Deck 5: Exponential and Logarithmic Functions

Full screen (f)
exit full mode
Question
Match the function with one of the graphs.
f(x)=ex6f ( x ) = e ^ { x } - 6

A)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x } - 6 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x } - 6 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x } - 6 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x } - 6 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x28,f1(x)=8x+2f ( x ) = \frac { x - 2 } { 8 } , f ^ { - 1 } ( x ) = 8 x + 2
Question
Match the function with one of the graphs.
f(x)=ex+2f ( x ) = e ^ { x + 2 }

A)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x + 2 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x + 2 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x + 2 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x + 2 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Logarithmic,  f ( x ) = a + b \ln x  B) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0  C) Quadratic,  f ( x ) = a x ^ { 2 } + b x + c  D) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { - \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0  <div style=padding-top: 35px>

A) Logarithmic, f(x)=a+blnxf ( x ) = a + b \ln x
B) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
C) Quadratic, f(x)=ax2+bx+cf ( x ) = a x ^ { 2 } + b x + c
D) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { - \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0
Question
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Logarithmic,  f ( x ) = a + b \ln x  B) Exponential,  \mathrm { f } ( \mathrm { x } ) = a b ^ { - \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0  C) Polynomial, not quadratic D) Logistic,  \mathrm { f } ( \mathrm { x } ) = \frac { \mathrm { a } } { 1 + b \mathrm { e } ^ { - \mathrm { kx } } }  <div style=padding-top: 35px>

A) Logarithmic, f(x)=a+blnxf ( x ) = a + b \ln x
B) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = a b ^ { - \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0
C) Polynomial, not quadratic
D) Logistic, f(x)=a1+bekx\mathrm { f } ( \mathrm { x } ) = \frac { \mathrm { a } } { 1 + b \mathrm { e } ^ { - \mathrm { kx } } }
Question
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Logistic,  f ( x ) = \frac { a } { 1 + b e ^ { - k x } }  B) Exponential,  \mathrm { f } ( \mathrm { x } ) = a b ^ { - \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0  C) Quadratic,  f ( x ) = a x ^ { 2 } + b x + c  D) Polynomial, not quadratic <div style=padding-top: 35px>

A) Logistic, f(x)=a1+bekxf ( x ) = \frac { a } { 1 + b e ^ { - k x } }
B) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = a b ^ { - \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0
C) Quadratic, f(x)=ax2+bx+cf ( x ) = a x ^ { 2 } + b x + c
D) Polynomial, not quadratic
Question
Match the function with one of the graphs.
f(x)=3x+4f ( x ) = 3 ^ { x } + 4

A)
 <strong>Match the function with one of the graphs.  f ( x ) = 3 ^ { x } + 4 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the function with one of the graphs.  f ( x ) = 3 ^ { x } + 4 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the function with one of the graphs.  f ( x ) = 3 ^ { x } + 4 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the function with one of the graphs.  f ( x ) = 3 ^ { x } + 4 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Provide an appropriate response.
Without using a calculator, determine which of these numbers is larger: 83 or 83\sqrt { 8 ^ { 3 } } \text { or } 8 \sqrt { 3 } \text {. }
Question
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Polynomial, not quadratic B) Logarithmic,  \mathrm { f } ( \mathrm { x } ) = \mathrm { a } + \mathrm { b } \ln \mathrm { x }  C) Quadratic,  f ( x ) = a x ^ { 2 } + b x + c  D) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0  <div style=padding-top: 35px>

A) Polynomial, not quadratic
B) Logarithmic, f(x)=a+blnx\mathrm { f } ( \mathrm { x } ) = \mathrm { a } + \mathrm { b } \ln \mathrm { x }
C) Quadratic, f(x)=ax2+bx+cf ( x ) = a x ^ { 2 } + b x + c
D) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
Question
Match the function with one of the graphs.
f(x)=2exf ( x ) = 2 e ^ { - x }

A)
 <strong>Match the function with one of the graphs.  f ( x ) = 2 e ^ { - x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the function with one of the graphs.  f ( x ) = 2 e ^ { - x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the function with one of the graphs.  f ( x ) = 2 e ^ { - x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the function with one of the graphs.  f ( x ) = 2 e ^ { - x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Match the function with one of the graphs.
f(x)=5+exf ( x ) = 5 + e ^ { x }

A)
 <strong>Match the function with one of the graphs.  f ( x ) = 5 + e ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the function with one of the graphs.  f ( x ) = 5 + e ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the function with one of the graphs.  f ( x ) = 5 + e ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the function with one of the graphs.  f ( x ) = 5 + e ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Provide an appropriate response.
 Explain why f(x)=2x is an exponential function but f(x)=x2 is not. \text { Explain why } f ( x ) = 2 ^ { x } \text { is an exponential function but } f ( x ) = x ^ { 2 } \text { is not. }
Question
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Logarithmic,  f ( x ) = a + b \ln x  B) Polynomial, not quadratic C) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } { } ^ { - \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0  D) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0  <div style=padding-top: 35px>

A) Logarithmic, f(x)=a+blnxf ( x ) = a + b \ln x
B) Polynomial, not quadratic
C) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } { } ^ { - \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0
D) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
Question
Provide an appropriate response.
 Explain the error in the following: log68log6N=log6(8N)\text { Explain the error in the following: } \log _ { 6 } 8 - \log _ { 6 } N = \log _ { 6 } ( 8 - N ) \text {. }
Question
Match the function with one of the graphs.
f(x)=(13)xf ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }

A)
 <strong>Match the function with one of the graphs.  f ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the function with one of the graphs.  f ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the function with one of the graphs.  f ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the function with one of the graphs.  f ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Polynomial, not quadratic B) Exponential,  \mathrm { f } ( \mathrm { x } ) = a \mathrm {~b} ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0  C) Logistic,  f ( x ) = \frac { a } { 1 + b e ^ { - k x } }  D) Logarithmic,  f ( x ) = a + b \ln x  <div style=padding-top: 35px>

A) Polynomial, not quadratic
B) Exponential, f(x)=a bx\mathrm { f } ( \mathrm { x } ) = a \mathrm {~b} ^ { \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
C) Logistic, f(x)=a1+bekxf ( x ) = \frac { a } { 1 + b e ^ { - k x } }
D) Logarithmic, f(x)=a+blnxf ( x ) = a + b \ln x
Question
Provide an appropriate response.
 Explain the error in the following: log32+log3M=log3(2+M)\text { Explain the error in the following: } \log _ { 3 } 2 + \log _ { 3 } M = \log _ { 3 } ( 2 + M ) \text {. }
Question
Provide an appropriate response.
 Explain how the graph of f(x)=ex could be used to graph the function g(x)=1+lnx\text { Explain how the graph of } f ( x ) = e ^ { x } \text { could be used to graph the function } g ( x ) = 1 + \ln x \text {. }
Question
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x34,f1(x)=x+43f ( x ) = x ^ { 3 } - 4 , f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x + 4 }
Question
Provide an appropriate response.
Prove that the function f is one-to-one. f(x)=x34f ( x ) = x ^ { 3 } - 4
Question
Provide an appropriate response.
Prove that the function f is not one-to-one. f(x)=x2f ( x ) = | x | - 2
Question
Provide an appropriate response.
Explain the error in the following: log43y=log43log4y\log _ { 4 } 3 y = \log _ { 4 } 3 \cdot \log _ { 4 } y
Question
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x+33,f1(x)=x33f ( x ) = \sqrt [ 3 ] { x + 3 } , f ^ { - 1 } ( x ) = x ^ { 3 } - 3
Question
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=74x,f1(x)=47xf ( x ) = \frac { 7 } { 4 } x , f ^ { - 1 } ( x ) = \frac { 4 } { 7 } x
Question
Provide an appropriate response.
Without using a calculator, determine which of these numbers is larger: π1.3 or π2.4\pi ^ { 1.3 } \text { or } \pi ^ { 2.4 }
Question
Provide an appropriate response.
Prove that the function f is one-to-one. f(x)=612xf ( x ) = 6 - \frac { 1 } { 2 } x
Question
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=8+xx,f1(x)=8x1f ( x ) = \frac { 8 + x } { x } , f ^ { - 1 } ( x ) = \frac { 8 } { x - 1 }
Question
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x+46,f1(x)=6x4f ( x ) = \frac { x + 4 } { 6 } , f ^ { - 1 } ( x ) = 6 x - 4
Question
Provide an appropriate response.
 Explain why log213 is between 3 and 4\text { Explain why } \log _ { 2 } 13 \text { is between } 3 \text { and } 4 \text {. }
Question
Provide an appropriate response.
Prove that the function f is not one-to-one. f(x)=2x4f ( x ) = 2 - x ^ { 4 }
Question
Provide an appropriate response.
Suppose that $1000 is invested for 5 years at 4% interest, compounded annually. In what
year will the most interest be earned? Why?
Question
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=53x,f1(x)=35xf ( x ) = - \frac { 5 } { 3 } x , f ^ { - 1 } ( x ) = - \frac { 3 } { 5 } x
Question
Provide an appropriate response.
 Without using a calculator, explain why 2π must be greater than 8 but less than 16\text { Without using a calculator, explain why } 2 \pi \text { must be greater than } 8 \text { but less than } 16 \text {. }
Question
Provide an appropriate response.
 Explain how the graph of f(x)=lnx could be used to graph the function g(x)=ex1\text { Explain how the graph of } f ( x ) = \ln x \text { could be used to graph the function } g ( x ) = e ^ { x - 1 }
Question
Provide an appropriate response.
 Explain how the equation logx=1 could be solved using the graph of f(x)=logx\text { Explain how the equation } \log x = 1 \text { could be solved using the graph of } f ( x ) = \log x \text {. }
Question
Provide an appropriate response.
Prove that the function f is one-to-one. f(x)=3x1f ( x ) = 3 x - 1
Question
Provide an appropriate response.
Explain why 1 is excluded from being a logarithmic base.
Question
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x+72,f1=2x7f ( x ) = \frac { x + 7 } { 2 } , f ^ { - 1 } = 2 x - 7
Question
Provide an appropriate response.
Prove that the function f is not one-to-one. f(x)=2x6f ( x ) = \frac { 2 } { x ^ { 6 } }
Question
Provide an appropriate response.
Prove that the function f is not one-to-one. f(x)=x2+2f ( x ) = x ^ { 2 } + 2
Question
Provide an appropriate response.
Prove that the function f is one-to-one. f(x)=x3+5f ( x ) = \sqrt [ 3 ] { x } + 5
Question
Using the horizontal-line test, determine whether the function is one-to-one.
f(x)=7x22f(x)=\frac{7}{x^{2}-2}
 <strong>Using the horizontal-line test, determine whether the function is one-to-one.  f(x)=\frac{7}{x^{2}-2}    </strong> A) Yes B)  \mathrm { No }  <div style=padding-top: 35px>

A) Yes
B) No\mathrm { No }
Question
Find the logarithm using the change-of-base formula.
log2427.46\log _ { 24 } 27.46

A) 1.43871.4387
B) 1.04241.0424
C) 0.95930.9593
D) 1.14421.1442
Question
Provide an appropriate response.
The product, power, and quotient rules enable us to simplify expressions like loga(rspv)\log _ { \mathrm { a } } \left( \frac { \mathrm { rs } } { \mathrm { pv } } \right) . Explain why such expressions can always be simplified without using the quotient rule.
Question
Find the inverse of the relation.
{(8,6),(12,6),(5,14)}\{ ( - 8,6 ) , ( - 12,6 ) , ( 5 , - 14 ) \}

A) {(8,2),(8,12),(14,5)}\{ ( - 8 , - 2 ) , ( - 8 , - 12 ) , ( - 14,5 ) \}
B) {(6,8),(5,12),(14,2)}\{ ( 6 , - 8 ) , ( 5 , - 12 ) , ( - 14 , - 2 ) \}
C) {(6,8),(2,12),(14,5)}\{ ( 6 , - 8 ) , ( - 2 , - 12 ) , ( - 14,5 ) \}
D) {(6,8),(6,12),(14,5)}\{ ( 6 , - 8 ) , ( 6 , - 12 ) , ( - 14,5 ) \}
Question
Provide an appropriate response.
Explain why negative numbers do not have logarithms.
Question
Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.
f(x)=14log(x+2)+4f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units   <div style=padding-top: 35px>

A) Shift y=logxy = \log x to the left 2 units,
stretch it vertically, and shift up 4 units
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units   <div style=padding-top: 35px>
B) Shift y=logxy = \log x to the right 2 units
,shrink it vertically, and shift up 4 units
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units   <div style=padding-top: 35px>
C) Shift y=logxy = \log x to the left 2 units,
shrink it vertically, and shift down 4 units
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units   <div style=padding-top: 35px>
D) Shift y=logxy = \log x to the left 2 units,
shrink it vertically, and shift up 4 units
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units   <div style=padding-top: 35px>
Question
Find the domain and range of the inverse of the given function.
f(x)=x4f ( x ) = \sqrt { x - 4 }

A) Domain: [4,)[ 4 , \infty ) ; range: [0,)[ 0 , \infty )
B) Domain and range: all real numbers
C) Domain: [0,)[ 0 , \infty ) ; range: [4,)[ 4 , \infty )
D) Domain: all real numbers; range: [4,)[ 4 , \infty )
Question
Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units   <div style=padding-top: 35px>  A) Shift y=lnxy = \ln x right 2 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units   <div style=padding-top: 35px>
B) Shift y=lnxy = \ln x left 2 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units   <div style=padding-top: 35px>
C) Shift y=lnxy = \ln x right 2 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units   <div style=padding-top: 35px>
D) Shift y=lnxy = \ln x left 2 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units   <div style=padding-top: 35px>
Question
Graph the function.
f(x)=5(4x2)f(x)=5(4 x-2)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Provide an appropriate response.
 Find f(f1(1598)) given that f(x)=6x25x35\text { Find } f \left( f ^ { - 1 } ( 1598 ) \right) \text { given that } f ( x ) = \sqrt [ 5 ] { \frac { 6 x - 2 } { 5 x - 3 } } \text {. }
Question
Solve.
In 1985, the number of female athletes participating in Summer Olympic-Type Games was 450. In 1996, about 3650 participated in the Summer Olympics in Atlanta. Assuming that P(0)= 500 and
That the exponential model applies, find the value of k rounded to the hundredths place, and write
The function. A) k=0.19;P(t)=500e0.29t\mathrm { k } = 0.19 ; \mathrm { P } ( \mathrm { t } ) = 500 \mathrm { e } ^ { 0.29 \mathrm { t } }
B) k=0.17;P(t)=500e0.17t\mathrm { k } = 0.17 ; \mathrm { P } ( \mathrm { t } ) = 500 \mathrm { e } ^ { 0.17 \mathrm { t } }
C) k=0.19;P(t)=500e0.19t\mathrm { k } = 0.19 ; \mathrm { P } ( \mathrm { t } ) = 500 \mathrm { e } ^ { 0.19 \mathrm { t } }
D) k=0.21;P(t)=500e0.21t\mathrm { k } = 0.21 ; \mathrm { P } ( \mathrm { t } ) = 500 \mathrm { e } ^ { 0.21 \mathrm { t } }
Question
Simplify.
logbb5\log _ { b } \sqrt { b ^ { 5 } }

A) 5
B) 52\frac { 5 } { 2 }
C) 3
D) 12\frac { 1 } { 2 }
Question
Solve the logarithmic equation.
log3(8x6)=3\log _ { 3 } ( 8 x - 6 ) = 3

A) log33+68\frac { \log _ { 3 } 3 + 6 } { 8 }
B) 113\frac { 11 } { 3 }
C) 338\frac { 33 } { 8 }
D) 25
Question
Express as a single logarithm and, if possible, simplify.
logb8x+4(logbxlogby)\log _ { b } 8 x + 4 \left( \log _ { b } x - \log _ { b } y \right)

A) logb(8x+x4y4)\log _ { b } \left( 8 x + x ^ { 4 } - y ^ { 4 } \right)
B) (logb8x)(logbx4)logy4\frac { \left( \log _ { b } 8 x \right) \left( \log _ { b } x ^ { 4 } \right) } { \log \mathrm { y } ^ { 4 } }
C) logb8x5y4\log _ { b } \frac { 8 x ^ { 5 } } { y ^ { 4 } }
D) logb32x2y4\log b \frac { 32 x ^ { 2 } } { y ^ { 4 } }
Question
Solve.
How long will it take for $3700\$ 3700 to grow to $34,300\$ 34,300 at an interest rate of 10.3%10.3 \% if the interest is compounded continuously? Round the number of years to the nearest hundredth.

A) 0.22yr0.22 \mathrm { yr }
B) 2.16yr2.16 \mathrm { yr }
C) 2161.95yr2161.95 \mathrm { yr }
D) 21.62yr21.62 \mathrm { yr }
Question
Convert to an exponential equation.
log864=t\log _ { 8 } 64 = \mathrm { t }

A) 64t=864 ^ { t } = 8
B) 8t=648 ^ { t } = 64
C) 864=t864 = t
D) t8=64t ^ { 8 } = 64
Question
Solve the logarithmic equation.
log16x=12\log _ { 16 } x = \frac { 1 } { 2 }

A) 0.000015260.00001526
B) 256
C) 65,536
D) 4
Question
Find the domain and the vertical asymptote of the function.
g(x)=ln(x8)g ( x ) = \ln ( x - 8 )

A) Domain: (8,)( 8 , \infty ) ; vertical asymptote: x=8x = 8
B) Domain: (,)( - \infty , \infty ) ; vertical asymptote: none
C) Domain: (8,)( - 8 , \infty ) ; vertical asymptote: x=8x = - 8
D) Domain: (0,)( 0 , \infty ) ; vertical asymptote: x=0x = 0
Question
Determine whether the given function is one-to-one. If it is one-to-one, find a formula for the inverse.
f(x)=2x+3f ( x ) = \frac { 2 } { x + 3 }

A) f1(x)=3x+2xf ^ { - 1 } ( x ) = \frac { - 3 x + 2 } { x }
B) f1(x)=x3+2xf ^ { - 1 } ( x ) = \frac { x } { 3 + 2 x }
C) f1(x)=3+2xxf ^ { - 1 } ( x ) = \frac { 3 + 2 x } { x }
D) Not one-to-one
Question
Find the following using a calculator. Round to four decimal places.
log93,500\log 93,500

A) 4.97084.9708
B) 6.84076.8407
C) 6.84086.8408
D) 6.84046.8404
Question
Express as a difference of logarithms.
log4911\log _ { 4 } \frac { 9 } { 11 }

A) log49÷log411\log _ { 4 } 9 \div \log _ { 4 } 11
B) log49log411\log _ { 4 } 9 - \log _ { 4 } 11
C) log411log49\log _ { 4 } 11 - \log _ { 4 } 9
D) log29log211\log _ { 2 } 9 - \log _ { 2 } 11
Question
Graph the piecewise function.
Graph the piecewise function.    <div style=padding-top: 35px> Graph the piecewise function.    <div style=padding-top: 35px>
Question
Solve.
Given logb2=0.5298\log _ { \mathrm { b } } 2 = 0.5298 and logb7=1.4873\log _ { \mathrm { b } } 7 = 1.4873 , evaluate logb2 b\log _ { \mathrm { b } } 2 \mathrm {~b} .

A) 2.01712.0171
B) 0.52980.5298
C) 1.07571.0757
D) 1.52981.5298
Question
Evaluate to four decimal places using a calculator.
e1.233\mathrm { e } ^ { 1.233 }

A) 7.38917.3891
B) 3.43153.4315
C) 3.35163.3516
D) 1.52031.5203
Question
Solve the problem.
Suppose the amount of a radioactive element remaining in a sample of 100 milligrams after xx years can be described by A(x)=100e0.01569x\mathrm { A } ( \mathrm { x } ) = 100 \mathrm { e } ^ { - 0.01569 \mathrm { x } } . How much is remaining after 58 years? Round the answer to the nearest hundredth of a milligram.

A) 0.40mg0.40 \mathrm { mg }
B) 248.44mg248.44 \mathrm { mg }
C) 91.00mg91.00 \mathrm { mg }
D) 40.25mg40.25 \mathrm { mg }
Question
Convert to a logarithmic equation.
42=164 ^ { 2 } = 16

A) 4=log2164 = \log _ { 2 } 16
B) 2=log4162 = \log _ { 4 } 16
C) 2=log1642 = \log _ { 16 } 4
D) 16=log4216 = \log _ { 4 } 2
Question
Graph the function.
f(x)=(15)xf ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Convert to a logarithmic equation.
100.6021=410 ^ { 0.6021 } = 4

A) 0.6021=log9100.6021 = \log _ { 9 } 10
B) 4=log100.60214 = \log _ { 10 } 0.6021
C) 10=log90.602110 = \log _ { 9 } 0.6021
D) 0.6021=log1040.6021 = \log _ { 10 } 4
Question
Graph the function.
f(x)=4(x3)+3f(x)=4(x-3)+3
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

C)
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
Question
Graph the function.
y=16exy = \frac { 1 } { 6 } e ^ { x }
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the function. Describe its position relative to the graph of the indicated basic function.
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally  <div style=padding-top: 35px> A) Shrunk vertically
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally  <div style=padding-top: 35px>
B) Shrunk horizontally
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally  <div style=padding-top: 35px>
C) Shrunk vertically
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally  <div style=padding-top: 35px>
D) Shrunk horizontally
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally  <div style=padding-top: 35px>
Question
The graph of a one-to-one function f is given. Sketch the graph of the inverse function f1\mathrm { f } ^ { - 1 } , on the same set of axes. Use a
dashed line for the inverse.
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the domain and range of the inverse of the given function.
f(x)=x28;x0f ( x ) = x ^ { 2 } - 8 ; x \geq 0

A) Domain: [8,)[ - 8 , \infty ) ; range: all real numbers
B) Domain and range: all real numbers
C) Domain: [0,)[ 0 , \infty ) ; range: [8,)[ - 8 , \infty )
D) Domain: [8,)[ - 8 , \infty ) ; range: [0,)[ 0 , \infty )
Question
Find the domain and the vertical asymptote of the function.
f(x)=24log(x+1)f ( x ) = - 2 - 4 \log ( x + 1 )

A) Domain (,1)( - \infty , - 1 ) ; vertical asymptote: x=1x = - 1
B) Domain (,1)( - \infty , 1 ) ; vertical asymptote: x=1x = 1
C) Domain (1,)( - 1 , \infty ) ; vertical asymptote: x=1x = - 1
D) Domain (1,)( 1 , \infty ) ; vertical asymptote: x=1x = 1
Question
Graph the piecewise function.
f(x)={ex8, for x<2x2, for 2x<1x3, for x1f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\x - 2 , & \text { for } - 2 \leq x < 1 \\x ^ { 3 } , & \text { for } x \geq 1\end{array} \right.
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.
An initial investment of $14,000 is appreciated for 4 years in an account that earns 13% interest, compounded semiannually. Find the amount of money in the account at the end of the period.

A)$22,826.63
B)$23,169.94
C)$9169.94
D)$21,755.81
Question
Solve.
Find the hydrogen ion concentration of a solution whose pH\mathrm { pH } is 6.86.8 . Use the formula pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] .

A) 1.58×1071.58 \times 10 ^ { - 7 }
B) 6.31×1066.31 \times 106
C) 0.8325089- 0.8325089
D) 0.832508910.83250891
Question
Solve the problem.
In September 1998 the population of the country of West Goma in millions was modeled by f(x)=16.6e0.0012x\mathrm { f } ( \mathrm { x } ) = 16.6 \mathrm { e } ^ { 0.0012 \mathrm { x } } . At the same time the population of East Goma in millions was modeled by g(x)=13.4e0.0133x\mathrm { g } ( \mathrm { x } ) = 13.4 \mathrm { e } ^ { 0.0133 \mathrm { x } } . In both formulas x\mathrm { x } is the year, where x=0\mathrm { x } = 0 corresponds to September 1998.1998 . Assuming these trends continue, estimate the year when the population of West Goma will equal the population of East Goma.

A) 1980
B) 18
C) 2013
D) 2016
Question
Find the domain and the vertical asymptote of the function.
f(x)=log(x10)f ( x ) = \log ( x - 10 )

A) Domain (0,)( 0 , \infty ) ; vertical asymptote: x=0x = 0
B) Domain (10,)( 10 , \infty ) ; vertical asymptote: x=10x = 10
C) Domain: (10,)( - 10 , \infty ) ; vertical asymptote: x=10x = - 10
D) Domain (1,)( 1 , \infty ) ; vertical asymptote: x=1x = 1
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/106
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Exponential and Logarithmic Functions
1
Match the function with one of the graphs.
f(x)=ex6f ( x ) = e ^ { x } - 6

A)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x } - 6 </strong> A)   B)   C)   D)
B)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x } - 6 </strong> A)   B)   C)   D)
C)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x } - 6 </strong> A)   B)   C)   D)
D)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x } - 6 </strong> A)   B)   C)   D)
C
2
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x28,f1(x)=8x+2f ( x ) = \frac { x - 2 } { 8 } , f ^ { - 1 } ( x ) = 8 x + 2
Answers may vary. One possible solution is: 1. (f1\left( f ^ { - 1 } \right. of )(x)=f1(f(x))=f1((x2)/8)=8((x2)/8)+2=(x2)+2=x) ( x ) = f ^ { - 1 } ( f ( x ) ) = f ^ { - 1 } ( ( x - 2 ) / 8 ) = 8 ( ( x - 2 ) / 8 ) + 2 = ( x - 2 ) + 2 = x ;
2. (ff1)(x)=f(f1(x))=f(8x+2)=((8x+2)2)/8=8x/8=x\left( f \circ f ^ { - 1 } \right) ( x ) = f \left( f ^ { - 1 } ( x ) \right) = f ( 8 x + 2 ) = ( ( 8 x + 2 ) - 2 ) / 8 = 8 x / 8 = x
3
Match the function with one of the graphs.
f(x)=ex+2f ( x ) = e ^ { x + 2 }

A)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x + 2 } </strong> A)   B)   C)   D)
B)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x + 2 } </strong> A)   B)   C)   D)
C)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x + 2 } </strong> A)   B)   C)   D)
D)
 <strong>Match the function with one of the graphs.  f ( x ) = e ^ { x + 2 } </strong> A)   B)   C)   D)
D
4
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Logarithmic,  f ( x ) = a + b \ln x  B) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0  C) Quadratic,  f ( x ) = a x ^ { 2 } + b x + c  D) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { - \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0

A) Logarithmic, f(x)=a+blnxf ( x ) = a + b \ln x
B) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
C) Quadratic, f(x)=ax2+bx+cf ( x ) = a x ^ { 2 } + b x + c
D) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { - \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
5
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Logarithmic,  f ( x ) = a + b \ln x  B) Exponential,  \mathrm { f } ( \mathrm { x } ) = a b ^ { - \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0  C) Polynomial, not quadratic D) Logistic,  \mathrm { f } ( \mathrm { x } ) = \frac { \mathrm { a } } { 1 + b \mathrm { e } ^ { - \mathrm { kx } } }

A) Logarithmic, f(x)=a+blnxf ( x ) = a + b \ln x
B) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = a b ^ { - \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0
C) Polynomial, not quadratic
D) Logistic, f(x)=a1+bekx\mathrm { f } ( \mathrm { x } ) = \frac { \mathrm { a } } { 1 + b \mathrm { e } ^ { - \mathrm { kx } } }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
6
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Logistic,  f ( x ) = \frac { a } { 1 + b e ^ { - k x } }  B) Exponential,  \mathrm { f } ( \mathrm { x } ) = a b ^ { - \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0  C) Quadratic,  f ( x ) = a x ^ { 2 } + b x + c  D) Polynomial, not quadratic

A) Logistic, f(x)=a1+bekxf ( x ) = \frac { a } { 1 + b e ^ { - k x } }
B) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = a b ^ { - \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0
C) Quadratic, f(x)=ax2+bx+cf ( x ) = a x ^ { 2 } + b x + c
D) Polynomial, not quadratic
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
7
Match the function with one of the graphs.
f(x)=3x+4f ( x ) = 3 ^ { x } + 4

A)
 <strong>Match the function with one of the graphs.  f ( x ) = 3 ^ { x } + 4 </strong> A)   B)   C)   D)
B)
 <strong>Match the function with one of the graphs.  f ( x ) = 3 ^ { x } + 4 </strong> A)   B)   C)   D)
C)
 <strong>Match the function with one of the graphs.  f ( x ) = 3 ^ { x } + 4 </strong> A)   B)   C)   D)
D)
 <strong>Match the function with one of the graphs.  f ( x ) = 3 ^ { x } + 4 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
8
Provide an appropriate response.
Without using a calculator, determine which of these numbers is larger: 83 or 83\sqrt { 8 ^ { 3 } } \text { or } 8 \sqrt { 3 } \text {. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
9
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Polynomial, not quadratic B) Logarithmic,  \mathrm { f } ( \mathrm { x } ) = \mathrm { a } + \mathrm { b } \ln \mathrm { x }  C) Quadratic,  f ( x ) = a x ^ { 2 } + b x + c  D) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0

A) Polynomial, not quadratic
B) Logarithmic, f(x)=a+blnx\mathrm { f } ( \mathrm { x } ) = \mathrm { a } + \mathrm { b } \ln \mathrm { x }
C) Quadratic, f(x)=ax2+bx+cf ( x ) = a x ^ { 2 } + b x + c
D) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
10
Match the function with one of the graphs.
f(x)=2exf ( x ) = 2 e ^ { - x }

A)
 <strong>Match the function with one of the graphs.  f ( x ) = 2 e ^ { - x } </strong> A)   B)   C)   D)
B)
 <strong>Match the function with one of the graphs.  f ( x ) = 2 e ^ { - x } </strong> A)   B)   C)   D)
C)
 <strong>Match the function with one of the graphs.  f ( x ) = 2 e ^ { - x } </strong> A)   B)   C)   D)
D)
 <strong>Match the function with one of the graphs.  f ( x ) = 2 e ^ { - x } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
11
Match the function with one of the graphs.
f(x)=5+exf ( x ) = 5 + e ^ { x }

A)
 <strong>Match the function with one of the graphs.  f ( x ) = 5 + e ^ { x } </strong> A)   B)   C)   D)
B)
 <strong>Match the function with one of the graphs.  f ( x ) = 5 + e ^ { x } </strong> A)   B)   C)   D)
C)
 <strong>Match the function with one of the graphs.  f ( x ) = 5 + e ^ { x } </strong> A)   B)   C)   D)
D)
 <strong>Match the function with one of the graphs.  f ( x ) = 5 + e ^ { x } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
12
Provide an appropriate response.
 Explain why f(x)=2x is an exponential function but f(x)=x2 is not. \text { Explain why } f ( x ) = 2 ^ { x } \text { is an exponential function but } f ( x ) = x ^ { 2 } \text { is not. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
13
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Logarithmic,  f ( x ) = a + b \ln x  B) Polynomial, not quadratic C) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } { } ^ { - \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0  D) Exponential,  \mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0

A) Logarithmic, f(x)=a+blnxf ( x ) = a + b \ln x
B) Polynomial, not quadratic
C) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } { } ^ { - \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { - \mathrm { kx } } , \mathrm { k } > 0
D) Exponential, f(x)=abx\mathrm { f } ( \mathrm { x } ) = \mathrm { ab } ^ { \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
14
Provide an appropriate response.
 Explain the error in the following: log68log6N=log6(8N)\text { Explain the error in the following: } \log _ { 6 } 8 - \log _ { 6 } N = \log _ { 6 } ( 8 - N ) \text {. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
15
Match the function with one of the graphs.
f(x)=(13)xf ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }

A)
 <strong>Match the function with one of the graphs.  f ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }  </strong> A)   B)   C)   D)
B)
 <strong>Match the function with one of the graphs.  f ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }  </strong> A)   B)   C)   D)
C)
 <strong>Match the function with one of the graphs.  f ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }  </strong> A)   B)   C)   D)
D)
 <strong>Match the function with one of the graphs.  f ( x ) = - \left( \frac { 1 } { 3 } \right) ^ { x }  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
16
Choose the function that might be used as a model for the data in the scatter plot.
 <strong>Choose the function that might be used as a model for the data in the scatter plot.  </strong> A) Polynomial, not quadratic B) Exponential,  \mathrm { f } ( \mathrm { x } ) = a \mathrm {~b} ^ { \mathrm { x } }  or  \mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0  C) Logistic,  f ( x ) = \frac { a } { 1 + b e ^ { - k x } }  D) Logarithmic,  f ( x ) = a + b \ln x

A) Polynomial, not quadratic
B) Exponential, f(x)=a bx\mathrm { f } ( \mathrm { x } ) = a \mathrm {~b} ^ { \mathrm { x } } or f(x)=P0ekx,k>0\mathrm { f } ( \mathrm { x } ) = \mathrm { P } _ { 0 } \mathrm { e } ^ { \mathrm { kx } } , \mathrm { k } > 0
C) Logistic, f(x)=a1+bekxf ( x ) = \frac { a } { 1 + b e ^ { - k x } }
D) Logarithmic, f(x)=a+blnxf ( x ) = a + b \ln x
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
17
Provide an appropriate response.
 Explain the error in the following: log32+log3M=log3(2+M)\text { Explain the error in the following: } \log _ { 3 } 2 + \log _ { 3 } M = \log _ { 3 } ( 2 + M ) \text {. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
18
Provide an appropriate response.
 Explain how the graph of f(x)=ex could be used to graph the function g(x)=1+lnx\text { Explain how the graph of } f ( x ) = e ^ { x } \text { could be used to graph the function } g ( x ) = 1 + \ln x \text {. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
19
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x34,f1(x)=x+43f ( x ) = x ^ { 3 } - 4 , f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x + 4 }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
20
Provide an appropriate response.
Prove that the function f is one-to-one. f(x)=x34f ( x ) = x ^ { 3 } - 4
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
21
Provide an appropriate response.
Prove that the function f is not one-to-one. f(x)=x2f ( x ) = | x | - 2
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
22
Provide an appropriate response.
Explain the error in the following: log43y=log43log4y\log _ { 4 } 3 y = \log _ { 4 } 3 \cdot \log _ { 4 } y
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
23
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x+33,f1(x)=x33f ( x ) = \sqrt [ 3 ] { x + 3 } , f ^ { - 1 } ( x ) = x ^ { 3 } - 3
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
24
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=74x,f1(x)=47xf ( x ) = \frac { 7 } { 4 } x , f ^ { - 1 } ( x ) = \frac { 4 } { 7 } x
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
25
Provide an appropriate response.
Without using a calculator, determine which of these numbers is larger: π1.3 or π2.4\pi ^ { 1.3 } \text { or } \pi ^ { 2.4 }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
26
Provide an appropriate response.
Prove that the function f is one-to-one. f(x)=612xf ( x ) = 6 - \frac { 1 } { 2 } x
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
27
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=8+xx,f1(x)=8x1f ( x ) = \frac { 8 + x } { x } , f ^ { - 1 } ( x ) = \frac { 8 } { x - 1 }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
28
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x+46,f1(x)=6x4f ( x ) = \frac { x + 4 } { 6 } , f ^ { - 1 } ( x ) = 6 x - 4
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
29
Provide an appropriate response.
 Explain why log213 is between 3 and 4\text { Explain why } \log _ { 2 } 13 \text { is between } 3 \text { and } 4 \text {. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
30
Provide an appropriate response.
Prove that the function f is not one-to-one. f(x)=2x4f ( x ) = 2 - x ^ { 4 }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
31
Provide an appropriate response.
Suppose that $1000 is invested for 5 years at 4% interest, compounded annually. In what
year will the most interest be earned? Why?
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
32
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=53x,f1(x)=35xf ( x ) = - \frac { 5 } { 3 } x , f ^ { - 1 } ( x ) = - \frac { 3 } { 5 } x
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
33
Provide an appropriate response.
 Without using a calculator, explain why 2π must be greater than 8 but less than 16\text { Without using a calculator, explain why } 2 \pi \text { must be greater than } 8 \text { but less than } 16 \text {. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
34
Provide an appropriate response.
 Explain how the graph of f(x)=lnx could be used to graph the function g(x)=ex1\text { Explain how the graph of } f ( x ) = \ln x \text { could be used to graph the function } g ( x ) = e ^ { x - 1 }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
35
Provide an appropriate response.
 Explain how the equation logx=1 could be solved using the graph of f(x)=logx\text { Explain how the equation } \log x = 1 \text { could be solved using the graph of } f ( x ) = \log x \text {. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
36
Provide an appropriate response.
Prove that the function f is one-to-one. f(x)=3x1f ( x ) = 3 x - 1
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
37
Provide an appropriate response.
Explain why 1 is excluded from being a logarithmic base.
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
38
For the function f, use composition of functions to show that f f1 is as given. \mathrm { f } ^ { - 1 } \text { is as given. }
f(x)=x+72,f1=2x7f ( x ) = \frac { x + 7 } { 2 } , f ^ { - 1 } = 2 x - 7
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
39
Provide an appropriate response.
Prove that the function f is not one-to-one. f(x)=2x6f ( x ) = \frac { 2 } { x ^ { 6 } }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
40
Provide an appropriate response.
Prove that the function f is not one-to-one. f(x)=x2+2f ( x ) = x ^ { 2 } + 2
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
41
Provide an appropriate response.
Prove that the function f is one-to-one. f(x)=x3+5f ( x ) = \sqrt [ 3 ] { x } + 5
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
42
Using the horizontal-line test, determine whether the function is one-to-one.
f(x)=7x22f(x)=\frac{7}{x^{2}-2}
 <strong>Using the horizontal-line test, determine whether the function is one-to-one.  f(x)=\frac{7}{x^{2}-2}    </strong> A) Yes B)  \mathrm { No }

A) Yes
B) No\mathrm { No }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
43
Find the logarithm using the change-of-base formula.
log2427.46\log _ { 24 } 27.46

A) 1.43871.4387
B) 1.04241.0424
C) 0.95930.9593
D) 1.14421.1442
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
44
Provide an appropriate response.
The product, power, and quotient rules enable us to simplify expressions like loga(rspv)\log _ { \mathrm { a } } \left( \frac { \mathrm { rs } } { \mathrm { pv } } \right) . Explain why such expressions can always be simplified without using the quotient rule.
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
45
Find the inverse of the relation.
{(8,6),(12,6),(5,14)}\{ ( - 8,6 ) , ( - 12,6 ) , ( 5 , - 14 ) \}

A) {(8,2),(8,12),(14,5)}\{ ( - 8 , - 2 ) , ( - 8 , - 12 ) , ( - 14,5 ) \}
B) {(6,8),(5,12),(14,2)}\{ ( 6 , - 8 ) , ( 5 , - 12 ) , ( - 14 , - 2 ) \}
C) {(6,8),(2,12),(14,5)}\{ ( 6 , - 8 ) , ( - 2 , - 12 ) , ( - 14,5 ) \}
D) {(6,8),(6,12),(14,5)}\{ ( 6 , - 8 ) , ( 6 , - 12 ) , ( - 14,5 ) \}
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
46
Provide an appropriate response.
Explain why negative numbers do not have logarithms.
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
47
Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.
f(x)=14log(x+2)+4f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units

A) Shift y=logxy = \log x to the left 2 units,
stretch it vertically, and shift up 4 units
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units
B) Shift y=logxy = \log x to the right 2 units
,shrink it vertically, and shift up 4 units
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units
C) Shift y=logxy = \log x to the left 2 units,
shrink it vertically, and shift down 4 units
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units
D) Shift y=logxy = \log x to the left 2 units,
shrink it vertically, and shift up 4 units
 <strong>Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.  f ( x ) = \frac { 1 } { 4 } \log ( x + 2 ) + 4   </strong> A) Shift  y = \log x  to the left 2 units, stretch it vertically, and shift up 4 units   B) Shift  y = \log x  to the right 2 units ,shrink it vertically, and shift up 4 units   C) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift down 4 units   D) Shift  y = \log x  to the left 2 units, shrink it vertically, and shift up 4 units
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
48
Find the domain and range of the inverse of the given function.
f(x)=x4f ( x ) = \sqrt { x - 4 }

A) Domain: [4,)[ 4 , \infty ) ; range: [0,)[ 0 , \infty )
B) Domain and range: all real numbers
C) Domain: [0,)[ 0 , \infty ) ; range: [4,)[ 4 , \infty )
D) Domain: all real numbers; range: [4,)[ 4 , \infty )
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
49
Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units    A) Shift y=lnxy = \ln x right 2 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units
B) Shift y=lnxy = \ln x left 2 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units
C) Shift y=lnxy = \ln x right 2 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units
D) Shift y=lnxy = \ln x left 2 units
 Sketch the graph of the function. Describe how the graph can be obtained from the graph of a basic logarithmic function.   A) Shift  y = \ln x  right 2 units   B) Shift  y = \ln x  left 2 units   C) Shift  y = \ln x  right 2 units   D) Shift  y = \ln x  left 2 units
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
50
Graph the function.
f(x)=5(4x2)f(x)=5(4 x-2)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)
C)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function.  f(x)=5(4 x-2)   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
51
Provide an appropriate response.
 Find f(f1(1598)) given that f(x)=6x25x35\text { Find } f \left( f ^ { - 1 } ( 1598 ) \right) \text { given that } f ( x ) = \sqrt [ 5 ] { \frac { 6 x - 2 } { 5 x - 3 } } \text {. }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
52
Solve.
In 1985, the number of female athletes participating in Summer Olympic-Type Games was 450. In 1996, about 3650 participated in the Summer Olympics in Atlanta. Assuming that P(0)= 500 and
That the exponential model applies, find the value of k rounded to the hundredths place, and write
The function. A) k=0.19;P(t)=500e0.29t\mathrm { k } = 0.19 ; \mathrm { P } ( \mathrm { t } ) = 500 \mathrm { e } ^ { 0.29 \mathrm { t } }
B) k=0.17;P(t)=500e0.17t\mathrm { k } = 0.17 ; \mathrm { P } ( \mathrm { t } ) = 500 \mathrm { e } ^ { 0.17 \mathrm { t } }
C) k=0.19;P(t)=500e0.19t\mathrm { k } = 0.19 ; \mathrm { P } ( \mathrm { t } ) = 500 \mathrm { e } ^ { 0.19 \mathrm { t } }
D) k=0.21;P(t)=500e0.21t\mathrm { k } = 0.21 ; \mathrm { P } ( \mathrm { t } ) = 500 \mathrm { e } ^ { 0.21 \mathrm { t } }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
53
Simplify.
logbb5\log _ { b } \sqrt { b ^ { 5 } }

A) 5
B) 52\frac { 5 } { 2 }
C) 3
D) 12\frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
54
Solve the logarithmic equation.
log3(8x6)=3\log _ { 3 } ( 8 x - 6 ) = 3

A) log33+68\frac { \log _ { 3 } 3 + 6 } { 8 }
B) 113\frac { 11 } { 3 }
C) 338\frac { 33 } { 8 }
D) 25
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
55
Express as a single logarithm and, if possible, simplify.
logb8x+4(logbxlogby)\log _ { b } 8 x + 4 \left( \log _ { b } x - \log _ { b } y \right)

A) logb(8x+x4y4)\log _ { b } \left( 8 x + x ^ { 4 } - y ^ { 4 } \right)
B) (logb8x)(logbx4)logy4\frac { \left( \log _ { b } 8 x \right) \left( \log _ { b } x ^ { 4 } \right) } { \log \mathrm { y } ^ { 4 } }
C) logb8x5y4\log _ { b } \frac { 8 x ^ { 5 } } { y ^ { 4 } }
D) logb32x2y4\log b \frac { 32 x ^ { 2 } } { y ^ { 4 } }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
56
Solve.
How long will it take for $3700\$ 3700 to grow to $34,300\$ 34,300 at an interest rate of 10.3%10.3 \% if the interest is compounded continuously? Round the number of years to the nearest hundredth.

A) 0.22yr0.22 \mathrm { yr }
B) 2.16yr2.16 \mathrm { yr }
C) 2161.95yr2161.95 \mathrm { yr }
D) 21.62yr21.62 \mathrm { yr }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
57
Convert to an exponential equation.
log864=t\log _ { 8 } 64 = \mathrm { t }

A) 64t=864 ^ { t } = 8
B) 8t=648 ^ { t } = 64
C) 864=t864 = t
D) t8=64t ^ { 8 } = 64
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
58
Solve the logarithmic equation.
log16x=12\log _ { 16 } x = \frac { 1 } { 2 }

A) 0.000015260.00001526
B) 256
C) 65,536
D) 4
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
59
Find the domain and the vertical asymptote of the function.
g(x)=ln(x8)g ( x ) = \ln ( x - 8 )

A) Domain: (8,)( 8 , \infty ) ; vertical asymptote: x=8x = 8
B) Domain: (,)( - \infty , \infty ) ; vertical asymptote: none
C) Domain: (8,)( - 8 , \infty ) ; vertical asymptote: x=8x = - 8
D) Domain: (0,)( 0 , \infty ) ; vertical asymptote: x=0x = 0
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
60
Determine whether the given function is one-to-one. If it is one-to-one, find a formula for the inverse.
f(x)=2x+3f ( x ) = \frac { 2 } { x + 3 }

A) f1(x)=3x+2xf ^ { - 1 } ( x ) = \frac { - 3 x + 2 } { x }
B) f1(x)=x3+2xf ^ { - 1 } ( x ) = \frac { x } { 3 + 2 x }
C) f1(x)=3+2xxf ^ { - 1 } ( x ) = \frac { 3 + 2 x } { x }
D) Not one-to-one
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
61
Find the following using a calculator. Round to four decimal places.
log93,500\log 93,500

A) 4.97084.9708
B) 6.84076.8407
C) 6.84086.8408
D) 6.84046.8404
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
62
Express as a difference of logarithms.
log4911\log _ { 4 } \frac { 9 } { 11 }

A) log49÷log411\log _ { 4 } 9 \div \log _ { 4 } 11
B) log49log411\log _ { 4 } 9 - \log _ { 4 } 11
C) log411log49\log _ { 4 } 11 - \log _ { 4 } 9
D) log29log211\log _ { 2 } 9 - \log _ { 2 } 11
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
63
Graph the piecewise function.
Graph the piecewise function.    Graph the piecewise function.
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
64
Solve.
Given logb2=0.5298\log _ { \mathrm { b } } 2 = 0.5298 and logb7=1.4873\log _ { \mathrm { b } } 7 = 1.4873 , evaluate logb2 b\log _ { \mathrm { b } } 2 \mathrm {~b} .

A) 2.01712.0171
B) 0.52980.5298
C) 1.07571.0757
D) 1.52981.5298
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
65
Evaluate to four decimal places using a calculator.
e1.233\mathrm { e } ^ { 1.233 }

A) 7.38917.3891
B) 3.43153.4315
C) 3.35163.3516
D) 1.52031.5203
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
66
Solve the problem.
Suppose the amount of a radioactive element remaining in a sample of 100 milligrams after xx years can be described by A(x)=100e0.01569x\mathrm { A } ( \mathrm { x } ) = 100 \mathrm { e } ^ { - 0.01569 \mathrm { x } } . How much is remaining after 58 years? Round the answer to the nearest hundredth of a milligram.

A) 0.40mg0.40 \mathrm { mg }
B) 248.44mg248.44 \mathrm { mg }
C) 91.00mg91.00 \mathrm { mg }
D) 40.25mg40.25 \mathrm { mg }
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
67
Convert to a logarithmic equation.
42=164 ^ { 2 } = 16

A) 4=log2164 = \log _ { 2 } 16
B) 2=log4162 = \log _ { 4 } 16
C) 2=log1642 = \log _ { 16 } 4
D) 16=log4216 = \log _ { 4 } 2
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
68
Graph the function.
f(x)=(15)xf ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)
C)
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function.  f ( x ) = \left( \frac { 1 } { 5 } \right) ^ { x }   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
69
Convert to a logarithmic equation.
100.6021=410 ^ { 0.6021 } = 4

A) 0.6021=log9100.6021 = \log _ { 9 } 10
B) 4=log100.60214 = \log _ { 10 } 0.6021
C) 10=log90.602110 = \log _ { 9 } 0.6021
D) 0.6021=log1040.6021 = \log _ { 10 } 4
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
70
Graph the function.
f(x)=4(x3)+3f(x)=4(x-3)+3
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)

A)
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)
B)
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)

C)
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)
D)
 <strong>Graph the function.  f(x)=4(x-3)+3   </strong> A)   B)    C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
71
Graph the function.
y=16exy = \frac { 1 } { 6 } e ^ { x }
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)
C)
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function.  y = \frac { 1 } { 6 } e ^ { x }   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
72
Graph the function. Describe its position relative to the graph of the indicated basic function.
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally  A) Shrunk vertically
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally
B) Shrunk horizontally
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally
C) Shrunk vertically
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally
D) Shrunk horizontally
Graph the function. Describe its position relative to the graph of the indicated basic function.   A) Shrunk vertically   B) Shrunk horizontally   C) Shrunk vertically   D) Shrunk horizontally
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
73
The graph of a one-to-one function f is given. Sketch the graph of the inverse function f1\mathrm { f } ^ { - 1 } , on the same set of axes. Use a
dashed line for the inverse.
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)

A)
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)
B)
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)
C)
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)
D)
 <strong>The graph of a one-to-one function f is given. Sketch the graph of the inverse function  \mathrm { f } ^ { - 1 }  , on the same set of axes. Use a dashed line for the inverse.  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
74
Find the domain and range of the inverse of the given function.
f(x)=x28;x0f ( x ) = x ^ { 2 } - 8 ; x \geq 0

A) Domain: [8,)[ - 8 , \infty ) ; range: all real numbers
B) Domain and range: all real numbers
C) Domain: [0,)[ 0 , \infty ) ; range: [8,)[ - 8 , \infty )
D) Domain: [8,)[ - 8 , \infty ) ; range: [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
75
Find the domain and the vertical asymptote of the function.
f(x)=24log(x+1)f ( x ) = - 2 - 4 \log ( x + 1 )

A) Domain (,1)( - \infty , - 1 ) ; vertical asymptote: x=1x = - 1
B) Domain (,1)( - \infty , 1 ) ; vertical asymptote: x=1x = 1
C) Domain (1,)( - 1 , \infty ) ; vertical asymptote: x=1x = - 1
D) Domain (1,)( 1 , \infty ) ; vertical asymptote: x=1x = 1
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
76
Graph the piecewise function.
f(x)={ex8, for x<2x2, for 2x<1x3, for x1f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\x - 2 , & \text { for } - 2 \leq x < 1 \\x ^ { 3 } , & \text { for } x \geq 1\end{array} \right.
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)

A)
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)
B)
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)
C)
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)
D)
 <strong>Graph the piecewise function.  f ( x ) = \left\{ \begin{array} { l l } e ^ { - x } - 8 , & \text { for } x < - 2 \\ x - 2 , & \text { for } - 2 \leq x < 1 \\ x ^ { 3 } , & \text { for } x \geq 1 \end{array} \right.   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
77
Solve the problem.
An initial investment of $14,000 is appreciated for 4 years in an account that earns 13% interest, compounded semiannually. Find the amount of money in the account at the end of the period.

A)$22,826.63
B)$23,169.94
C)$9169.94
D)$21,755.81
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
78
Solve.
Find the hydrogen ion concentration of a solution whose pH\mathrm { pH } is 6.86.8 . Use the formula pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] .

A) 1.58×1071.58 \times 10 ^ { - 7 }
B) 6.31×1066.31 \times 106
C) 0.8325089- 0.8325089
D) 0.832508910.83250891
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
79
Solve the problem.
In September 1998 the population of the country of West Goma in millions was modeled by f(x)=16.6e0.0012x\mathrm { f } ( \mathrm { x } ) = 16.6 \mathrm { e } ^ { 0.0012 \mathrm { x } } . At the same time the population of East Goma in millions was modeled by g(x)=13.4e0.0133x\mathrm { g } ( \mathrm { x } ) = 13.4 \mathrm { e } ^ { 0.0133 \mathrm { x } } . In both formulas x\mathrm { x } is the year, where x=0\mathrm { x } = 0 corresponds to September 1998.1998 . Assuming these trends continue, estimate the year when the population of West Goma will equal the population of East Goma.

A) 1980
B) 18
C) 2013
D) 2016
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
80
Find the domain and the vertical asymptote of the function.
f(x)=log(x10)f ( x ) = \log ( x - 10 )

A) Domain (0,)( 0 , \infty ) ; vertical asymptote: x=0x = 0
B) Domain (10,)( 10 , \infty ) ; vertical asymptote: x=10x = 10
C) Domain: (10,)( - 10 , \infty ) ; vertical asymptote: x=10x = - 10
D) Domain (1,)( 1 , \infty ) ; vertical asymptote: x=1x = 1
Unlock Deck
Unlock for access to all 106 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 106 flashcards in this deck.