25,12125)\left( - \frac { 2 } { 5 } , - \frac { 121 } { 25 } \right)
B) minimum at (110,733)\left( - \frac { 1 } { 10 } , - \frac { 73 } { 3 } \right)
C) maximum at (110,121)\left( \frac { 1 } { 10 } , - 121 \right)
D) maximum at (25,15425)\left( - \frac { 2 } { 5 } , \frac { 154 } { 25 } \right)
Question
Solve the problem.
The manufacturer of a CD player has found that the revenue R (in dollars)is R(p)=5p2+1590pR ( p ) = - 5 p ^ { 2 } + 1590 p when the unit price is p dollars. If the manufacturer sets the price p to maximize revenue, what is the maximum revenue to the nearest whole dollar?

A)$252,810
B)$1,011,240
C)$505,620
D)$126,405
Question
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  y = - 2 ( x + 2 ) ^ { 2 } - 6  B)  y = \frac { 1 } { 2 } ( x + 2 ) ^ { 2 } + 6  C)  y = - \frac { 1 } { 2 } ( x + 2 ) ^ { 2 } - 6  D)  y = 2 ( x + 2 ) ^ { 2 } + 6  <div style=padding-top: 35px>

A) y=2(x+2)26y = - 2 ( x + 2 ) ^ { 2 } - 6
B) y=12(x+2)2+6y = \frac { 1 } { 2 } ( x + 2 ) ^ { 2 } + 6
C) y=12(x+2)26y = - \frac { 1 } { 2 } ( x + 2 ) ^ { 2 } - 6
D) y=2(x+2)2+6y = 2 ( x + 2 ) ^ { 2 } + 6
Question
Solve the problem.
The profit that the vendor makes per day by selling x pretzels is given by the function P(x)=0.002x2+1.6x150P ( x ) = - 0.002 x ^ { 2 } + 1.6 x - 150 Find the number of pretzels that must be sold to maximize profit.

A)400 pretzels
B)170 pretzels
C)800 pretzels
D)0.8 pretzels
Question
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.   </strong> A)  f ( x ) = - 2 ( x - 1 ) ^ { 2 } - 6  B)  f ( x ) = 2 ( x - 1 ) ^ { 2 } - 6  C)  f ( x ) = 2 ( x - 1 ) ^ { 2 } + 6  D)  f ( x ) = 2 ( x + 1 ) ^ { 2 } + 6  <div style=padding-top: 35px>

A) f(x)=2(x1)26f ( x ) = - 2 ( x - 1 ) ^ { 2 } - 6
B) f(x)=2(x1)26f ( x ) = 2 ( x - 1 ) ^ { 2 } - 6
C) f(x)=2(x1)2+6f ( x ) = 2 ( x - 1 ) ^ { 2 } + 6
D) f(x)=2(x+1)2+6f ( x ) = 2 ( x + 1 ) ^ { 2 } + 6
Question
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  f ( x ) = - 2 x ^ { 2 } + 4 x + 3  B)  f ( x ) = - 2 x ^ { 2 } - 4 x - 3  C)  f ( x ) = 2 x ^ { 2 } + 4 x + 3  D)  f ( x ) = 2 x ^ { 2 } - 8 x + 3  <div style=padding-top: 35px>

A) f(x)=2x2+4x+3f ( x ) = - 2 x ^ { 2 } + 4 x + 3
B) f(x)=2x24x3f ( x ) = - 2 x ^ { 2 } - 4 x - 3
C) f(x)=2x2+4x+3f ( x ) = 2 x ^ { 2 } + 4 x + 3
D) f(x)=2x28x+3f ( x ) = 2 x ^ { 2 } - 8 x + 3
Question
Solve the problem.
A developer wants to enclose a rectangular grassy lot that borders a city street for parking. If the developer has 352 feet of fencing and does not fence the side along the street, what is the largest area that can be enclosed? A) 23,232ft223,232 \mathrm { ft } ^ { 2 }
B) 15,488ft215,488 \mathrm { ft } ^ { 2 }
C) 30,976ft230,976 \mathrm { ft } ^ { 2 }
D) 7744ft27744 \mathrm { ft } ^ { 2 }
Question
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  f ( x ) = ( x + 2 ) ^ { 2 } - 4  B)  f ( x ) = - ( x + 2 ) ^ { 2 } + 4  C)  f ( x ) = ( x + 2 ) ^ { 2 } + 4  D)  f ( x ) = - ( x + 2 ) ^ { 2 } - 4  <div style=padding-top: 35px>

A) f(x)=(x+2)24f ( x ) = ( x + 2 ) ^ { 2 } - 4
B) f(x)=(x+2)2+4f ( x ) = - ( x + 2 ) ^ { 2 } + 4
C) f(x)=(x+2)2+4f ( x ) = ( x + 2 ) ^ { 2 } + 4
D) f(x)=(x+2)24f ( x ) = - ( x + 2 ) ^ { 2 } - 4
Question
Find the range of the quadratic function in interval notation.
f(x)=5x210xf ( x ) = - 5 x ^ { 2 } - 10 x

A) minimum at (1,5)( 1 , - 5 )
B) maximum at (1,5)( 1 , - 5 )
C) maximum at (1,5)( - 1,5 )
D) minimum at (1,5)( - 1,5 )
Question
Solve the problem.
You have 192 feet of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area.

A)96 ft by 24 ft
B)96 ft by 96 ft
C)50 ft by 46 ft
D)48 ft by 48 ft
Question
Use the quadratic function to determine if the function has a maximum or minimum value and then find this maximum or minimum value.
 <strong>Use the quadratic function to determine if the function has a maximum or minimum value and then find this maximum or minimum value.   </strong> A)  f ( x ) = - x ^ { 2 } - 4 x + 8  B)  f ( x ) = - x ^ { 2 } + 2 x + 8  C)  f ( x ) = - x ^ { 2 } + 2 x - 8  D)  f ( x ) = x ^ { 2 } - 4 x + 8  <div style=padding-top: 35px>

A) f(x)=x24x+8f ( x ) = - x ^ { 2 } - 4 x + 8
B) f(x)=x2+2x+8f ( x ) = - x ^ { 2 } + 2 x + 8
C) f(x)=x2+2x8f ( x ) = - x ^ { 2 } + 2 x - 8
D) f(x)=x24x+8f ( x ) = x ^ { 2 } - 4 x + 8
Question
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  f ( x ) = 2 ( x - 1 ) ^ { 2 } - 3  B)  f ( x ) = - 2 ( x + 1 ) ^ { 2 } - 3  C)  f ( x ) = 2 ( x + 1 ) ^ { 2 } + 3  D)  f ( x ) = 2 ( x + 1 ) ^ { 2 } - 3  <div style=padding-top: 35px>

A) f(x)=2(x1)23f ( x ) = 2 ( x - 1 ) ^ { 2 } - 3
B) f(x)=2(x+1)23f ( x ) = - 2 ( x + 1 ) ^ { 2 } - 3
C) f(x)=2(x+1)2+3f ( x ) = 2 ( x + 1 ) ^ { 2 } + 3
D) f(x)=2(x+1)23f ( x ) = 2 ( x + 1 ) ^ { 2 } - 3
Question
Solve the problem.
A projectile is fired from a cliff 200 feet above the water at an inclination of 4545 ^ { \circ } to the horizontal, with a muzzle velocity of 380 feet per second. The height h of the projectile above the water is given by h (x)=32x2(380)2+x+200( x ) = \frac { - 32 x ^ { 2 } } { ( 380 ) ^ { 2 } } + x + 200 , where xx is the horizontal distance of the projectile from the base of the cliff. Find the maximum height of the projectile.

A)2256.25 ft
B)3584.38 ft
C)1128.13 ft
D)1328.13 ft
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/255
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Polynomial and Rational Functions
1
Find the y-intercept for the graph of the quadratic function.
f(x)=(x+2)24f ( x ) = ( x + 2 ) ^ { 2 } - 4

A) (4,0)( 4,0 )
B) (0,4)( 0 , - 4 )
C) (0,4)( 0,4 )
D) (0,0)( 0,0 )
D
2
Find the x-intercepts (if any)for the graph of the quadratic function.
f(x)=(x3)29f ( x ) = ( x - 3 ) ^ { 2 } - 9

A) (0,0)( 0,0 ) and (6,0)( 6,0 )
B) (0,0)( 0,0 ) and (9,0)( - 9,0 )
C) (0,0)( 0,0 ) and (6,0)( - 6,0 )
D) (6,0)( - 6,0 ) and (6,0)( 6,0 )
A
3
Sketch the graph of the quadratic function.
f(x)=x26x9f ( x ) = x ^ { 2 } - 6 x - 9

A) (3,18)( 3 , - 18 )
В) (3,18)( - 3,18 )
C) (3,36)( 3 , - 36 )
D) (6,63)( - 6,63 )
A
4
Find the coordinates of the vertex of the quadratic function.
f(x)=x24x+6f ( x ) = - x ^ { 2 } - 4 x + 6

A) x=2x = 2
B) x=2x = - 2
C) x=4x = - 4
D) x=10x = 10
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
5
Find the y-intercept for the graph of the quadratic function.
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)  A)
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)
B)
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)
C)
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)
D)
Find the y-intercept for the graph of the quadratic function.   A)   B)   C)   D)
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
6
Find the y-intercept for the graph of the quadratic function.
f(x)=(x+4)2+6f ( x ) = ( x + 4 ) ^ { 2 } + 6
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)
A)
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)

B)
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)

C)
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)
D)
 Find the y-intercept for the graph of the quadratic function.  f ( x ) = ( x + 4 ) ^ { 2 } + 6    A)    B)    C)   D)
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
7
Find the range of the quadratic function in interval notation.
f(x)=7(x3)26f ( x ) = - 7 ( x - 3 ) ^ { 2 } - 6

A) (,6]( - \infty , - 6 ]
В) [6,)[ - 6 , \infty )
C) (,3]( - \infty , 3 ]
D) [3,)[ - 3 , \infty )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
8
The logistic growth functi models the number of people who have become ill with a
f(x)=(x+2)2+8f ( x ) = ( x + 2 ) ^ { 2 } + 8

A) [2,)[ 2 , \infty )
B) [2,)[ - 2 , \infty )
C) [8,)[ - 8 , \infty )
D) [8,)[ 8 , \infty )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
9
Find the range of the quadratic function in interval notation.
f(x)=x24f ( x ) = x ^ { 2 } - 4

A) (4,0)( - 4,0 )
B) (2,0)( 2,0 )
C) (2,0)( - 2,0 ) and (2,0)( 2,0 )
D) No x-intercepts
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
10
The logistic growth functi describes the population of a species of butterflies t months
f(x)=11(x4)2+6f ( x ) = 11 ( x - 4 ) ^ { 2 } + 6

A) x=4x = - 4
B) x=4x = 4
C) x=6x = 6
D) x=11x = 11
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
11
Sketch the graph of the quadratic function.
f(x)=x28x+1f ( x ) = - x ^ { 2 } - 8 x + 1

A) (8,1)( - 8,1 )
B) (4,17)( - 4,17 )
C) (4,47)( 4 , - 47 )
D) (4,15)( 4 , - 15 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
12
Find the coordinates of the vertex of the quadratic function.
f(x)=4x28x9f ( x ) = - 4 x ^ { 2 } - 8 x - 9

A) (1,21)( 1 , - 21 )
B) (2,41)( 2 , - 41 )
C) (2,17)( - 2 , - 17 )
D) (1,5)( - 1 , - 5 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
13
The logistic growth functi models the number of people who have become ill with a
f(x)=11(x3)2+8f ( x ) = 11 ( x - 3 ) ^ { 2 } + 8

A) [8,)[ - 8 , \infty )
B) (,8]( - \infty , 8 ]
C) [8,)[ 8 , \infty )
D) [3,)[ 3 , \infty )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
14
The logistic growth functi models the number of people who have become ill with a
f(x)=7(x2)25f ( x ) = - 7 ( x - 2 ) ^ { 2 } - 5

A) x=2x = - 2
B) x=2x = 2
C) x=7x = - 7
D) x=5x = - 5
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
15
The logistic growth functi describes the population of a species of butterflies t months
f(x)=(x+3)2+9f ( x ) = - ( x + 3 ) ^ { 2 } + 9

A) x=9x = - 9
B) x=3x = 3
C) x=3x = - 3
D) x=9x = 9
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
16
The logistic growth functi describes the population of a species of butterflies t months
f(x)=(x+4)26f ( x ) = ( x + 4 ) ^ { 2 } - 6

A) x=4x = - 4
B) x=6x = 6
C) x=4x = 4
D) x=6x = - 6
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
17
Find the coordinates of the vertex of the quadratic function.
f(x)=x24x1f ( x ) = x ^ { 2 } - 4 x - 1

A) x=2x = 2
B) x=4x = - 4
C) x=5x = - 5
D) x=2x = - 2
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
18
Sketch the graph of the quadratic function.
f(x)=1(x+1)2f ( x ) = 1 - ( x + 1 ) ^ { 2 }
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)
A)
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)
B)
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)
C)
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)
D)
 Sketch the graph of the quadratic function.  f ( x ) = 1 - ( x + 1 ) ^ { 2 }    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
19
The logistic growth functi models the number of people who have become ill with a
f(x)=(x+4)29f ( x ) = ( x + 4 ) ^ { 2 } - 9

A) [4,)[ - 4 , \infty )
B) (,4]( - \infty , - 4 ]
C) (,9]( - \infty , - 9 ]
D) [9,)[ - 9 , \infty )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
20
The logistic growth functi models the number of people who have become ill with a
f(x)=(x+4)2+5f ( x ) = - ( x + 4 ) ^ { 2 } + 5

A) (,4]( - \infty , 4 ]
B) (,5]( - \infty , 5 ]
C) [4,)[ - 4 , \infty )
D) [5,)[ 5 , \infty )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
21
Rewrite the quadratic function in standard form by completing the square.
f(x)=9x22x12f ( x ) = - 9 x ^ { 2 } - 2 x - 12

A) No x-intercepts; No yy -intercepts
B) x-intercepts: 19- \frac { 1 } { 9 } and 1079;y- \frac { 107 } { 9 } ; y -intercept: 12
C) xx -intercepts: 19\frac { 1 } { 9 } and 1079;y\frac { 107 } { 9 } ; y -intercept: 12- 12
D) No xx -intercepts; yy -intercept: 12- 12
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
22
Find the axis of symmetry of the quadratic function.
f(x)=x28xf ( x ) = x ^ { 2 } - 8 x

A) f(x)=(x+8)28f ( x ) = ( x + 8 ) ^ { 2 } - 8
B) f(x)=(x+4)24f ( x ) = ( x + 4 ) ^ { 2 } - 4
C) f(x)=(x4)216f ( x ) = ( x - 4 ) ^ { 2 } - 16
D) f(x)=(x8)264f ( x ) = ( x - 8 ) ^ { 2 } - 64
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
23
Find the axis of symmetry of the quadratic function.
f(x)=x2+6x4f ( x ) = x ^ { 2 } + 6 x - 4

A) f(x)=(x+6)240f ( x ) = ( x + 6 ) ^ { 2 } - 40
B) f(x)=(x+3)2+13f ( x ) = ( x + 3 ) ^ { 2 } + 13
C) f(x)=(x+3)213f ( x ) = ( x + 3 ) ^ { 2 } - 13
D) f(x)=(x+6)2+40f ( x ) = ( x + 6 ) ^ { 2 } + 40
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
24
Find the axis of symmetry of the quadratic function.
f(x)=x26x+7f ( x ) = x ^ { 2 } - 6 x + 7

A) f(x)=(x+3)2+2f ( x ) = ( x + 3 ) ^ { 2 } + 2
B) f(x)=(x3)2+2f ( x ) = ( x - 3 ) ^ { 2 } + 2
C) f(x)=(x+3)22f ( x ) = ( x + 3 ) ^ { 2 } - 2
D) f(x)=(x3)22f ( x ) = ( x - 3 ) ^ { 2 } - 2
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
25
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=x2+8x+6f ( x ) = x ^ { 2 } + 8 x + 6

A) (,42]( - \infty , - 42 ]
B) [10,)[ - 10 , \infty )
C) [4,)[ 4 , \infty )
D) (,10]( - \infty , - 10 ]
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
26
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+18x+66f ( x ) = x ^ { 2 } + 18 x + 66 \quad Give your answers in exact form.

A) x-intercepts: 915- 9 - \sqrt { 15 } and 9+15;y- 9 + \sqrt { 15 } ; y -intercept: 66
B) x-intercepts: 1866- 18 - \sqrt { 66 } and 18+66;- 18 + \sqrt { 66 } ; y-intercept: 66- 66
C) x-intercepts: 9669 - \sqrt { 66 } and 9+66;y9 + \sqrt { 66 } ; y -intercept: 66
D) xx -intercepts: 9+15;y9 + \sqrt { 15 } ; y -intercept: 66- 66
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
27
Rewrite the quadratic function in standard form by completing the square.
f(x)=2x2+10x48f ( x ) = 2 x ^ { 2 } + 10 x - 48

A) xx -intercepts: 6 and 4 ; No yy -intercepts
B) x-intercepts: 6 and 4;y- 4 ; y -intercept: 10- 10
C) xx -intercepts: 8- 8 and 3 ; yy -intercept: 48- 48
D) xx -intercepts: 8- 8 and 3;y- 3 ; y -intercept: 48
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
28
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+17x72f ( x ) = - x ^ { 2 } + 17 x - 72

A) xx -intercepts: 8 and 9;y- 9 ; y -intercept: 17
B) xx -intercepts: 8- 8 and 9;y- 9 ; y -intercept: 72
C) xx -intercepts: 8 and 9;y9 ; y -intercept: 72- 72
D) No x-intercepts; y-intercept: 72- 72
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
29
Find the axis of symmetry of the quadratic function.
f(x)=x2+3x+1f ( x ) = x ^ { 2 } + 3 x + 1

A) f(x)=(x+32)2+54f ( x ) = \left( x + \frac { 3 } { 2 } \right) ^ { 2 } + \frac { 5 } { 4 }
B) f(x)=(x+3)39f ( x ) = ( x + 3 ) ^ { 3 } - 9
C) f(x)=(x3)39f ( x ) = ( x - 3 ) ^ { 3 } - 9
D) f(x)=(x+32)254f ( x ) = \left( x + \frac { 3 } { 2 } \right) ^ { 2 } - \frac { 5 } { 4 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
30
Rewrite the quadratic function in standard form by completing the square.
f(x)=2x2+28x+90f ( x ) = 2 x ^ { 2 } + 28 x + 90

A) xx -intercepts: 5- 5 and 9 ; yy -intercept: 0
B) x-intercepts: 5 and 9;y9 ; y -intercept: 90- 90
C) xx -intercepts: 5- 5 and 9;y- 9 ; y -intercept: 90
D) xx -intercepts: 5 and 9;y- 9 ; y -intercept: 28- 28
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
31
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=3x2+10x+4f ( x ) = 3 x ^ { 2 } + 10 x + 4 \quad Give your answers in exact form.

A) xx -intercepts: 10133\frac { - 10 - \sqrt { 13 } } { 3 } and 10+133;y\frac { - 10 + \sqrt { 13 } } { 3 } ; y -intercept: 0
B) x-intercepts: 5136\frac { - 5 - \sqrt { 13 } } { 6 } and 5+136;y\frac { - 5 + \sqrt { 13 } } { 6 } ; y -intercept: 4
C) xx -intercepts: 5133\frac { - 5 - \sqrt { 13 } } { 3 } and 5133;y\frac { - 5 - \sqrt { 13 } } { 3 } ; y -intercept: 4
D) xx -intercepts: 5373\frac { - 5 - \sqrt { 37 } } { 3 } and 5+373;y\frac { - 5 + \sqrt { 37 } } { 3 } ; y -intercept: 0
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
32
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=x2+14x+2f ( x ) = - x ^ { 2 } + 14 x + 2

A) [7,)[ 7 , \infty )
B) (,7]( - \infty , 7 ]
C) (,51]( - \infty , 51 ]
D) [51,)[ 51 , \infty )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
33
Find the axis of symmetry of the quadratic function.
f(x)=3x26x+8f ( x ) = - 3 x ^ { 2 } - 6 x + 8

A) x=2x = - 2
B) x=1x = - 1
C) x=1x = 1
D) x=11x = 11
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
34
Find the axis of symmetry of the quadratic function.
f(x)=x218xf ( x ) = x ^ { 2 } - 18 x

A) f(x)=(x+18)218f ( x ) = ( x + 18 ) ^ { 2 } - 18
B) f(x)=(x18)2324f ( x ) = ( x - 18 ) ^ { 2 } - 324
C) f(x)=(x+9)29f ( x ) = ( x + 9 ) ^ { 2 } - 9
D) f(x)=(x9)281f ( x ) = ( x - 9 ) ^ { 2 } - 81
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
35
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+5x+2f ( x ) = x ^ { 2 } + 5 x + 2

A) f(x)=(x+52)2174f ( x ) = \left( x + \frac { 5 } { 2 } \right) ^ { 2 } - \frac { 17 } { 4 }
B) f(x)=(x52)2+174f ( x ) = \left( x - \frac { 5 } { 2 } \right) ^ { 2 } + \frac { 17 } { 4 }
C) f(x)=(x5)2+23f ( x ) = ( x - 5 ) ^ { 2 } + 23
D) f(x)=(x+5)223f ( x ) = ( x + 5 ) ^ { 2 } - 23
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
36
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=4x22x9f ( x ) = 4 x ^ { 2 } - 2 x - 9

A) [14,)\left[ \frac { 1 } { 4 } , \infty \right)
B) (,374]\left( - \infty , - \frac { 37 } { 4 } \right]
C) [374,)\left[ - \frac { 37 } { 4 } , \infty \right)
D) (,14]\left( - \infty , \frac { 1 } { 4 } \right]
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
37
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+3x+2f ( x ) = x ^ { 2 } + 3 x + 2

A) xx -intercepts: 1- 1 and 2;y2 ; y -intercept: 2
B) x-intercepts: 1- 1 and -2; y-intercept: 2
C) x-intercepts: 1 and 2; yy -intercept: 1- 1
D) xx -intercepts: 1 and -2; yy -intercept: 0
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
38
Find the axis of symmetry of the quadratic function.
f(x)=3x24xf ( x ) = 3 x ^ { 2 } - 4 x

A) f(x)=3(x23)243f ( x ) = 3 \left( x - \frac { 2 } { 3 } \right) ^ { 2 } - \frac { 4 } { 3 }
B) f(x)=3(x23)2+49f ( x ) = 3 \left( x - \frac { 2 } { 3 } \right) ^ { 2 } + \frac { 4 } { 9 }
C) f(x)=3(x+43)2+169f ( x ) = 3 \left( x + \frac { 4 } { 3 } \right) ^ { 2 } + \frac { 16 } { 9 }
D) f(x)=3(x+43)2169f ( x ) = 3 \left( x + \frac { 4 } { 3 } \right) ^ { 2 } - \frac { 16 } { 9 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
39
Rewrite the quadratic function in standard form by completing the square.
f(x)=x2+12x+36f ( x ) = x ^ { 2 } + 12 x + 36

A)x-intercepts: 6; y-intercept: 36
B)No x-intercepts; y-intercept: 72
C)x-intercepts: -6; y-intercept: 36
D)x-intercepts: -6; y-intercept: 72
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
40
Find the axis of symmetry of the quadratic function.
f(x)=x2+10x+33f ( x ) = x ^ { 2 } + 10 x + 33

A) f(x)=(x5)28f ( x ) = ( x - 5 ) ^ { 2 } - 8
B) f(x)=(x5)2+8f ( x ) = ( x - 5 ) ^ { 2 } + 8
C) f(x)=(x+5)28f ( x ) = ( x + 5 ) ^ { 2 } - 8
D) f(x)=(x+5)2+8f ( x ) = ( x + 5 ) ^ { 2 } + 8
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
41
First rewrite the quadratic function in standard form by completing the square, then find any x-intercepts and any y-intercepts.
f(x)=2x24xf ( x ) = - 2 x ^ { 2 } - 4 x

A) (,2]( - \infty , 2 ]
B) (,2]( - \infty , - 2 ]
C) (,1]( - \infty , 1 ]
D) (,1]( - \infty , - 1 ]
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
42
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )    A) vertex (3,1)( 3 , - 1 )
intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( 2,0 ) , ( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
B) vertex (3,1)( - 3 , - 1 )
intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( - 2,0 ) , ( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
C) vertex (3,1)( 3,1 )
intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
D) vertex (3,1)( - 3,1 )
intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    B) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    C) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
43
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=x2+2x8f ( x ) = x ^ { 2 } + 2 x - 8
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )

A) vertex (1,9)( 1,9 )
intercepts (2,0),(4,0),(0,8)( - 2,0 ) , ( 4,0 ) , ( 0,8 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )
B) vertex (1,9)( 1 , - 9 )
intercepts (2,0),(4,0),(0,8)( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )
C) vertex (1,9)( - 1 , - 9 )
intercepts (2,0),(4,0),(0,8)( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )
D) vertex (1,9)( - 1,9 )
intercepts (2,0),(4,0),(0,8)( 2,0 ) , ( - 4,0 ) , ( 0,8 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 2 x - 8   </strong> A) vertex  ( 1,9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0,8 )    B) vertex  ( 1 , - 9 )  intercepts  ( - 2,0 ) , ( 4,0 ) , ( 0 , - 8 )    C) vertex  ( - 1 , - 9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0 , - 8 )    D) vertex  ( - 1,9 )  intercepts  ( 2,0 ) , ( - 4,0 ) , ( 0,8 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
44
Find the range of the quadratic function in interval notation.
f(x)=3x2+36x102f ( x ) = - 3 x ^ { 2 } + 36 x - 102

A) minimum at (6,0)( - 6,0 )
B) minimum at (0,6)( 0 , - 6 )
C) maximum: (6,6)( 6,6 )
D) maximum at (6,6)( - 6 , - 6 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
45
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
(x)=x2+2x(x)=-x^{2}+2 x
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )

A) vertex (1,1)( - 1 , - 1 )
intercept (0,2)( 0 , - 2 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )
B) vertex (1,1)( - 1,1 )
intercepts (0,0),(2,0)( 0,0 ) , ( - 2,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )
C) vertex (1,1)( 1 , - 1 )
intercept (0,2)( 0 , - 2 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )
D) vertex (1,1)( 1,1 )
intercepts (0,0),(2,0)( 0,0 ) , ( 2,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  (x)=-x^{2}+2 x    </strong> A) vertex  ( - 1 , - 1 )  intercept  ( 0 , - 2 )    B) vertex  ( - 1,1 )  intercepts  ( 0,0 ) , ( - 2,0 )    C) vertex  ( 1 , - 1 )  intercept  ( 0 , - 2 )    D) vertex  ( 1,1 )  intercepts  ( 0,0 ) , ( 2,0 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
46
Find the range of the quadratic function in interval notation.
f(x)=x2+4x3f ( x ) = x ^ { 2 } + 4 x - 3

A) maximum at (7,2)( - 7 , - 2 )
B) minimum at (2,7)( - 2 , - 7 )
C) maximum at (0,2)( 0 , - 2 )
D) minimum at (7,0)( - 7,0 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
47
Find the range of the quadratic function in interval notation.
f(x)=4x2+8xf ( x ) = 4 x ^ { 2 } + 8 x

A) minimum at (1,4)( - 1 , - 4 )
B) maximum at (1,4)( 1 , - 4 )
C) minimum; (ii) (1,4)( 1 , - 4 )
D) maximum at (1,4)( - 1 , - 4 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
48
Find the range of the quadratic function in interval notation.
f(x)=x218x+87f ( x ) = x ^ { 2 } - 18 x + 87

A) minimum at (9,6)( 9,6 )
B) maximum at (6,0)( 6,0 )
C) maximum at (6,9)( 6,9 )
D) minimum at (0,9)( 0,9 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
49
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=x2+12x+36f ( x ) = x ^ { 2 } + 12 x + 36
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )

A) vertex (6,0)( - 6,0 )
intercepts (0,36),(6,0)( 0,36 ) , ( - 6,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )
B) vertex (6,36)( - 6,36 )
intercept (0,72)( 0,72 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )
C) vertex (6,0)( 6,0 )
intercepts (0,36),(6,0)( 0,36 ) , ( 6,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )
D) vertex (6,36)( 6,36 )
intercept (0,72)( 0,72 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = x ^ { 2 } + 12 x + 36   </strong> A) vertex  ( - 6,0 )  intercepts  ( 0,36 ) , ( - 6,0 )    B) vertex  ( - 6,36 )  intercept  ( 0,72 )    C) vertex  ( 6,0 )  intercepts  ( 0,36 ) , ( 6,0 )    D) vertex  ( 6,36 )  intercept  ( 0,72 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
50
Find the range of the quadratic function in interval notation.
f(x)=3x2+3x9f ( x ) = 3 x ^ { 2 } + 3 x - 9

A) minimum at (12,394)\left( - \frac { 1 } { 2 } , - \frac { 39 } { 4 } \right)
B) minimum at (394,12)\left( - \frac { 39 } { 4 } , - \frac { 1 } { 2 } \right)
C) maximum at (12,394)\left( - \frac { 1 } { 2 } , - \frac { 39 } { 4 } \right)
D) maximum at (394,12)\left( - \frac { 39 } { 4 } , - \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
51
Find the range of the quadratic function in interval notation.
f(x)=9x2+36x+27f ( x ) = 9 x ^ { 2 } + 36 x + 27

A) maximum at (9,2)( - 9 , - 2 )
B) minimum at (2,0)( - 2,0 )
C) maximum at (9,0)( - 9,0 )
D) minimum at (2,9)( - 2 , - 9 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
52
Find the range of the quadratic function in interval notation.
f(x)=x24x7f ( x ) = - x ^ { 2 } - 4 x - 7

A) maximum at (-2,-3)
B) minimum at (3,0)( 3,0 )
C) minimum at (0,2)( 0,2 )
D) maximum at (3,2)( 3,2 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
53
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )    A) vertex (3,1)( - 3 , - 1 )
intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( - 2,0 ) , ( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
B) vertex (3,1)( 3,1 )
intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
D) vertex (3,1)( 3 , - 1 )
intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( 2,0 ) , ( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
C) vertex (3,1)( - 3,1 )
intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.   A) vertex  ( - 3 , - 1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0,8 )    B) vertex  ( 3,1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0 , - 8 )    D) vertex  ( 3 , - 1 )  intercepts  ( 4,0 ) , ( 2,0 ) , ( 0,8 )    C) vertex  ( - 3,1 )  intercepts  ( - 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
54
Find the range of the quadratic function in interval notation.
f(x)=3x236x+113f ( x ) = 3 x ^ { 2 } - 36 x + 113

A) maximum at (5,6)( 5,6 )
B) minimum at (6,5)( 6,5 )
C) minimum at (6,0)( 6,0 )
D) maximum at (5,0)( 5,0 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
55
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=x24x3f(x)=-x^{2}-4 x-3
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )

A) vertex (2,1)( - 2,1 )
intercepts (1,0),(3,0),(0,3)( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )
B) vertex (2,1)( - 2 , - 1 )
intercepts (1,0),(3,0),(0,3( - 1,0 ) , ( - 3,0 ) , ( 0,3
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )
C) vertex (2,1)( 2,1 )
intercepts (1,0),(3,0),(0,3)( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )
D) vertex (2,1)( 2 , - 1 )
intercepts (1,0),(3,0),(0,3)( 1,0 ) , ( 3,0 ) , ( 0,3 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=-x^{2}-4 x-3   </strong> A) vertex  ( - 2,1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0 , - 3 )    B) vertex  ( - 2 , - 1 )  intercepts  ( - 1,0 ) , ( - 3,0 ) , ( 0,3    C) vertex  ( 2,1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0 , - 3 )    D) vertex  ( 2 , - 1 )  intercepts  ( 1,0 ) , ( 3,0 ) , ( 0,3 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
56
Find the range of the quadratic function in interval notation.
f(x)=2x212x27f ( x ) = - 2 x ^ { 2 } - 12 x - 27

A) minimum at (9,0)( 9,0 )
B) minimum at (0,3)( 0,3 )
C) maximum at (9,3)( 9,3 )
D) maximum at (3,9)( - 3 , - 9 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
57
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=x26xf(x)=x^{2}-6 x
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )

A) vertex (3,9)( 3,9 )
intercept (0,18)( 0,18 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )
B) vertex (3,9)( - 3,9 )
intercept (0,18)( 0,18 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )
C) vertex (3,9)( - 3 , - 9 )
intercepts (0,0),(6,0)( 0,0 ) , ( - 6,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )
D) vertex (3,9)( 3 , - 9 )
intercepts (0,0),(6,0)( 0,0 ) , ( 6,0 )
 <strong>Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f(x)=x^{2}-6 x   </strong> A) vertex  ( 3,9 )  intercept  ( 0,18 )    B) vertex  ( - 3,9 )  intercept  ( 0,18 )    C) vertex  ( - 3 , - 9 )  intercepts  ( 0,0 ) , ( - 6,0 )    D) vertex  ( 3 , - 9 )  intercepts  ( 0,0 ) , ( 6,0 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
58
Find the range of the quadratic function in interval notation.
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )    A) vertex (110,6910)\left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)
intercept (0,7)( 0,7 )
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )
B) vertex (110,6910)\left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)
intercept (0,7)( 0 , - 7 )
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )
C) vertex (110,6910)\left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)
intercept (0,7)( 0 , - 7 )
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )
D) vertex (110,6910)\left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)

intercept (0,7)( 0,7 )
 Find the range of the quadratic function in interval notation.   A) vertex  \left( - \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)  intercept  ( 0,7 )    B) vertex  \left( - \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    C) vertex  \left( \frac { 1 } { 10 } , - \frac { 69 } { 10 } \right)  intercept  ( 0 , - 7 )    D) vertex  \left( \frac { 1 } { 10 } , \frac { 69 } { 10 } \right)   intercept  ( 0,7 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
59
Graph the quadratic function using its vertex, axis of symmetry, and intercepts.
f(x)=4x28x+8f ( x ) = 4 x ^ { 2 } - 8 x + 8
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)
A) vertex (1,4)( - 1,4 )
intercept (0,8)( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)
B) vertex (1,4)( 1,4 )
intercept (0,8)( 0,8 )
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)
C) vertex (1,4)( - 1,4 )
intercept (0,174)\left( 0 , \frac { 17 } { 4 } \right)
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)
D) vertex (1,4)( 1,4 )
intercept (0,174)\left( 0 , \frac { 17 } { 4 } \right)
 Graph the quadratic function using its vertex, axis of symmetry, and intercepts.  f ( x ) = 4 x ^ { 2 } - 8 x + 8    A) vertex  ( - 1,4 )  intercept  ( 0,8 )    B) vertex  ( 1,4 )  intercept  ( 0,8 )    C) vertex  ( - 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)    D) vertex  ( 1,4 )  intercept  \left( 0 , \frac { 17 } { 4 } \right)
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
60
Find the range of the quadratic function in interval notation.
f(x)=x2+6x+3f ( x ) = x ^ { 2 } + 6 x + 3

A) minimum at (3,6)( - 3 , - 6 )
B) minimum at (0,3)( 0 , - 3 )
C) maximum at (6,3)( - 6 , - 3 )
D) maximum at (6,0)( - 6,0 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
61
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  f ( x ) = \frac { 1 } { 2 } ( x - 2 ) ^ { 2 } + 5  B)  f ( x ) = - 2 ( x - 2 ) ^ { 2 } + 5  C)  f ( x ) = 2 ( x - 2 ) ^ { 2 } + 5  D)  f ( x ) = - \frac { 1 } { 2 } ( x - 2 ) ^ { 2 } + 5

A) f(x)=12(x2)2+5f ( x ) = \frac { 1 } { 2 } ( x - 2 ) ^ { 2 } + 5
B) f(x)=2(x2)2+5f ( x ) = - 2 ( x - 2 ) ^ { 2 } + 5
C) f(x)=2(x2)2+5f ( x ) = 2 ( x - 2 ) ^ { 2 } + 5
D) f(x)=12(x2)2+5f ( x ) = - \frac { 1 } { 2 } ( x - 2 ) ^ { 2 } + 5
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
62
Solve the problem.
Consider the quadratic model h(t)=16t2+40t+50h ( t ) = - 16 t ^ { 2 } + 40 t + 50 for the height (in feet), hh , of an object tt seconds after the object has been projected straight up into the air. Find the maximum height attained by the object. How much time does it take to fall back to the ground? Assume that it takes the same time for going up and coming down.

A)maximum height = 75 ft; time to reach ground = 2.5 seconds
B)maximum height = 50 ft; time to reach ground = 1.25 seconds
C)maximum height = 75 ft; time to reach ground = 1.25 seconds
D)maximum height = 50 ft; time to reach ground = 2.5 seconds
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
63
Solve the problem.
The owner of a video store has determined that the profits P of the store are approximately given by P(x)=x2+50x+62P ( x ) = - x ^ { 2 } + 50 x + 62 where x is the number of videos rented daily. Find the maximum profit to the nearest dollar.

A)$1312
B)$625
C)$1250
D)$687
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
64
Find the range of the quadratic function in interval notation.
f(x)=12x2+4x4f ( x ) = \frac { 1 } { 2 } x ^ { 2 } + 4 x - 4

A) minimum at (4,12)( - 4 , - 12 )
B) maximum at (4,6)( 4,6 )
C) minimum at (4,12)( 4,12 )
D) maximum at (4,4)( - 4 , - 4 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
65
Solve the problem.
The owner of a video store has determined that the cost C, in dollars, of operating the store is approximately given by C(x)=2x228x+600C ( x ) = 2 x ^ { 2 } - 28 x + 600 , where x is the number of videos rented daily. Find the lowest cost to the nearest dollar.

A)$698
B)$502
C)$208
D)$404
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
66
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.   </strong> A)  f ( x ) = - ( x + 3 ) ^ { 2 }  B)  f ( x ) = ( x + 3 ) ^ { 2 }  C)  f ( x ) = ( x - 3 ) ^ { 2 }  D)  f ( x ) = - ( x - 3 ) ^ { 2 }

A) f(x)=(x+3)2f ( x ) = - ( x + 3 ) ^ { 2 }
B) f(x)=(x+3)2f ( x ) = ( x + 3 ) ^ { 2 }
C) f(x)=(x3)2f ( x ) = ( x - 3 ) ^ { 2 }
D) f(x)=(x3)2f ( x ) = - ( x - 3 ) ^ { 2 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
67
Solve the problem.
A projectile is fired from a cliff 600 feet above the water at an inclination of 4545 ^ { \circ } to the horizontal, with a muzzle velocity of 120 feet per second. The height hh of the projectile above the water is given by h(x)=32x2(120)2+x+600h ( x ) = \frac { - 32 x ^ { 2 } } { ( 120 ) ^ { 2 } } + x + 600 , where xx is the horizontal distance of the projectile from the base of the cliff. How far from the base of the cliff is the height of the projectile a maximum?

A)712.5 ft
B)225 ft
C)937.5 ft
D)112.5 ft
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
68
Use the quadratic function to determine if the function has a maximum or minimum value and then find this maximum or minimum value.
f(x)=x245x+6f ( x ) = - x ^ { 2 } - \frac { 4 } { 5 } x + 6

A) minimum at (25,12125)\left( - \frac { 2 } { 5 } , - \frac { 121 } { 25 } \right)
B) minimum at (110,733)\left( - \frac { 1 } { 10 } , - \frac { 73 } { 3 } \right)
C) maximum at (110,121)\left( \frac { 1 } { 10 } , - 121 \right)
D) maximum at (25,15425)\left( - \frac { 2 } { 5 } , \frac { 154 } { 25 } \right)
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
69
Solve the problem.
The manufacturer of a CD player has found that the revenue R (in dollars)is R(p)=5p2+1590pR ( p ) = - 5 p ^ { 2 } + 1590 p when the unit price is p dollars. If the manufacturer sets the price p to maximize revenue, what is the maximum revenue to the nearest whole dollar?

A)$252,810
B)$1,011,240
C)$505,620
D)$126,405
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
70
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  y = - 2 ( x + 2 ) ^ { 2 } - 6  B)  y = \frac { 1 } { 2 } ( x + 2 ) ^ { 2 } + 6  C)  y = - \frac { 1 } { 2 } ( x + 2 ) ^ { 2 } - 6  D)  y = 2 ( x + 2 ) ^ { 2 } + 6

A) y=2(x+2)26y = - 2 ( x + 2 ) ^ { 2 } - 6
B) y=12(x+2)2+6y = \frac { 1 } { 2 } ( x + 2 ) ^ { 2 } + 6
C) y=12(x+2)26y = - \frac { 1 } { 2 } ( x + 2 ) ^ { 2 } - 6
D) y=2(x+2)2+6y = 2 ( x + 2 ) ^ { 2 } + 6
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
71
Solve the problem.
The profit that the vendor makes per day by selling x pretzels is given by the function P(x)=0.002x2+1.6x150P ( x ) = - 0.002 x ^ { 2 } + 1.6 x - 150 Find the number of pretzels that must be sold to maximize profit.

A)400 pretzels
B)170 pretzels
C)800 pretzels
D)0.8 pretzels
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
72
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.   </strong> A)  f ( x ) = - 2 ( x - 1 ) ^ { 2 } - 6  B)  f ( x ) = 2 ( x - 1 ) ^ { 2 } - 6  C)  f ( x ) = 2 ( x - 1 ) ^ { 2 } + 6  D)  f ( x ) = 2 ( x + 1 ) ^ { 2 } + 6

A) f(x)=2(x1)26f ( x ) = - 2 ( x - 1 ) ^ { 2 } - 6
B) f(x)=2(x1)26f ( x ) = 2 ( x - 1 ) ^ { 2 } - 6
C) f(x)=2(x1)2+6f ( x ) = 2 ( x - 1 ) ^ { 2 } + 6
D) f(x)=2(x+1)2+6f ( x ) = 2 ( x + 1 ) ^ { 2 } + 6
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
73
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  f ( x ) = - 2 x ^ { 2 } + 4 x + 3  B)  f ( x ) = - 2 x ^ { 2 } - 4 x - 3  C)  f ( x ) = 2 x ^ { 2 } + 4 x + 3  D)  f ( x ) = 2 x ^ { 2 } - 8 x + 3

A) f(x)=2x2+4x+3f ( x ) = - 2 x ^ { 2 } + 4 x + 3
B) f(x)=2x24x3f ( x ) = - 2 x ^ { 2 } - 4 x - 3
C) f(x)=2x2+4x+3f ( x ) = 2 x ^ { 2 } + 4 x + 3
D) f(x)=2x28x+3f ( x ) = 2 x ^ { 2 } - 8 x + 3
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
74
Solve the problem.
A developer wants to enclose a rectangular grassy lot that borders a city street for parking. If the developer has 352 feet of fencing and does not fence the side along the street, what is the largest area that can be enclosed? A) 23,232ft223,232 \mathrm { ft } ^ { 2 }
B) 15,488ft215,488 \mathrm { ft } ^ { 2 }
C) 30,976ft230,976 \mathrm { ft } ^ { 2 }
D) 7744ft27744 \mathrm { ft } ^ { 2 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
75
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  f ( x ) = ( x + 2 ) ^ { 2 } - 4  B)  f ( x ) = - ( x + 2 ) ^ { 2 } + 4  C)  f ( x ) = ( x + 2 ) ^ { 2 } + 4  D)  f ( x ) = - ( x + 2 ) ^ { 2 } - 4

A) f(x)=(x+2)24f ( x ) = ( x + 2 ) ^ { 2 } - 4
B) f(x)=(x+2)2+4f ( x ) = - ( x + 2 ) ^ { 2 } + 4
C) f(x)=(x+2)2+4f ( x ) = ( x + 2 ) ^ { 2 } + 4
D) f(x)=(x+2)24f ( x ) = - ( x + 2 ) ^ { 2 } - 4
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
76
Find the range of the quadratic function in interval notation.
f(x)=5x210xf ( x ) = - 5 x ^ { 2 } - 10 x

A) minimum at (1,5)( 1 , - 5 )
B) maximum at (1,5)( 1 , - 5 )
C) maximum at (1,5)( - 1,5 )
D) minimum at (1,5)( - 1,5 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
77
Solve the problem.
You have 192 feet of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area.

A)96 ft by 24 ft
B)96 ft by 96 ft
C)50 ft by 46 ft
D)48 ft by 48 ft
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
78
Use the quadratic function to determine if the function has a maximum or minimum value and then find this maximum or minimum value.
 <strong>Use the quadratic function to determine if the function has a maximum or minimum value and then find this maximum or minimum value.   </strong> A)  f ( x ) = - x ^ { 2 } - 4 x + 8  B)  f ( x ) = - x ^ { 2 } + 2 x + 8  C)  f ( x ) = - x ^ { 2 } + 2 x - 8  D)  f ( x ) = x ^ { 2 } - 4 x + 8

A) f(x)=x24x+8f ( x ) = - x ^ { 2 } - 4 x + 8
B) f(x)=x2+2x+8f ( x ) = - x ^ { 2 } + 2 x + 8
C) f(x)=x2+2x8f ( x ) = - x ^ { 2 } + 2 x - 8
D) f(x)=x24x+8f ( x ) = x ^ { 2 } - 4 x + 8
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
79
Write the equation of the function in the form f(x)= ax2 + bx + c.
 <strong>Write the equation of the function in the form f(x)= ax2 + bx + c.  </strong> A)  f ( x ) = 2 ( x - 1 ) ^ { 2 } - 3  B)  f ( x ) = - 2 ( x + 1 ) ^ { 2 } - 3  C)  f ( x ) = 2 ( x + 1 ) ^ { 2 } + 3  D)  f ( x ) = 2 ( x + 1 ) ^ { 2 } - 3

A) f(x)=2(x1)23f ( x ) = 2 ( x - 1 ) ^ { 2 } - 3
B) f(x)=2(x+1)23f ( x ) = - 2 ( x + 1 ) ^ { 2 } - 3
C) f(x)=2(x+1)2+3f ( x ) = 2 ( x + 1 ) ^ { 2 } + 3
D) f(x)=2(x+1)23f ( x ) = 2 ( x + 1 ) ^ { 2 } - 3
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
80
Solve the problem.
A projectile is fired from a cliff 200 feet above the water at an inclination of 4545 ^ { \circ } to the horizontal, with a muzzle velocity of 380 feet per second. The height h of the projectile above the water is given by h (x)=32x2(380)2+x+200( x ) = \frac { - 32 x ^ { 2 } } { ( 380 ) ^ { 2 } } + x + 200 , where xx is the horizontal distance of the projectile from the base of the cliff. Find the maximum height of the projectile.

A)2256.25 ft
B)3584.38 ft
C)1128.13 ft
D)1328.13 ft
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 255 flashcards in this deck.