Deck 9: Sequences and Series; Counting and Probability

Full screen (f)
exit full mode
Question
Write the first four terms of the recursive sequence.
-3, 9, -27, 81, . . . A) an=3+(3)na _ { n } = - 3 + ( - 3 ) ^ { n }
B) an=9n1a _ { n } = - 9 ^{n - 1}
C) an=3(3)n1a _ { n } = - 3 ( - 3 ) ^ { n - 1 }
D) an=3(3)na _ { n } = - 3 ( - 3 ) ^ { n }
Use Space or
up arrow
down arrow
to flip the card.
Question
Write the first four terms of the sequence.
an=6n1n2+6na _ { n } = \frac { 6 n - 1 } { n ^ { 2 } + 6 n }

A) 57,1110,1715,2322\frac { 5 } { 7 } , \frac { 11 } { 10 } , \frac { 17 } { 15 } , \frac { 23 } { 22 }
B) 56,1112,1718,2324\frac { 5 } { 6 } , \frac { 11 } { 12 } , \frac { 17 } { 18 } , \frac { 23 } { 24 }
C) 1,1316,1927,581 , \frac { 13 } { 16 } , \frac { 19 } { 27 } , \frac { 5 } { 8 }
D) 57,1116,1727,2340\frac { 5 } { 7 } , \frac { 11 } { 16 } , \frac { 17 } { 27 } , \frac { 23 } { 40 }
Question
Write the first four terms of the recursive sequence.
2 , 10 , 18 , 26 , 34 , . . . A) an=2(8)n1a _ { n } = 2 ( 8 ) ^ { n - 1 }
B) an=8n3a _ { n } = 8 n - 3
C) an=8n6a _ { n } = 8 n - 6
D) an=6n8a _ { n } = 6 n - 8
Question
Perform the indicated operations and simplify the result. Leave the answer in factored form.
a1=2,an=nan1a _ { 1 } = 2 , a _ { n } = n - a _ { n } - 1 for n2n \geq 2

A) 2,0,3,12,0,3,1
B) 1,4,2,51,4,2,5
C) 2,4,1,52,4 , - 1,5
D) 2,4,2,62,4 , - 2,6
Question
Write the first four terms of the sequence.
an=n5(n+1)!a _ { n } = \frac { n ^ { 5 } } { ( n + 1 ) ! }

A) 52,53,54,1\frac { 5 } { 2 } , \frac { 5 } { 3 } , \frac { 5 } { 4 } , 1
B) 12,163,818,12815\frac { 1 } { 2 } , \frac { 16 } { 3 } , \frac { 81 } { 8 } , \frac { 128 } { 15 }
C) 52,53,58,16\frac { 5 } { 2 } , \frac { 5 } { 3 } , \frac { 5 } { 8 } , \frac { 1 } { 6 }
D) 12,163,814,2565\frac { 1 } { 2 } , \frac { 16 } { 3 } , \frac { 81 } { 4 } , \frac { 256 } { 5 }
Question
Perform the indicated operations and simplify the result. Leave the answer in factored form.
a1=2,an=an1+6a _ { 1 } = - 2 , a _ { n } = a _ { n } - 1 + 6 for n2n \geq 2

A) 0,6,12,180,6,12,18
B) 2,6,12,18- 2,6,12,18
C) 2,4,10,16- 2,4,10,16
D) 4,10,16,224,10,16,22
Question
Write the first four terms of the sequence.
an=2n(n+2)!a _ { n } = \frac { 2 ^ { n } } { ( n + 2 ) ! }

A) 13,16,215,245\frac { 1 } { 3 } , \frac { 1 } { 6 } , \frac { 2 } { 15 } , \frac { 2 } { 45 }
B) 23,1,85,83\frac { 2 } { 3 } , 1 , \frac { 8 } { 5 } , \frac { 8 } { 3 }
C) 32,1,85,38\frac { 3 } { 2 } , 1 , \frac { 8 } { 5 } , \frac { 3 } { 8 }
D) 13,16,115,145\frac { 1 } { 3 } , \frac { 1 } { 6 } , \frac { 1 } { 15 } , \frac { 1 } { 45 }
Question
Perform the indicated operations and simplify the result. Leave the answer in factored form.
an=(1)n(n+1)(n+4)\mathrm { a } _ { \mathrm { n } } = \frac { ( - 1 ) ^ { n } } { ( \mathrm { n } + 1 ) ( \mathrm { n } + 4 ) }

A) 110,118,128,140- \frac { 1 } { 10 } , \frac { 1 } { 18 } , - \frac { 1 } { 28 } , \frac { 1 } { 40 }
B) 17,19,111,113\frac { 1 } { 7 } , - \frac { 1 } { 9 } , \frac { 1 } { 11 } , - \frac { 1 } { 13 }
C) 110,118,128,140\frac { 1 } { 10 } , - \frac { 1 } { 18 } , \frac { 1 } { 28 } , - \frac { 1 } { 40 }
D) 17,19,111,113- \frac { 1 } { 7 } , \frac { 1 } { 9 } , - \frac { 1 } { 11 } , \frac { 1 } { 13 }
Question
Write the first four terms of the sequence.
an=(3)na _ { n } = ( - 3 ) ^ { n }

A)-3, 9, -27, 81
B)-3, -9, -27, -81
C)-1, 8, -27, 64
D)-1, -3, -9, -27
Question
Write the first four terms of the recursive sequence.
-4, 16, -64, 256, -1024, . . . A) an=(1)n(4)na _ { n } = ( - 1 ) ^ { n } ( 4 ) ^ { n }
B) an=(1)n1(4)na _ { n } = ( - 1 ) ^ { n - 1 } ( 4 ) ^ { n }
C) an=4+12(n1)a _ { n } = - 4 + 12 ( n - 1 )
D) an=(1)n(4n)a _ { n } = ( - 1 ) ^ { n } ( 4 n )
Question
Write the first four terms of the sequence.
an=4n1a _ { n } = 4 n - 1

A)3, 7, 11, 15
B)5, 9, 13, 17
C)3, 4, 5, 6
D)-3, -7, -11, -15
Question
Write the first four terms of the sequence.
an=4na _ { n } = 4 ^ { n }

A)4, 16, 64, 256
B)16, 64, 256, 1024
C)1, 4, 16, 64
D)1, 16, 81, 256
Question
Write the first four terms of the sequence.
an=4(n+2)!\mathrm { a } _ { \mathrm { n } } = 4 ( \mathrm { n } + 2 ) !

A) 8,48,288,19208,48,288,1920
B) 8,24,96,4808,24,96,480
C) 24,192,1440,11,52024,192,1440,11,520
D) 24,96,480,288024,96,480,2880
Question
Perform the indicated operations and simplify the result. Leave the answer in factored form.
a1=2,an=an1n+1a _ { 1 } = 2 , a _ { n } = \frac { a _ { n } - 1 } { n + 1 } for n2n \geq 2

A) 2,23,16,1302 , \frac { 2 } { 3 } , \frac { 1 } { 6 } , \frac { 1 } { 30 }
B) 2,2,1,132,2,1 , \frac { 1 } { 3 }
C) 2,2,23,162,2 , \frac { 2 } { 3 } , \frac { 1 } { 6 }
D) 2,1,13,1122,1 , \frac { 1 } { 3 } , \frac { 1 } { 12 }
Question
Write the first four terms of the recursive sequence.
23,34,45,56,67,\frac { 2 } { 3 } , \frac { 3 } { 4 } , \frac { 4 } { 5 } , \frac { 5 } { 6 } , \frac { 6 } { 7 } , \ldots

A) an=2n+1a _ { n } = \frac { 2 } { n + 1 }
B) an=n+1n+2a _ { n } = \frac { n + 1 } { n + 2 }
C) an=nn+1a _ { n } = \frac { n } { n + 1 }
D) an=1n+2a _ { n } = \frac { 1 } { n + 2 }
Question
Perform the indicated operations and simplify the result. Leave the answer in factored form.
a1=3,an=3an15a _ { 1 } = 3 , a _ { n } = 3 a _ { n } - 1 - 5 for n2n \geq 2

A) 3,14,47,1463,14,47,146
B) 3,4,22,763,4,22,76
C) 3,9,27,813,9,27,81
D) 3,4,7,163,4,7,16
Question
Write the first four terms of the recursive sequence.
a1=8,an=11an1a _ { 1 } = 8 , a _ { n } = 1 - \frac { 1 } { a _ { n - 1 } } for n2n \geq 2

A) 8,78,17,88 , \frac { 7 } { 8 } , - \frac { 1 } { 7 } , - 8
B) 8,78,17,88 , \frac { 7 } { 8 } , - \frac { 1 } { 7 } , 8
C) 8,78,17,68 , \frac { 7 } { 8 } , \frac { 1 } { 7 } , - 6
D) 8,78,157,8158 , - \frac { 7 } { 8 } , \frac { 15 } { 7 } , \frac { 8 } { 15 }
Question
Write the first four terms of the recursive sequence.
1 ·5, 2 ·6, 3 ·7, 4 ·8, 5 ·9, . . . A) an=n(n4)a _ { n } = n ( n - 4 )
B) an=n+4na _ { n } = n + 4 n
C) an=n(n+4)a _ { n } = n ( n + 4 )
D) an=n(n+5)a _ { n } = n ( n + 5 )
Question
Write the first four terms of the sequence.
an=3n+13na _ { n } = \frac { 3 n + 1 } { 3 n }

A) 73,103,133,163\frac { 7 } { 3 } , \frac { 10 } { 3 } , \frac { 13 } { 3 } , \frac { 16 } { 3 }
B) 43,73,107,133\frac { 4 } { 3 } , \frac { 7 } { 3 } , \frac { 10 } { 7 } , \frac { 13 } { 3 }
C) 43,76,109,1312\frac { 4 } { 3 } , \frac { 7 } { 6 } , \frac { 10 } { 9 } , \frac { 13 } { 12 }
D) 76,109,1312,1615\frac { 7 } { 6 } , \frac { 10 } { 9 } , \frac { 13 } { 12 } , \frac { 16 } { 15 }
Question
Write the first four terms of the sequence.
an=(1)n1(8n5)\mathrm { a } _ { \mathrm { n } } = ( - 1 ) ^ { \mathrm { n } - 1 } ( 8 \mathrm { n } - 5 )

A) 3,11,19,27- 3,11 , - 19 , - 27
B) 3,21,19,273 , - 21,19 , - 27
C) 3,11,19,273 , - 11,19 , - 27
D) 3,11,19,273,11,19,27
Question
Find the indicated term of the sequence.
32,64,128,256,;S5- 32,64 , - 128,256 , \ldots ; S _ { 5 }

A)672
B)-512
C)- 480
D)- 352
Question
Find the indicated term of the sequence.
-3, 9, -27, 81, . . .; a7

A)-567
B)2188
C)-6561
D)-2187
Question
The general term of a sequence is given. Find the indicated partial sum.
k=24k(k+2)\sum _ { k = 2 } ^ { 4 } k ( k + 2 )

A) 24
B) 47
C) 32
D) 50
Question
The first several terms of a sequence are given. Find the indicated partial sum.
an=5n2;S5a _ { n } = 5 n - 2 ; S _ { 5 }

A)65
B)85
C)100
D)55
Question
The general term of a sequence is given. Find the indicated partial sum.
k=25(4k2)\sum _ { k = 2 } ^ { 5 } ( 4 k - 2 )

A) 48
B) 36
C) 26
D) 42
Question
Find the indicated term of the sequence.
12,14,18,116,;S5- \frac { 1 } { 2 } , \frac { 1 } { 4 } , - \frac { 1 } { 8 } , \frac { 1 } { 16 } , \ldots ; S _ { 5 }

A) 1564- \frac { 15 } { 64 }
B) 2164- \frac { 21 } { 64 }
C) 1132- \frac { 11 } { 32 }
D) 132- \frac { 1 } { 32 }
Question
The general term of a sequence is given. Find the indicated partial sum.
i=259i\sum _ { i = 2 } ^ { 5 } 9 i

A) 45
B) 81
C) 63
D) 126
Question
Write a formula for the general term, or nth term, for the given sequence.
1,23,13,215,1 , \frac { 2 } { 3 } , \frac { 1 } { 3 } , \frac { 2 } { 15 } , \ldots

A) an=2n(n+1)!a _ { n } = \frac { 2 n } { ( n + 1 ) ! }
B) an=2n+1n!a _ { n } = \frac { 2 ^ { n + 1 } } { n ! }
C) an=2nn!a _ { n } = \frac { 2 ^ { n } } { n ! }
D) an=2n(n+1)!a _ { n } = \frac { 2 ^ { n } } { ( n + 1 ) ! }
Question
The first several terms of a sequence are given. Find the indicated partial sum.
an=(1)n(2n);s4a _ { n } = ( - 1 ) ^ { n } ( 2 n ) ; s _ { 4 }

A)20
B)16
C)-20
D)4
Question
The general term of a sequence is given. Find the indicated partial sum.
a1=4,an=an1+6 for n2;S5a _ { 1 } = 4 , a _ { n } = a _ { n } - 1 + 6 \text { for } n \geq 2 ; S _ { 5 }

A)100
B)80
C)85
D)55
Question
Find the indicated term of the sequence.
7,5,3,1,;S5- 7 , - 5 , - 3 , - 1 , \ldots ; S _ { 5 }

A)-35
B)75
C)-15
D)21
Question
The first several terms of a sequence are given. Find the indicated partial sum.
an=(1)n17n;S4a _ { n } = \frac { ( - 1 ) ^ { n - 1 } } { 7 n } ; S _ { 4 }

A) 2584\frac { 25 } { 84 }
B) 2584- \frac { 25 } { 84 }
C) 112\frac { 1 } { 12 }
D) 112- \frac { 1 } { 12 }
Question
The general term of a sequence is given. Find the indicated partial sum.
i=15(i+2)!(i+1)!\sum _ { i = 1 } ^ { 5 } \frac { ( \mathrm { i } + 2 ) ! } { ( \mathrm { i } + 1 ) ! }

A) 19
B) 12920\frac { 129 } { 20 }
C) 25
D) 37760\frac { 377 } { 60 }
Question
Find the sum of the series.
j=14(j24)\sum _ { j = 1 } ^ { 4 } \left( j ^ { 2 } - 4 \right)

A) 14
B) 2
C) 30
D) 12
Question
Write a formula for the general term, or nth term, for the given sequence.
5,7,9,11,; a 5,7,9,11 , \ldots ; \text { a }

A)19
B)15
C)17
D)5
Question
Write the first four terms of the recursive sequence.
19,89,649,5129,\frac { 1 } { 9 } , \frac { 8 } { 9 } , \frac { 64 } { 9 } , \frac { 512 } { 9 } , \ldots

A) an=8n9a _ { n } = \frac { 8 n } { 9 }
B) an=8n89a _ { n } = \frac { 8 n - 8 } { 9 }
C) an=8n19a _ { n } = \frac { 8 ^ { n - 1 } } { 9 }
D) an=8n19a _ { n } = \frac { 8 ^ { n } - 1 } { 9 }
Question
Write a formula for the general term, or nth term, for the given sequence.
23,13,16,112,;a6\frac { 2 } { 3 } , - \frac { 1 } { 3 } , \frac { 1 } { 6 } , - \frac { 1 } { 12 } , \ldots ; \mathrm { a } 6

A) 124\frac { 1 } { 24 }
B) 130\frac { 1 } { 30 }
C) 196- \frac { 1 } { 96 }
D) 148- \frac { 1 } { 48 }
Question
Find the sum of the series.
2(12)+2(22)++2(62)2 \left( 1 ^ { 2 } \right) + 2 \left( 2 ^ { 2 } \right) + \ldots + 2 \left( 6 ^ { 2 } \right)

A) i=062i2\sum _ { i = 0 } ^ { 6 } 2 i ^ { 2 }
B) i=162i2\sum _ { \mathrm { i } = 1 } ^ { 6 } 2 \mathrm { i } ^ { 2 }
C) i=06(2i)2\sum _ { i = 0 } ^ { 6 } ( 2 i ) ^ { 2 }
D) i=16(2i)2\sum _ { i = 1 } ^ { 6 } ( 2 i ) ^ { 2 }
Question
The first several terms of a sequence are given. Find the indicated partial sum.
2,7,12,17,;S62 , - 7,12 , - 17 , \ldots ; \mathrm { S } _ { 6 }

A)7
B)-15
C)-13
D)15
Question
The general term of a sequence is given. Find the indicated partial sum.
i=585\sum _ { i = 5 } ^ { 8 } 5

A) 130
B) 20
C) 15
D) 105
Question
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
an=7n18a _ { n } = \frac { 7 n - 1 } { 8 }

A) yes, 18- \frac { 1 } { 8 }
B) yes, 7
C) yes, 78\frac { 7 } { 8 }
D) no
Question
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
-9 , -11 , -13 , -15 , . . .

A)no
B)yes, -4
C)yes, -6
D)yes, -2
Question
Find the general term of the arithmetic sequence.
59,23,79,;a16\frac { 5 } { 9 } , \frac { 2 } { 3 } , \frac { 7 } { 9 } , \ldots ; a _ { 16 }

A) 209\frac { 20 } { 9 }
B) 199\frac { 19 } { 9 }
C) 179\frac { 17 } { 9 }
D) 2
Question
Find the sum of the series.
13+12+35++78\frac { 1 } { 3 } + \frac { 1 } { 2 } + \frac { 3 } { 5 } + \ldots + \frac { 7 } { 8 }

A) i=114i2i\sum _ { i = 1 } ^ { 14 } \frac { i - 2 } { i }
B) i=114ii+2\sum _ { i = 1 } ^ { 14 } \frac { i } { i + 2 }
C) i=214ii+1\sum _ { i = 2 } ^ { 14 } \frac { i } { i + 1 }
D) i=014ii+2\sum _ { i = 0 } ^ { 14 } \frac { i } { i + 2 }
Question
Find the sum of the series.
13+1619+121- \frac { 1 } { 3 } + \frac { 1 } { 6 } - \frac { 1 } { 9 } + \ldots - \frac { 1 } { 21 }

A) i=17(1)i3i\sum _ { \mathrm { i } = 1 } ^ { 7 } \frac { ( - 1 ) ^ { \mathrm { i } } } { 3 \mathrm { i } }
B) i=17(1)i3i\sum _ { i = 1 } ^ { 7 } \frac { ( - 1 ) ^ { i } } { 3 ^ { i } }
C) i=17(1)i13i\sum _ { i = 1 } ^ { 7 } \frac { ( - 1 ) ^ { i - 1 } } { 3 i }
D) i=17(1)i13i\sum _ { i = 1 } ^ { 7 } \frac { ( - 1 ) ^ { i - 1 } } { 3 ^ { i } }
Question
Find the general term of the arithmetic sequence.
16,23,76,53,136,\frac { 1 } { 6 } , \frac { 2 } { 3 } , \frac { 7 } { 6 } , \frac { 5 } { 3 } , \frac { 13 } { 6 } , \ldots

A) an=n26a _ { n } = \frac { n - 2 } { 6 }
B) an=n+16a _ { n } = \frac { n + 1 } { 6 }
C) an=3n+16a _ { n } = \frac { 3 n + 1 } { 6 }
D) an=3n26a _ { n } = \frac { 3 n - 2 } { 6 }
Question
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
22+43+64++1692 ^ { 2 } + 4 ^ { 3 } + 6 ^ { 4 } + \ldots + 16 ^ { 9 }

A) i=18(2i)i+1\sum _ { i = 1 } ^ { 8 } ( 2 \mathrm { i } ) ^ { \mathrm { i } + 1 }
B) i=182(i1)i+1\sum _ { i = 1 } ^ { 8 } 2 ( i - 1 ) ^ { i + 1}
C) i=18(2i)i\sum _ { i = 1 } ^ { 8 } ( 2 i ) ^ { i }
D) i=182i2i1\sum _ { i = 1 } ^ { 8 } 2 i ^ { 2 i - 1 }
Question
Determine if the sequence is arithmetic. If the sequence is arithmetic, find the common difference.
a1=3,an=3an14a _ { 1 } = - 3 , a _ { n } = 3 a _ { n - 1 }- 4

A)yes, -4
B)no
C)yes, 4
D)yes, 3
Question
Find the general term of the arithmetic sequence.
6 , 15 , 24 , 33 , 42 , . . . ;  a20 \text { a20 }

A)51
B)59
C)179
D)177
Question
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
a1=2,an=an1+8a _ { 1 } = 2 , a _ { n } = a _ { n - 1 } + 8

A)yes, 1
B)yes, 2
C)yes, 8
D)no
Question
Find the general term of the arithmetic sequence.
7, 2 , -3, -8, . . . ; a20a _ { 20 }

A)-88
B)88
C)93
D)-93
Question
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
7 , 11 , 15 , 19 , . . .

A)no
B)yes, -4
C)yes, 4
D)yes, 12
Question
Find the sum of the series.
2+4+6++182 + 4 + 6 + \ldots + 18

A) i=192(i1)\sum _ { i = 1 } ^ { 9 } 2 ( \mathrm { i } - 1 )
B) i=192i\sum _ { i = 1 } ^ { 9 } 2 i
C) i=192\sum _ { i = 1 } ^ { 9 } 2
D) i=19i+2\sum _ { i = 1 } ^ { 9 } \mathrm { i } + 2
Question
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
3 , 9 , 27 , 81 , 243, . . .

A)yes, 3  B) yes, 13\text { B) yes, } \frac { 1 } { 3 }
C)no
D)yes, 9
Question
Find the sum of the series.
3+322+333++3nn3 + \frac { 3 ^ { 2 } } { 2 } + \frac { 3 ^ { 3 } } { 3 } + \ldots + \frac { 3 ^ { n } } { n }

A) i=1n3ni\sum _ { i = 1 } ^ { n } \frac { 3 ^ { n } } { i }
B) i=1n3ii\sum _ { i = 1 } ^ { n } \frac { 3 i } { i }
C) i=1n3ii\sum _ { i = 1 } ^ { n } \frac { 3 ^ { i } } { i }
D) i=133ii\sum _ { i = 1 } ^ { 3 } \frac { 3 ^ { i } } { i }
Question
Determine if the sequence is arithmetic. If the sequence is arithmetic, find the common difference.
3,9,15,21,27,3,9,15,21,27 , \ldots

A) an=6n1a _ { n } = 6 n - 1
B) an=3(6)n1a _ { n } = 3 ( 6 ) ^ { n - 1 }
C) an=3n6a _ { n } = 3 n - 6
D) an=6n3a _ { n } = 6 n - 3
Question
Determine if the sequence is arithmetic. If the sequence is arithmetic, find the common difference.
6.9,7.7,8.5,9.3,10.1,6.9,7.7,8.5,9.3,10.1 , \ldots

A) an=0.8n+6.1a _ { n } = 0.8 n + 6.1
B) an=0.7n+6.1a _ { n } = 0.7 n + 6.1
C) an=0.8n+5.9a _ { n } = 0.8 n + 5.9
D) an=0.8n+6.9a _ { n } = 0.8 n + 6.9
Question
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
an = n(n - 3)

A)yes, 1
B)yes, 3
C)no
D)yes, -3
Question
Determine if the sequence is arithmetic. If the sequence is arithmetic, find the common difference.
1,7,13,19,25,- 1 , - 7 , - 13 , - 19 , - 25 , \ldots

A) an=116na _ { n } = - 11 - 6 n
B) an=56na _ { n } = 5 - 6 n
C) an=6n5a _ { n } = 6 n - 5
D) an=56na _ { n } = - 5 - 6 n
Question
Find the general term of the arithmetic sequence.
6.1, 5.5, 4.9, . . . ;  a9 \text { a9 }

A)1.9
B)1.31
C)1.3
D)0.7
Question
Solve the problem.
If a person puts 1 cent in a piggy bank on the first day, 2 cents on the second day, 3 cents on the third day, and so on, how much money will be in the bank after 60 days?

A)$36.60
B)$18.30
C)$0.60
D)$9.15
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
3 + 6 + 9 + . . . + 120

A)4797
B)2460
C)2398
D)4920
Question
Solve the problem.
A collection of dimes is arranged in a triangular array with 15 coins in the base row, 14 in the next, 13 in the next, and so on with 1 dime in the last row. Find the value of the collection.

A)$1.20
B)$24.00
C)$12.00
D)$6.00
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
Find the sum of the first 837 even positive integers.

A)699,732
B)701,406
C)702,244
D)700,569
Question
Find the general term of the arithmetic sequence.
Given an arithmetic sequence with d d=6 and a4=10\mathrm { d } = - 6 \text { and } \mathrm { a } _ { 4 } = 10 find a20.

A)86
B)-86
C)-92
D)92
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
n=137(2n4)\sum _ { n = 1 } ^ { 37 } ( 2 n - 4 )

A) 1258
B) 1221
C) 1480
D) 1350.51350.5
Question
Find the general term of the arithmetic sequence.
Given an arithmetic sequence with d = 6 and a5 = 27 , find a20.

A)119
B)59
C)54
D)117
Question
Find the indicated term of the arithmetic sequence.
Find ana _ { n } and a8a _ { 8 } .
 <strong>Find the indicated term of the arithmetic sequence. Find  a _ { n }  and  a _ { 8 } .   </strong> A)  a _ { n } = n + 1 ; a _ { 8 } = 9  B)  a _ { n } = n - 2 ; a _ { 8} = 6  C)  a _ { n } = n + 2 ; a _ { 8 } = 10  D)  a _ { n } = n - 1 ; a _ { 8 } = 7  <div style=padding-top: 35px>

A) an=n+1;a8=9a _ { n } = n + 1 ; a _ { 8 } = 9
B) an=n2;a8=6a _ { n } = n - 2 ; a _ { 8} = 6
C) an=n+2;a8=10a _ { n } = n + 2 ; a _ { 8 } = 10
D) an=n1;a8=7a _ { n } = n - 1 ; a _ { 8 } = 7
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
-3 + 1 + 5 + 9 + 13 + . . . + (4n - 7)

A)n(4n - 7)
B)n(4n + 7)
C)n(2n - 5)
D)n(2n + 5)
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
n=142(3n3)\sum _ { n = 1 } ^ { 42 } ( - 3 n - 3 )

A) 2541- 2541
B) 2835- 2835
C) 2772- 2772
D) 2688- 2688
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
7 + 3 - 1 + . . . - 153

A)-144
B)-2993
C)-2920
D)-146
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
15+1+95++9\frac { 1 } { 5 } + 1 + \frac { 9 } { 5 } + \ldots + 9

A) 5525\frac { 552 } { 5 }
B) 2535\frac { 253 } { 5 }
C) 66
D) 2765\frac { 276 } { 5 }
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
n=138(6n+5)\sum _ { n = 1 } ^ { 38 } ( 6 n + 5 )

A) 4522
B) 4940
C) 4636
D) 4807
Question
Find the indicated term of the arithmetic sequence.
Find ana _ { n } and a21a _ { 21 } .
 <strong>Find the indicated term of the arithmetic sequence. Find  a _ { n }  and  a _ { 21 } .   </strong> A)  a _ { n } = n + 3 ; a _ { 21 } = 24  B)  a _ { n } = 4 - n ; a _ { 21 } = - 17  C)  a _ { n } = n - 4 ; a _ { 21 } = 17  D)  a _ { n } = n + 2 ; a _ { 21 } = 23  <div style=padding-top: 35px>

A) an=n+3;a21=24a _ { n } = n + 3 ; a _ { 21 } = 24
B) an=4n;a21=17a _ { n } = 4 - n ; a _ { 21 } = - 17
C) an=n4;a21=17a _ { n } = n - 4 ; a _ { 21 } = 17
D) an=n+2;a21=23a _ { n } = n + 2 ; a _ { 21 } = 23
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
-20 + -30 + -40 + -50 + . . . + a40

A)-8595
B)-8800
C)-8600
D)-420
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
19 + 24 + 29 + 34 + . . . + a60

A)319
B)10,140
C)9998
D)9990
Question
Find the indicated term of the arithmetic sequence.
Given an arithmetic sequence with a16 = 19 and a10 = 7, find a4.

A)-3
B)-11
C)-5
D)2
Question
Find the general term of the arithmetic sequence.
Given an arithmetic sequence with a1 = -8 and a8 = 48, find a15.

A)85
B)54
C)112
D)104
Question
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
Find an and a35.  <strong>Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers. Find an and a35.  </strong> A)  a _ { n } = n + 2 ; a _ { 35 } = 37  B)  a _ { n } = 3 - n ; a _ { 35 } = - 32  C)  a _ { n } = n + 1 ; a _ { 35 } = 36  D)  a _ { n } = n - 3 ; a _ { 35 } = 32  <div style=padding-top: 35px>

A) an=n+2;a35=37a _ { n } = n + 2 ; a _ { 35 } = 37
B) an=3n;a35=32a _ { n } = 3 - n ; a _ { 35 } = - 32
C) an=n+1;a35=36a _ { n } = n + 1 ; a _ { 35 } = 36
D) an=n3;a35=32a _ { n } = n - 3 ; a _ { 35 } = 32
Question
Find the indicated term of the arithmetic sequence.
Find ana _ { n } and a18a _ { 18 } .
 <strong>Find the indicated term of the arithmetic sequence. Find  a _ { n }  and  a _ { 18 } .   </strong> A)  a _ { n } = n - 4 ; a _ { 18 } = 14  B)  a _ { n } = n + 4 ; a _ { 18 } = 23  C)  a _ { n } = n + 3 ; a  _ { 18 } = 21  D)  a _ { n } = n - 3 ; a _ { 18 } = 15  <div style=padding-top: 35px>

A) an=n4;a18=14a _ { n } = n - 4 ; a _ { 18 } = 14
B) an=n+4;a18=23a _ { n } = n + 4 ; a _ { 18 } = 23
C) an=n+3;a18=21a _ { n } = n + 3 ; a _ { 18 } = 21
D) an=n3;a18=15a _ { n } = n - 3 ; a _ { 18 } = 15
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/255
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 9: Sequences and Series; Counting and Probability
1
Write the first four terms of the recursive sequence.
-3, 9, -27, 81, . . . A) an=3+(3)na _ { n } = - 3 + ( - 3 ) ^ { n }
B) an=9n1a _ { n } = - 9 ^{n - 1}
C) an=3(3)n1a _ { n } = - 3 ( - 3 ) ^ { n - 1 }
D) an=3(3)na _ { n } = - 3 ( - 3 ) ^ { n }
C
2
Write the first four terms of the sequence.
an=6n1n2+6na _ { n } = \frac { 6 n - 1 } { n ^ { 2 } + 6 n }

A) 57,1110,1715,2322\frac { 5 } { 7 } , \frac { 11 } { 10 } , \frac { 17 } { 15 } , \frac { 23 } { 22 }
B) 56,1112,1718,2324\frac { 5 } { 6 } , \frac { 11 } { 12 } , \frac { 17 } { 18 } , \frac { 23 } { 24 }
C) 1,1316,1927,581 , \frac { 13 } { 16 } , \frac { 19 } { 27 } , \frac { 5 } { 8 }
D) 57,1116,1727,2340\frac { 5 } { 7 } , \frac { 11 } { 16 } , \frac { 17 } { 27 } , \frac { 23 } { 40 }
D
3
Write the first four terms of the recursive sequence.
2 , 10 , 18 , 26 , 34 , . . . A) an=2(8)n1a _ { n } = 2 ( 8 ) ^ { n - 1 }
B) an=8n3a _ { n } = 8 n - 3
C) an=8n6a _ { n } = 8 n - 6
D) an=6n8a _ { n } = 6 n - 8
C
4
Perform the indicated operations and simplify the result. Leave the answer in factored form.
a1=2,an=nan1a _ { 1 } = 2 , a _ { n } = n - a _ { n } - 1 for n2n \geq 2

A) 2,0,3,12,0,3,1
B) 1,4,2,51,4,2,5
C) 2,4,1,52,4 , - 1,5
D) 2,4,2,62,4 , - 2,6
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
5
Write the first four terms of the sequence.
an=n5(n+1)!a _ { n } = \frac { n ^ { 5 } } { ( n + 1 ) ! }

A) 52,53,54,1\frac { 5 } { 2 } , \frac { 5 } { 3 } , \frac { 5 } { 4 } , 1
B) 12,163,818,12815\frac { 1 } { 2 } , \frac { 16 } { 3 } , \frac { 81 } { 8 } , \frac { 128 } { 15 }
C) 52,53,58,16\frac { 5 } { 2 } , \frac { 5 } { 3 } , \frac { 5 } { 8 } , \frac { 1 } { 6 }
D) 12,163,814,2565\frac { 1 } { 2 } , \frac { 16 } { 3 } , \frac { 81 } { 4 } , \frac { 256 } { 5 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
6
Perform the indicated operations and simplify the result. Leave the answer in factored form.
a1=2,an=an1+6a _ { 1 } = - 2 , a _ { n } = a _ { n } - 1 + 6 for n2n \geq 2

A) 0,6,12,180,6,12,18
B) 2,6,12,18- 2,6,12,18
C) 2,4,10,16- 2,4,10,16
D) 4,10,16,224,10,16,22
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
7
Write the first four terms of the sequence.
an=2n(n+2)!a _ { n } = \frac { 2 ^ { n } } { ( n + 2 ) ! }

A) 13,16,215,245\frac { 1 } { 3 } , \frac { 1 } { 6 } , \frac { 2 } { 15 } , \frac { 2 } { 45 }
B) 23,1,85,83\frac { 2 } { 3 } , 1 , \frac { 8 } { 5 } , \frac { 8 } { 3 }
C) 32,1,85,38\frac { 3 } { 2 } , 1 , \frac { 8 } { 5 } , \frac { 3 } { 8 }
D) 13,16,115,145\frac { 1 } { 3 } , \frac { 1 } { 6 } , \frac { 1 } { 15 } , \frac { 1 } { 45 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
8
Perform the indicated operations and simplify the result. Leave the answer in factored form.
an=(1)n(n+1)(n+4)\mathrm { a } _ { \mathrm { n } } = \frac { ( - 1 ) ^ { n } } { ( \mathrm { n } + 1 ) ( \mathrm { n } + 4 ) }

A) 110,118,128,140- \frac { 1 } { 10 } , \frac { 1 } { 18 } , - \frac { 1 } { 28 } , \frac { 1 } { 40 }
B) 17,19,111,113\frac { 1 } { 7 } , - \frac { 1 } { 9 } , \frac { 1 } { 11 } , - \frac { 1 } { 13 }
C) 110,118,128,140\frac { 1 } { 10 } , - \frac { 1 } { 18 } , \frac { 1 } { 28 } , - \frac { 1 } { 40 }
D) 17,19,111,113- \frac { 1 } { 7 } , \frac { 1 } { 9 } , - \frac { 1 } { 11 } , \frac { 1 } { 13 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
9
Write the first four terms of the sequence.
an=(3)na _ { n } = ( - 3 ) ^ { n }

A)-3, 9, -27, 81
B)-3, -9, -27, -81
C)-1, 8, -27, 64
D)-1, -3, -9, -27
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
10
Write the first four terms of the recursive sequence.
-4, 16, -64, 256, -1024, . . . A) an=(1)n(4)na _ { n } = ( - 1 ) ^ { n } ( 4 ) ^ { n }
B) an=(1)n1(4)na _ { n } = ( - 1 ) ^ { n - 1 } ( 4 ) ^ { n }
C) an=4+12(n1)a _ { n } = - 4 + 12 ( n - 1 )
D) an=(1)n(4n)a _ { n } = ( - 1 ) ^ { n } ( 4 n )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
11
Write the first four terms of the sequence.
an=4n1a _ { n } = 4 n - 1

A)3, 7, 11, 15
B)5, 9, 13, 17
C)3, 4, 5, 6
D)-3, -7, -11, -15
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
12
Write the first four terms of the sequence.
an=4na _ { n } = 4 ^ { n }

A)4, 16, 64, 256
B)16, 64, 256, 1024
C)1, 4, 16, 64
D)1, 16, 81, 256
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
13
Write the first four terms of the sequence.
an=4(n+2)!\mathrm { a } _ { \mathrm { n } } = 4 ( \mathrm { n } + 2 ) !

A) 8,48,288,19208,48,288,1920
B) 8,24,96,4808,24,96,480
C) 24,192,1440,11,52024,192,1440,11,520
D) 24,96,480,288024,96,480,2880
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
14
Perform the indicated operations and simplify the result. Leave the answer in factored form.
a1=2,an=an1n+1a _ { 1 } = 2 , a _ { n } = \frac { a _ { n } - 1 } { n + 1 } for n2n \geq 2

A) 2,23,16,1302 , \frac { 2 } { 3 } , \frac { 1 } { 6 } , \frac { 1 } { 30 }
B) 2,2,1,132,2,1 , \frac { 1 } { 3 }
C) 2,2,23,162,2 , \frac { 2 } { 3 } , \frac { 1 } { 6 }
D) 2,1,13,1122,1 , \frac { 1 } { 3 } , \frac { 1 } { 12 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
15
Write the first four terms of the recursive sequence.
23,34,45,56,67,\frac { 2 } { 3 } , \frac { 3 } { 4 } , \frac { 4 } { 5 } , \frac { 5 } { 6 } , \frac { 6 } { 7 } , \ldots

A) an=2n+1a _ { n } = \frac { 2 } { n + 1 }
B) an=n+1n+2a _ { n } = \frac { n + 1 } { n + 2 }
C) an=nn+1a _ { n } = \frac { n } { n + 1 }
D) an=1n+2a _ { n } = \frac { 1 } { n + 2 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
16
Perform the indicated operations and simplify the result. Leave the answer in factored form.
a1=3,an=3an15a _ { 1 } = 3 , a _ { n } = 3 a _ { n } - 1 - 5 for n2n \geq 2

A) 3,14,47,1463,14,47,146
B) 3,4,22,763,4,22,76
C) 3,9,27,813,9,27,81
D) 3,4,7,163,4,7,16
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
17
Write the first four terms of the recursive sequence.
a1=8,an=11an1a _ { 1 } = 8 , a _ { n } = 1 - \frac { 1 } { a _ { n - 1 } } for n2n \geq 2

A) 8,78,17,88 , \frac { 7 } { 8 } , - \frac { 1 } { 7 } , - 8
B) 8,78,17,88 , \frac { 7 } { 8 } , - \frac { 1 } { 7 } , 8
C) 8,78,17,68 , \frac { 7 } { 8 } , \frac { 1 } { 7 } , - 6
D) 8,78,157,8158 , - \frac { 7 } { 8 } , \frac { 15 } { 7 } , \frac { 8 } { 15 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
18
Write the first four terms of the recursive sequence.
1 ·5, 2 ·6, 3 ·7, 4 ·8, 5 ·9, . . . A) an=n(n4)a _ { n } = n ( n - 4 )
B) an=n+4na _ { n } = n + 4 n
C) an=n(n+4)a _ { n } = n ( n + 4 )
D) an=n(n+5)a _ { n } = n ( n + 5 )
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
19
Write the first four terms of the sequence.
an=3n+13na _ { n } = \frac { 3 n + 1 } { 3 n }

A) 73,103,133,163\frac { 7 } { 3 } , \frac { 10 } { 3 } , \frac { 13 } { 3 } , \frac { 16 } { 3 }
B) 43,73,107,133\frac { 4 } { 3 } , \frac { 7 } { 3 } , \frac { 10 } { 7 } , \frac { 13 } { 3 }
C) 43,76,109,1312\frac { 4 } { 3 } , \frac { 7 } { 6 } , \frac { 10 } { 9 } , \frac { 13 } { 12 }
D) 76,109,1312,1615\frac { 7 } { 6 } , \frac { 10 } { 9 } , \frac { 13 } { 12 } , \frac { 16 } { 15 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
20
Write the first four terms of the sequence.
an=(1)n1(8n5)\mathrm { a } _ { \mathrm { n } } = ( - 1 ) ^ { \mathrm { n } - 1 } ( 8 \mathrm { n } - 5 )

A) 3,11,19,27- 3,11 , - 19 , - 27
B) 3,21,19,273 , - 21,19 , - 27
C) 3,11,19,273 , - 11,19 , - 27
D) 3,11,19,273,11,19,27
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
21
Find the indicated term of the sequence.
32,64,128,256,;S5- 32,64 , - 128,256 , \ldots ; S _ { 5 }

A)672
B)-512
C)- 480
D)- 352
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
22
Find the indicated term of the sequence.
-3, 9, -27, 81, . . .; a7

A)-567
B)2188
C)-6561
D)-2187
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
23
The general term of a sequence is given. Find the indicated partial sum.
k=24k(k+2)\sum _ { k = 2 } ^ { 4 } k ( k + 2 )

A) 24
B) 47
C) 32
D) 50
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
24
The first several terms of a sequence are given. Find the indicated partial sum.
an=5n2;S5a _ { n } = 5 n - 2 ; S _ { 5 }

A)65
B)85
C)100
D)55
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
25
The general term of a sequence is given. Find the indicated partial sum.
k=25(4k2)\sum _ { k = 2 } ^ { 5 } ( 4 k - 2 )

A) 48
B) 36
C) 26
D) 42
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
26
Find the indicated term of the sequence.
12,14,18,116,;S5- \frac { 1 } { 2 } , \frac { 1 } { 4 } , - \frac { 1 } { 8 } , \frac { 1 } { 16 } , \ldots ; S _ { 5 }

A) 1564- \frac { 15 } { 64 }
B) 2164- \frac { 21 } { 64 }
C) 1132- \frac { 11 } { 32 }
D) 132- \frac { 1 } { 32 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
27
The general term of a sequence is given. Find the indicated partial sum.
i=259i\sum _ { i = 2 } ^ { 5 } 9 i

A) 45
B) 81
C) 63
D) 126
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
28
Write a formula for the general term, or nth term, for the given sequence.
1,23,13,215,1 , \frac { 2 } { 3 } , \frac { 1 } { 3 } , \frac { 2 } { 15 } , \ldots

A) an=2n(n+1)!a _ { n } = \frac { 2 n } { ( n + 1 ) ! }
B) an=2n+1n!a _ { n } = \frac { 2 ^ { n + 1 } } { n ! }
C) an=2nn!a _ { n } = \frac { 2 ^ { n } } { n ! }
D) an=2n(n+1)!a _ { n } = \frac { 2 ^ { n } } { ( n + 1 ) ! }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
29
The first several terms of a sequence are given. Find the indicated partial sum.
an=(1)n(2n);s4a _ { n } = ( - 1 ) ^ { n } ( 2 n ) ; s _ { 4 }

A)20
B)16
C)-20
D)4
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
30
The general term of a sequence is given. Find the indicated partial sum.
a1=4,an=an1+6 for n2;S5a _ { 1 } = 4 , a _ { n } = a _ { n } - 1 + 6 \text { for } n \geq 2 ; S _ { 5 }

A)100
B)80
C)85
D)55
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
31
Find the indicated term of the sequence.
7,5,3,1,;S5- 7 , - 5 , - 3 , - 1 , \ldots ; S _ { 5 }

A)-35
B)75
C)-15
D)21
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
32
The first several terms of a sequence are given. Find the indicated partial sum.
an=(1)n17n;S4a _ { n } = \frac { ( - 1 ) ^ { n - 1 } } { 7 n } ; S _ { 4 }

A) 2584\frac { 25 } { 84 }
B) 2584- \frac { 25 } { 84 }
C) 112\frac { 1 } { 12 }
D) 112- \frac { 1 } { 12 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
33
The general term of a sequence is given. Find the indicated partial sum.
i=15(i+2)!(i+1)!\sum _ { i = 1 } ^ { 5 } \frac { ( \mathrm { i } + 2 ) ! } { ( \mathrm { i } + 1 ) ! }

A) 19
B) 12920\frac { 129 } { 20 }
C) 25
D) 37760\frac { 377 } { 60 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
34
Find the sum of the series.
j=14(j24)\sum _ { j = 1 } ^ { 4 } \left( j ^ { 2 } - 4 \right)

A) 14
B) 2
C) 30
D) 12
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
35
Write a formula for the general term, or nth term, for the given sequence.
5,7,9,11,; a 5,7,9,11 , \ldots ; \text { a }

A)19
B)15
C)17
D)5
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
36
Write the first four terms of the recursive sequence.
19,89,649,5129,\frac { 1 } { 9 } , \frac { 8 } { 9 } , \frac { 64 } { 9 } , \frac { 512 } { 9 } , \ldots

A) an=8n9a _ { n } = \frac { 8 n } { 9 }
B) an=8n89a _ { n } = \frac { 8 n - 8 } { 9 }
C) an=8n19a _ { n } = \frac { 8 ^ { n - 1 } } { 9 }
D) an=8n19a _ { n } = \frac { 8 ^ { n } - 1 } { 9 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
37
Write a formula for the general term, or nth term, for the given sequence.
23,13,16,112,;a6\frac { 2 } { 3 } , - \frac { 1 } { 3 } , \frac { 1 } { 6 } , - \frac { 1 } { 12 } , \ldots ; \mathrm { a } 6

A) 124\frac { 1 } { 24 }
B) 130\frac { 1 } { 30 }
C) 196- \frac { 1 } { 96 }
D) 148- \frac { 1 } { 48 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
38
Find the sum of the series.
2(12)+2(22)++2(62)2 \left( 1 ^ { 2 } \right) + 2 \left( 2 ^ { 2 } \right) + \ldots + 2 \left( 6 ^ { 2 } \right)

A) i=062i2\sum _ { i = 0 } ^ { 6 } 2 i ^ { 2 }
B) i=162i2\sum _ { \mathrm { i } = 1 } ^ { 6 } 2 \mathrm { i } ^ { 2 }
C) i=06(2i)2\sum _ { i = 0 } ^ { 6 } ( 2 i ) ^ { 2 }
D) i=16(2i)2\sum _ { i = 1 } ^ { 6 } ( 2 i ) ^ { 2 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
39
The first several terms of a sequence are given. Find the indicated partial sum.
2,7,12,17,;S62 , - 7,12 , - 17 , \ldots ; \mathrm { S } _ { 6 }

A)7
B)-15
C)-13
D)15
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
40
The general term of a sequence is given. Find the indicated partial sum.
i=585\sum _ { i = 5 } ^ { 8 } 5

A) 130
B) 20
C) 15
D) 105
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
41
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
an=7n18a _ { n } = \frac { 7 n - 1 } { 8 }

A) yes, 18- \frac { 1 } { 8 }
B) yes, 7
C) yes, 78\frac { 7 } { 8 }
D) no
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
42
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
-9 , -11 , -13 , -15 , . . .

A)no
B)yes, -4
C)yes, -6
D)yes, -2
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
43
Find the general term of the arithmetic sequence.
59,23,79,;a16\frac { 5 } { 9 } , \frac { 2 } { 3 } , \frac { 7 } { 9 } , \ldots ; a _ { 16 }

A) 209\frac { 20 } { 9 }
B) 199\frac { 19 } { 9 }
C) 179\frac { 17 } { 9 }
D) 2
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
44
Find the sum of the series.
13+12+35++78\frac { 1 } { 3 } + \frac { 1 } { 2 } + \frac { 3 } { 5 } + \ldots + \frac { 7 } { 8 }

A) i=114i2i\sum _ { i = 1 } ^ { 14 } \frac { i - 2 } { i }
B) i=114ii+2\sum _ { i = 1 } ^ { 14 } \frac { i } { i + 2 }
C) i=214ii+1\sum _ { i = 2 } ^ { 14 } \frac { i } { i + 1 }
D) i=014ii+2\sum _ { i = 0 } ^ { 14 } \frac { i } { i + 2 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
45
Find the sum of the series.
13+1619+121- \frac { 1 } { 3 } + \frac { 1 } { 6 } - \frac { 1 } { 9 } + \ldots - \frac { 1 } { 21 }

A) i=17(1)i3i\sum _ { \mathrm { i } = 1 } ^ { 7 } \frac { ( - 1 ) ^ { \mathrm { i } } } { 3 \mathrm { i } }
B) i=17(1)i3i\sum _ { i = 1 } ^ { 7 } \frac { ( - 1 ) ^ { i } } { 3 ^ { i } }
C) i=17(1)i13i\sum _ { i = 1 } ^ { 7 } \frac { ( - 1 ) ^ { i - 1 } } { 3 i }
D) i=17(1)i13i\sum _ { i = 1 } ^ { 7 } \frac { ( - 1 ) ^ { i - 1 } } { 3 ^ { i } }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
46
Find the general term of the arithmetic sequence.
16,23,76,53,136,\frac { 1 } { 6 } , \frac { 2 } { 3 } , \frac { 7 } { 6 } , \frac { 5 } { 3 } , \frac { 13 } { 6 } , \ldots

A) an=n26a _ { n } = \frac { n - 2 } { 6 }
B) an=n+16a _ { n } = \frac { n + 1 } { 6 }
C) an=3n+16a _ { n } = \frac { 3 n + 1 } { 6 }
D) an=3n26a _ { n } = \frac { 3 n - 2 } { 6 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
47
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
22+43+64++1692 ^ { 2 } + 4 ^ { 3 } + 6 ^ { 4 } + \ldots + 16 ^ { 9 }

A) i=18(2i)i+1\sum _ { i = 1 } ^ { 8 } ( 2 \mathrm { i } ) ^ { \mathrm { i } + 1 }
B) i=182(i1)i+1\sum _ { i = 1 } ^ { 8 } 2 ( i - 1 ) ^ { i + 1}
C) i=18(2i)i\sum _ { i = 1 } ^ { 8 } ( 2 i ) ^ { i }
D) i=182i2i1\sum _ { i = 1 } ^ { 8 } 2 i ^ { 2 i - 1 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
48
Determine if the sequence is arithmetic. If the sequence is arithmetic, find the common difference.
a1=3,an=3an14a _ { 1 } = - 3 , a _ { n } = 3 a _ { n - 1 }- 4

A)yes, -4
B)no
C)yes, 4
D)yes, 3
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
49
Find the general term of the arithmetic sequence.
6 , 15 , 24 , 33 , 42 , . . . ;  a20 \text { a20 }

A)51
B)59
C)179
D)177
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
50
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
a1=2,an=an1+8a _ { 1 } = 2 , a _ { n } = a _ { n - 1 } + 8

A)yes, 1
B)yes, 2
C)yes, 8
D)no
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
51
Find the general term of the arithmetic sequence.
7, 2 , -3, -8, . . . ; a20a _ { 20 }

A)-88
B)88
C)93
D)-93
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
52
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
7 , 11 , 15 , 19 , . . .

A)no
B)yes, -4
C)yes, 4
D)yes, 12
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
53
Find the sum of the series.
2+4+6++182 + 4 + 6 + \ldots + 18

A) i=192(i1)\sum _ { i = 1 } ^ { 9 } 2 ( \mathrm { i } - 1 )
B) i=192i\sum _ { i = 1 } ^ { 9 } 2 i
C) i=192\sum _ { i = 1 } ^ { 9 } 2
D) i=19i+2\sum _ { i = 1 } ^ { 9 } \mathrm { i } + 2
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
54
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
3 , 9 , 27 , 81 , 243, . . .

A)yes, 3  B) yes, 13\text { B) yes, } \frac { 1 } { 3 }
C)no
D)yes, 9
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
55
Find the sum of the series.
3+322+333++3nn3 + \frac { 3 ^ { 2 } } { 2 } + \frac { 3 ^ { 3 } } { 3 } + \ldots + \frac { 3 ^ { n } } { n }

A) i=1n3ni\sum _ { i = 1 } ^ { n } \frac { 3 ^ { n } } { i }
B) i=1n3ii\sum _ { i = 1 } ^ { n } \frac { 3 i } { i }
C) i=1n3ii\sum _ { i = 1 } ^ { n } \frac { 3 ^ { i } } { i }
D) i=133ii\sum _ { i = 1 } ^ { 3 } \frac { 3 ^ { i } } { i }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
56
Determine if the sequence is arithmetic. If the sequence is arithmetic, find the common difference.
3,9,15,21,27,3,9,15,21,27 , \ldots

A) an=6n1a _ { n } = 6 n - 1
B) an=3(6)n1a _ { n } = 3 ( 6 ) ^ { n - 1 }
C) an=3n6a _ { n } = 3 n - 6
D) an=6n3a _ { n } = 6 n - 3
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
57
Determine if the sequence is arithmetic. If the sequence is arithmetic, find the common difference.
6.9,7.7,8.5,9.3,10.1,6.9,7.7,8.5,9.3,10.1 , \ldots

A) an=0.8n+6.1a _ { n } = 0.8 n + 6.1
B) an=0.7n+6.1a _ { n } = 0.7 n + 6.1
C) an=0.8n+5.9a _ { n } = 0.8 n + 5.9
D) an=0.8n+6.9a _ { n } = 0.8 n + 6.9
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
58
Rewrite the series using summation notation. Use 1 as the lower limit of summation.
an = n(n - 3)

A)yes, 1
B)yes, 3
C)no
D)yes, -3
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
59
Determine if the sequence is arithmetic. If the sequence is arithmetic, find the common difference.
1,7,13,19,25,- 1 , - 7 , - 13 , - 19 , - 25 , \ldots

A) an=116na _ { n } = - 11 - 6 n
B) an=56na _ { n } = 5 - 6 n
C) an=6n5a _ { n } = 6 n - 5
D) an=56na _ { n } = - 5 - 6 n
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
60
Find the general term of the arithmetic sequence.
6.1, 5.5, 4.9, . . . ;  a9 \text { a9 }

A)1.9
B)1.31
C)1.3
D)0.7
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
61
Solve the problem.
If a person puts 1 cent in a piggy bank on the first day, 2 cents on the second day, 3 cents on the third day, and so on, how much money will be in the bank after 60 days?

A)$36.60
B)$18.30
C)$0.60
D)$9.15
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
62
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
3 + 6 + 9 + . . . + 120

A)4797
B)2460
C)2398
D)4920
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
63
Solve the problem.
A collection of dimes is arranged in a triangular array with 15 coins in the base row, 14 in the next, 13 in the next, and so on with 1 dime in the last row. Find the value of the collection.

A)$1.20
B)$24.00
C)$12.00
D)$6.00
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
64
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
Find the sum of the first 837 even positive integers.

A)699,732
B)701,406
C)702,244
D)700,569
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
65
Find the general term of the arithmetic sequence.
Given an arithmetic sequence with d d=6 and a4=10\mathrm { d } = - 6 \text { and } \mathrm { a } _ { 4 } = 10 find a20.

A)86
B)-86
C)-92
D)92
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
66
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
n=137(2n4)\sum _ { n = 1 } ^ { 37 } ( 2 n - 4 )

A) 1258
B) 1221
C) 1480
D) 1350.51350.5
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
67
Find the general term of the arithmetic sequence.
Given an arithmetic sequence with d = 6 and a5 = 27 , find a20.

A)119
B)59
C)54
D)117
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
68
Find the indicated term of the arithmetic sequence.
Find ana _ { n } and a8a _ { 8 } .
 <strong>Find the indicated term of the arithmetic sequence. Find  a _ { n }  and  a _ { 8 } .   </strong> A)  a _ { n } = n + 1 ; a _ { 8 } = 9  B)  a _ { n } = n - 2 ; a _ { 8} = 6  C)  a _ { n } = n + 2 ; a _ { 8 } = 10  D)  a _ { n } = n - 1 ; a _ { 8 } = 7

A) an=n+1;a8=9a _ { n } = n + 1 ; a _ { 8 } = 9
B) an=n2;a8=6a _ { n } = n - 2 ; a _ { 8} = 6
C) an=n+2;a8=10a _ { n } = n + 2 ; a _ { 8 } = 10
D) an=n1;a8=7a _ { n } = n - 1 ; a _ { 8 } = 7
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
69
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
-3 + 1 + 5 + 9 + 13 + . . . + (4n - 7)

A)n(4n - 7)
B)n(4n + 7)
C)n(2n - 5)
D)n(2n + 5)
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
70
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
n=142(3n3)\sum _ { n = 1 } ^ { 42 } ( - 3 n - 3 )

A) 2541- 2541
B) 2835- 2835
C) 2772- 2772
D) 2688- 2688
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
71
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
7 + 3 - 1 + . . . - 153

A)-144
B)-2993
C)-2920
D)-146
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
72
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
15+1+95++9\frac { 1 } { 5 } + 1 + \frac { 9 } { 5 } + \ldots + 9

A) 5525\frac { 552 } { 5 }
B) 2535\frac { 253 } { 5 }
C) 66
D) 2765\frac { 276 } { 5 }
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
73
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
n=138(6n+5)\sum _ { n = 1 } ^ { 38 } ( 6 n + 5 )

A) 4522
B) 4940
C) 4636
D) 4807
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
74
Find the indicated term of the arithmetic sequence.
Find ana _ { n } and a21a _ { 21 } .
 <strong>Find the indicated term of the arithmetic sequence. Find  a _ { n }  and  a _ { 21 } .   </strong> A)  a _ { n } = n + 3 ; a _ { 21 } = 24  B)  a _ { n } = 4 - n ; a _ { 21 } = - 17  C)  a _ { n } = n - 4 ; a _ { 21 } = 17  D)  a _ { n } = n + 2 ; a _ { 21 } = 23

A) an=n+3;a21=24a _ { n } = n + 3 ; a _ { 21 } = 24
B) an=4n;a21=17a _ { n } = 4 - n ; a _ { 21 } = - 17
C) an=n4;a21=17a _ { n } = n - 4 ; a _ { 21 } = 17
D) an=n+2;a21=23a _ { n } = n + 2 ; a _ { 21 } = 23
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
75
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
-20 + -30 + -40 + -50 + . . . + a40

A)-8595
B)-8800
C)-8600
D)-420
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
76
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
19 + 24 + 29 + 34 + . . . + a60

A)319
B)10,140
C)9998
D)9990
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
77
Find the indicated term of the arithmetic sequence.
Given an arithmetic sequence with a16 = 19 and a10 = 7, find a4.

A)-3
B)-11
C)-5
D)2
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
78
Find the general term of the arithmetic sequence.
Given an arithmetic sequence with a1 = -8 and a8 = 48, find a15.

A)85
B)54
C)112
D)104
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
79
Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers.
Find an and a35.  <strong>Find the general term of the arithmetic sequence then find the indicated term of the sequence. Assume that the domain of the sequence is all natural numbers. Find an and a35.  </strong> A)  a _ { n } = n + 2 ; a _ { 35 } = 37  B)  a _ { n } = 3 - n ; a _ { 35 } = - 32  C)  a _ { n } = n + 1 ; a _ { 35 } = 36  D)  a _ { n } = n - 3 ; a _ { 35 } = 32

A) an=n+2;a35=37a _ { n } = n + 2 ; a _ { 35 } = 37
B) an=3n;a35=32a _ { n } = 3 - n ; a _ { 35 } = - 32
C) an=n+1;a35=36a _ { n } = n + 1 ; a _ { 35 } = 36
D) an=n3;a35=32a _ { n } = n - 3 ; a _ { 35 } = 32
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
80
Find the indicated term of the arithmetic sequence.
Find ana _ { n } and a18a _ { 18 } .
 <strong>Find the indicated term of the arithmetic sequence. Find  a _ { n }  and  a _ { 18 } .   </strong> A)  a _ { n } = n - 4 ; a _ { 18 } = 14  B)  a _ { n } = n + 4 ; a _ { 18 } = 23  C)  a _ { n } = n + 3 ; a  _ { 18 } = 21  D)  a _ { n } = n - 3 ; a _ { 18 } = 15

A) an=n4;a18=14a _ { n } = n - 4 ; a _ { 18 } = 14
B) an=n+4;a18=23a _ { n } = n + 4 ; a _ { 18 } = 23
C) an=n+3;a18=21a _ { n } = n + 3 ; a _ { 18 } = 21
D) an=n3;a18=15a _ { n } = n - 3 ; a _ { 18 } = 15
Unlock Deck
Unlock for access to all 255 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 255 flashcards in this deck.