Deck 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function

Full screen (f)
exit full mode
Question
Use the graph shown to determine if the limit exists. If it does, find its value.

- limx1f(x)\lim _ { x \rightarrow 1 } f ( x )
 <strong>Use the graph shown to determine if the limit exists. If it does, find its value.  - \lim _ { x \rightarrow 1 } f ( x )    </strong> A) 1 B) 3 C) 0 D) does not exist <div style=padding-top: 35px>

A) 1
B) 3
C) 0
D) does not exist
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the TABLE feature of a graphing utility to find the limit.

- limxθ(exex)\lim _ { x \rightarrow \theta } \left( e ^ { x } - e ^ { - x } \right)

A) 2
B) 0
C) 1
D) does not exist
Question
Use the grid to graph the function. Find the limit, if it exists

- limx8f(x),f(x)=1x2\lim _ { x \rightarrow 8 } f ( x ) , \quad f ( x ) = 1 - x ^ { 2 }
 <strong>Use the grid to graph the function. Find the limit, if it exists  - \lim _ { x \rightarrow 8 } f ( x ) , \quad f ( x ) = 1 - x ^ { 2 }    </strong> A) 1 B) -2 C) -8 D) does not exist <div style=padding-top: 35px>

A) 1
B) -2
C) -8
D) does not exist
Question
Find the limit algebraically.

- limx16\lim _ { x \rightarrow - 1 } - 6

A) -6
B) 1
C) 0
D) 6
Question
Use the graph shown to determine if the limit exists. If it does, find its value.

- limx8f(x)\lim _ { x \rightarrow 8 } f ( x )
 <strong>Use the graph shown to determine if the limit exists. If it does, find its value.  - \lim _ { x \rightarrow 8 } f ( x )    </strong> A) 4 B) 3 C) 5 D) does not exist <div style=padding-top: 35px>

A) 4
B) 3
C) 5
D) does not exist
Question
Use the grid to graph the function. Find the limit, if it exists

- limx2f(x),f(x)=4x+2\lim _ { x \rightarrow 2 } f ( x ) , \quad f ( x ) = 4 x + 2
 <strong>Use the grid to graph the function. Find the limit, if it exists  - \lim _ { x \rightarrow 2 } f ( x ) , \quad f ( x ) = 4 x + 2    </strong> A) -2 B) -6 C) -8 D) does not exist <div style=padding-top: 35px>

A) -2
B) -6
C) -8
D) does not exist
Question
Use the TABLE feature of a graphing utility to find the limit.

- limh3(h29h2+3h)\lim _ { h \rightarrow 3 } \left( \frac { h ^ { 2 } - 9 } { h ^ { 2 } + 3 h } \right)

A) 2
B) -2
C) 0
D) does not exist
Question
Use the TABLE feature of a graphing utility to find the limit.

- limx0x2cosx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } } { \cos x }

A) -1
B) 0
C) 1
D) does not exist
Question
Use the grid to graph the function. Find the limit, if it exists

- limx0f(x),f(x)={x+1x<04x+1x0\lim _ { x \rightarrow 0 } f ( x ) , \quad f ( x ) = \left\{ \begin{array} { r l } x + 1 & x < 0 \\4 x + 1 & x \geq 0\end{array} \right.

A) 0
B) 1
C) 5
D) does not exist
Question
Use the grid to graph the function. Find the limit, if it exists

- limxπ/2f(x),f(x)=sinx2\lim _ { x \rightarrowπ / 2 } f ( x ) , f ( x ) = \sin x - 2

A) -1
B) 3
C) -2
D) does not exist
Question
Use the grid to graph the function. Find the limit, if it exists

- limx8f(x),f(x)=4x1\lim _ { x \rightarrow 8 } f ( x ) , f ( x ) = 4 x - 1
 <strong>Use the grid to graph the function. Find the limit, if it exists  - \lim _ { x \rightarrow 8 } f ( x ) , f ( x ) = 4 x - 1    </strong> A) 12 B) 11 C) 2 D) does not exist <div style=padding-top: 35px>

A) 12
B) 11
C) 2
D) does not exist
Question
Use the graph shown to determine if the limit exists. If it does, find its value.

- limx4f(x)\lim _ { x \rightarrow 4 } f ( x )
 <strong>Use the graph shown to determine if the limit exists. If it does, find its value.  - \lim _ { x \rightarrow 4 } f ( x )    </strong> A) 1 B) -1 C) 4 D) does not exist <div style=padding-top: 35px>

A) 1
B) -1
C) 4
D) does not exist
Question
Find the limit algebraically.

- limx2(2x+7)\lim _ { x \rightarrow 2 } ( 2 x + 7 )

A) -18
B) 9
C) 3
D) does not exist
Question
Use the TABLE feature of a graphing utility to find the limit.

- limx0x+25x+2\lim _ { x \rightarrow 0 } \frac { x + 2 } { 5 x + 2 }

A) 25\frac { 2 } { 5 }

B) 0

C) 1

D) does not exist
Question
Use the TABLE feature of a graphing utility to find the limit.

- limd(d327d3)\lim _ { d \rightarrow } \left( \frac { d ^ { 3 } - 27 } { d - 3 } \right)

A) 27
B) 9
C) 0
D) does not exist
Question
Use a graphing utility to find the indicated limit rounded to two decimal places.

- limx1x3x2+3x3x4x3+x1\lim _ { x \rightarrow - 1 } \frac { x ^ { 3 } - x ^ { 2 } + 3 x - 3 } { x ^ { 4 } - x ^ { 3 } + x - 1 }

A) 2.04
B) 2.96
C) 3.00
D) 2.00
Question
Use the TABLE feature of a graphing utility to find the limit.

- limx2(x2+8x2)\lim _ { x \rightarrow 2 } \left( x ^ { 2 } + 8 x - 2 \right)

A) 0
B) -18
C) 18
D) does not exist
Question
Use the grid to graph the function. Find the limit, if it exists

- limx1f(x),f(x)=5x\lim _ { x \rightarrow 1 } f ( x ) , f ( x ) = | 5 x |
 <strong>Use the grid to graph the function. Find the limit, if it exists  - \lim _ { x \rightarrow 1 } f ( x ) , f ( x ) = | 5 x |    </strong> A) -5 B) 1 C) 5 D) does not exist <div style=padding-top: 35px>

A) -5
B) 1
C) 5
D) does not exist
Question
Use the graph shown to determine if the limit exists. If it does, find its value.

- limx2f(x)\lim _ { x \rightarrow 2 } f ( x )
 <strong>Use the graph shown to determine if the limit exists. If it does, find its value.  - \lim _ { x \rightarrow 2 } f ( x )    </strong> A) 0 B) 1 C) 2 D) does not exist <div style=padding-top: 35px>

A) 0
B) 1
C) 2
D) does not exist
Question
Find the limit algebraically.

- limx6x\lim _ { x \rightarrow 6 } x

A) 0
B) 6
C) -6
D) 1
Question
Find the limit algebraically.

- limx1(3x219)2\lim _ { x \rightarrow 1 } \left( 3 x ^ { 2 } - 19 \right) ^ { 2 }

A) 100
B) -352
C) 256
D) 144
Question
Find the limit algebraically.

- limx4(4x32x+123)2/3\lim _ { x \rightarrow - 4 } \left( 4 x ^ { 3 } - 2 x + 123 \right) ^ { 2 / 3 }

A) -125
B) -5
C) 125
D) 25
Question
Find the limit algebraically.

- limx2(x3+5x27x+1)\lim _ { x \rightarrow 2 } \left( x ^ { 3 } + 5 x ^ { 2 } - 7 x + 1 \right)

A) 15
B) 0
C) 29
D) does not exist
Question
Find the limit algebraically.

- limx0(x25)\lim _ { x \rightarrow 0 } \left( x ^ { 2 } - 5 \right)

A) -5
B) 0
C) 5
D) does not exist
Question
Find the limit algebraically.

- limx13x2+7x23x24x+2\lim _ { x \rightarrow 1 } \frac { 3 x ^ { 2 } + 7 x - 2 } { 3 x ^ { 2 } - 4 x + 2 }

A) 74- \frac { 7 } { 4 }
B) 0
C) 8
D) does not exist
Question
Find the limit algebraically.

- limx12x74x+5\lim _ { x \rightarrow 1 } \frac { 2 x - 7 } { 4 x + 5 }

A) - 59
B) - 75
C) - 12
D) does not exist
Question
Find the limit algebraically.

- limx3x29x3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 9 } { x - 3 }

A) Does not exist
B) 3
C) 1
D) 6
Question
Find the limit algebraically.

- limx1(x22)3\lim _ { x \rightarrow 1 } \left( x ^ { 2 } - 2 \right) ^ { 3 }

A) -3
B) -1
C) 3
D) 1
Question
Find the limit algebraically.

- limx1x41x1\lim _ { x \rightarrow 1 } \frac { x ^ { 4 } - 1 } { x - 1 }

A) 2
B) 0
C) 4
D) Does not exist
Question
Find the limit algebraically.

- limx3x22x15x+3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

A) Does not exist
B) 5
C) 0
D) -8
Question
Find the limit algebraically.

- limx0(x2)\lim _ { x \rightarrow - 0 } ( \sqrt { x } - 2 )

A) -2
B) 2
C) 0
D) does not exist
Question
Find the limit algebraically.

- limx4(x2+4x+1)\lim _ { x \rightarrow 4 } \left( x ^ { 2 } + 4 x + 1 \right)

A) 31
B) -1
C) 1
D) 33
Question
Find the limit algebraically.

- limx0(x5)(x+5)\lim _ { x \rightarrow0 } ( x - \sqrt { 5 } ) ( x + \sqrt { 5 } )

A) -5
B) 0
C) 5
D) does not exist
Question
Find the limit algebraically.

- limx0x3+12x25x5x\lim _ { x \rightarrow 0 } \frac { x ^ { 3 } + 12 x ^ { 2 } - 5 x } { 5 x }

A) 0
B) -1
C) 5
D) Does not exist
Question
Find the limit algebraically.

- limx108x3\lim _ { x \rightarrow 10 } - 8 x ^ { 3 }

A) -8
B) -1,000
C) -10
D) 8,000
Question
Find the limit algebraically.

- limx13x2\lim _ { x \rightarrow 1 } \sqrt { 3 x - 2 }

A) -1
B) 1
C) 2
D) does not exist
Question
Find the limit algebraically.

- limx04+xx3\lim _ { x \rightarrow 0 } \frac { 4 + x } { x ^ { 3 } }

A) -4
B) 4
C) Does not exist
D) 0
Question
Find the limit algebraically.

- limx6x+6(x6)2\lim _ { x \rightarrow 6 } \frac { x + 6 } { ( x - 6 ) ^ { 2 } }

A) 0
B) 6
C) Does not exist
D) -6
Question
Find the limit algebraically.

- limx9(63x2)\lim _ { x \rightarrow9 } \left( 6 - 3 x ^ { 2 } \right)

A) -48
B) -237
C) 249
D) -21
Question
Find the limit algebraically.

- limx2x24x+2\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } - 4 } { x + 2 }

A) Does not exist
B) -2
C) 1
D) -4
Question
Find the limit algebraically.

- limx1x3+5x2+3x9x1\lim _ { x \rightarrow 1 } \frac { x ^ { 3 } + 5 x ^ { 2 } + 3 x - 9 } { x - 1 }

A) -16
B) 0
C) 16
D) does not exist
Question
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -Does  \lim _ { x \rightarrow 4 } g ( x )  xist? If it does, what is it?</strong> A) yes; 0 B) yes; 3 C) yes; 4 D) does not exist <div style=padding-top: 35px>

-Does limx4g(x)\lim _ { x \rightarrow 4 } g ( x ) xist? If it does, what is it?

A) yes; 0
B) yes; 3
C) yes; 4
D) does not exist
Question
Use the graph of y = g(x) to answer the question. <strong>Use the graph of y = g(x) to answer the question.   Find f(1).</strong> A) 3 B) 4 C) 0 D) -1 <div style=padding-top: 35px>
Find f(1).

A) 3
B) 4
C) 0
D) -1
Question
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = 3; f(x)=3x2+39xf ( x ) = 3 x ^ { 2 } + 39 x

A) 108
B) 57
C) 30
D) 90
Question
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -What is the domain of g? </strong> A)  \{ x \mid - 4 \leq x < 5 \}  B)  \{ x \mid - 4 \leq x < 4  or  4 < x \leq 5 \}  C)  \{ x \mid - 4 < x < 5 \}  D)  \{ x \mid - 4 < x < - 1  or  - 1 < x < 2  or  2 < x \leq 5 \}  <div style=padding-top: 35px>

-What is the domain of g?

A) {x4x<5}\{ x \mid - 4 \leq x < 5 \}
B) {x4x<4\{ x \mid - 4 \leq x < 4 or 4<x5}4 < x \leq 5 \}
C) {x4<x<5}\{ x \mid - 4 < x < 5 \}
D) {x4<x<1\{ x \mid - 4 < x < - 1 or 1<x<2- 1 < x < 2 or 2<x5}2 < x \leq 5 \}
Question
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -Find the y-intercept(s), if any, of g.</strong> A) 3 B) 0 C) -1 D)  - \frac { 4 } { 3 }  <div style=padding-top: 35px>

-Find the y-intercept(s), if any, of g.

A) 3
B) 0
C) -1
D) 43- \frac { 4 } { 3 }
Question
Use the graph of y = g(x) to answer the question. <strong>Use the graph of y = g(x) to answer the question.   Find f(-1).</strong> A) 1 B) 0 C) 4 D) -1 <div style=padding-top: 35px>
Find f(-1).

A) 1
B) 0
C) 4
D) -1
Question
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -Find f(2)</strong> A) 1 B) 2 C)  - \frac { 1 } { 2 }  D) 3 <div style=padding-top: 35px>

-Find f(2)

A) 1
B) 2
C) 12- \frac { 1 } { 2 }
D) 3
Question
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = -3; f(x)=2x2+3f ( x ) = 2 x ^ { 2 } + 3

A) 18
B) -9
C) -12
D) Does not exist
Question
Find the limit algebraically.

- limx02sinx4x\lim _ { x \rightarrow 0 } \frac { 2 \sin x } { 4 x }

A) Does not exist
B) 12\frac { 1 } { 2 }
C) 1
D) 0
Question
Find the limit as x approaches c of the average rate of change of the function from c to x.
c = 3; f(x) = 5x + 3

A) -5
B) 3
C) 5
D) -3
Question
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = 4; f(x)=3xf ( x ) = \frac { 3 } { x }

A) 316- \frac { 3 } { 16 }
B) 12- 12
C) 34\frac { 3 } { 4 }
D) Does not exist
Question
Use the graph of y = g(x) to answer the question. <strong>Use the graph of y = g(x) to answer the question.   Find f(-4).</strong> A) -4 B) 0 C) 2 D) 1 <div style=padding-top: 35px>
Find f(-4).

A) -4
B) 0
C) 2
D) 1
Question
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    - \text { Find } \lim _ { x \rightarrow 1 } g ( x ) \text {. } </strong> A) 1 B) 0 C) 4 D) does not exist <div style=padding-top: 35px>

-  Find limx1g(x)\text { Find } \lim _ { x \rightarrow 1 } g ( x ) \text {. }

A) 1
B) 0
C) 4
D) does not exist
Question
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = 9; f(x)=x3+10f ( x ) = \frac { x } { 3 } + 10

A) 3
B) Does not exist
C) 13
D) 13\frac { 1 } { 3 }
Question
Find the limit algebraically.

- limx0x36x+8x2\lim _ { x \rightarrow0 } \frac { x ^ { 3 } - 6 x + 8 } { x - 2 }

A) 4
B) 0
C) -4
D) does not exist
Question
Find the limit algebraically.

- limx03tanx7x\lim _ { x \rightarrow 0 } \frac { 3 \tan x } { 7 x }

A) 1
B) Does not exist
C) 37\frac { 3 } { 7 }
D) 0
Question
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = -4; f(x)=x3f ( x ) = x ^ { 3 }

A) 0
B) 16
C) 48
D) 32
Question
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -What is the range of g? </strong> A) all real numbers B)  \{ y \mid 2 \leq y \leq 4 \}  C)  \{ y \mid - 2 \leq y \leq 4 \}  D)  \{ y \mid - 2 \leq y \leq 5 \}  <div style=padding-top: 35px>

-What is the range of g?

A) all real numbers
B) {y2y4}\{ y \mid 2 \leq y \leq 4 \}
C) {y2y4}\{ y \mid - 2 \leq y \leq 4 \}
D) {y2y5}\{ y \mid - 2 \leq y \leq 5 \}
Question
Find the one-sided limit.

- limx0(45x)\lim _ { x \rightarrow 0 ^ { - } } ( 4 - 5 x )

A) 0
B) -1
C) 4
D) does not exist
Question
Determine whether f is continuous at c.

- f(x)=1x2+8x;c=8f ( x ) = \frac { - 1 } { x ^ { 2 } + 8 x } ; \quad c = - 8

A) not continuous
B) continuous
Question
Determine whether f is continuous at c.

- f(x)=8x2+3x;c=8f ( x ) = \frac { 8 } { x ^ { 2 } + 3 x } ; \quad c = - 8

A) continuous
B) not continuous
Question
Determine whether f is continuous at c.

- f(x)=x+2x7;c=0f ( x ) = \frac { x + 2 } { x - 7 } ; c = 0

A) continuous
B) not continuous
Question
Determine whether f is continuous at c.

- f(x)=x+6(x2)(x3);c=6f ( x ) = \frac { x + 6 } { ( x - 2 ) ( x - 3 ) } ; c = - 6

A) not continuous
B) continuous
Question
Determine whether f is continuous at c.

- f(x)=5x22x;c=0f ( x ) = \frac { 5 } { x ^ { 2 } - 2 x } ; \quad c = 0

A) continuous
B) not continuous
Question
Determine whether f is continuous at c.

- f(x)=x236x6;c=6f ( x ) = \frac { x ^ { 2 } - 36 } { x - 6 } ; \quad c = - 6

A) continuous
B) not continuous
Question
Determine whether f is continuous at c.

- f(x)=x+4(x3)(x+2);c=2f ( x ) = \frac { x + 4 } { ( x - 3 ) ( x + 2 ) } ; \quad c = - 2

A) not continuous
B) continuous
Question
Find the one-sided limit.

- limx(3π/4)sinx\lim _ { x \rightarrow ( 3 \pi / 4 ) ^ { - } } \sin x

A) 12\frac { 1 } { 2 }
B) 0
C) 22\frac { \sqrt { 2 } } { 2 }
D) 1
Question
Find the one-sided limit.

- limx3x29x3\lim _ { x \rightarrow3 ^ { - } } \frac { x ^ { 2 } - 9 } { x - 3 }

A) 3
B) -6
C) 6
D) -3
Question
Determine whether f is continuous at c.

- f(x)=x2x+9;c=9f ( x ) = \frac { x - 2 } { x + 9 } ; c = - 9

A) not continuous
B) continuous
Question
Determine whether f is continuous at c.

- f(x)=x2(x+9)(x+8);c=9f ( x ) = \frac { x - 2 } { ( x + 9 ) ( x + 8 ) } ; c = - 9

A) not continuous
B) continuous
Question
Determine whether f is continuous at c.

- f(x)=x7x+9;c=7f ( x ) = \frac { x - 7 } { x + 9 } ; c = 7

A) continuous
B) not continuous
Question
Find the one-sided limit.

- limx4+16x24x\lim _ { x \rightarrow 4 ^ { + } } \frac { 16 - x ^ { 2 } } { 4 - x }

A) 8
B) 0
C) 4
D) does not exist
Question
Determine whether f is continuous at c.

- f(x)=5x+2;c=2f ( x ) = \frac { 5 } { x + 2 } ; c = - 2

A) not continuous
B) continuous
Question
Determine whether f is continuous at c.

- f(x)=5x+7;c=0f ( x ) = \frac { 5 } { x + 7 } ; c = 0

A) continuous
B) not continuous
Question
Find the one-sided limit.

- limxθ+(2cosx)\lim _ { x \rightarrow \theta ^ { + } } ( 2 \cos x )

A) -2
B) 2
C) 0
D) does not exist
Question
Determine whether f is continuous at c.

- f(x)=x6(x1)(x9);c=0f ( x ) = \frac { x - 6 } { ( x - 1 ) ( x - 9 ) } ; \quad c = 0

A) continuous
B) not continuous
Question
Find the one-sided limit.

- limx3x22x15x+3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

A) Does not exist
B) 5
C) -8
D) 0
Question
Determine whether f is continuous at c.

- f(x)=x225x5;c=0f ( x ) = \frac { x ^ { 2 } - 25 } { x - 5 } ; \quad c = 0

A) not continuous
B) continuous
Question
Find the one-sided limit.

- limx2+(x23x3)\lim _ { x \rightarrow 2 ^ { + } } \left( x ^ { 2 } - 3 x - 3 \right)

A) 13
B) -5
C) 1
D) 7
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/145
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: A Preview of Calculus: the Limit, Derivative, and Integral of a Function
1
Use the graph shown to determine if the limit exists. If it does, find its value.

- limx1f(x)\lim _ { x \rightarrow 1 } f ( x )
 <strong>Use the graph shown to determine if the limit exists. If it does, find its value.  - \lim _ { x \rightarrow 1 } f ( x )    </strong> A) 1 B) 3 C) 0 D) does not exist

A) 1
B) 3
C) 0
D) does not exist
3
2
Use the TABLE feature of a graphing utility to find the limit.

- limxθ(exex)\lim _ { x \rightarrow \theta } \left( e ^ { x } - e ^ { - x } \right)

A) 2
B) 0
C) 1
D) does not exist
0
3
Use the grid to graph the function. Find the limit, if it exists

- limx8f(x),f(x)=1x2\lim _ { x \rightarrow 8 } f ( x ) , \quad f ( x ) = 1 - x ^ { 2 }
 <strong>Use the grid to graph the function. Find the limit, if it exists  - \lim _ { x \rightarrow 8 } f ( x ) , \quad f ( x ) = 1 - x ^ { 2 }    </strong> A) 1 B) -2 C) -8 D) does not exist

A) 1
B) -2
C) -8
D) does not exist
-8
4
Find the limit algebraically.

- limx16\lim _ { x \rightarrow - 1 } - 6

A) -6
B) 1
C) 0
D) 6
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
5
Use the graph shown to determine if the limit exists. If it does, find its value.

- limx8f(x)\lim _ { x \rightarrow 8 } f ( x )
 <strong>Use the graph shown to determine if the limit exists. If it does, find its value.  - \lim _ { x \rightarrow 8 } f ( x )    </strong> A) 4 B) 3 C) 5 D) does not exist

A) 4
B) 3
C) 5
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
6
Use the grid to graph the function. Find the limit, if it exists

- limx2f(x),f(x)=4x+2\lim _ { x \rightarrow 2 } f ( x ) , \quad f ( x ) = 4 x + 2
 <strong>Use the grid to graph the function. Find the limit, if it exists  - \lim _ { x \rightarrow 2 } f ( x ) , \quad f ( x ) = 4 x + 2    </strong> A) -2 B) -6 C) -8 D) does not exist

A) -2
B) -6
C) -8
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
7
Use the TABLE feature of a graphing utility to find the limit.

- limh3(h29h2+3h)\lim _ { h \rightarrow 3 } \left( \frac { h ^ { 2 } - 9 } { h ^ { 2 } + 3 h } \right)

A) 2
B) -2
C) 0
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
8
Use the TABLE feature of a graphing utility to find the limit.

- limx0x2cosx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } } { \cos x }

A) -1
B) 0
C) 1
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
9
Use the grid to graph the function. Find the limit, if it exists

- limx0f(x),f(x)={x+1x<04x+1x0\lim _ { x \rightarrow 0 } f ( x ) , \quad f ( x ) = \left\{ \begin{array} { r l } x + 1 & x < 0 \\4 x + 1 & x \geq 0\end{array} \right.

A) 0
B) 1
C) 5
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
10
Use the grid to graph the function. Find the limit, if it exists

- limxπ/2f(x),f(x)=sinx2\lim _ { x \rightarrowπ / 2 } f ( x ) , f ( x ) = \sin x - 2

A) -1
B) 3
C) -2
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
11
Use the grid to graph the function. Find the limit, if it exists

- limx8f(x),f(x)=4x1\lim _ { x \rightarrow 8 } f ( x ) , f ( x ) = 4 x - 1
 <strong>Use the grid to graph the function. Find the limit, if it exists  - \lim _ { x \rightarrow 8 } f ( x ) , f ( x ) = 4 x - 1    </strong> A) 12 B) 11 C) 2 D) does not exist

A) 12
B) 11
C) 2
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
12
Use the graph shown to determine if the limit exists. If it does, find its value.

- limx4f(x)\lim _ { x \rightarrow 4 } f ( x )
 <strong>Use the graph shown to determine if the limit exists. If it does, find its value.  - \lim _ { x \rightarrow 4 } f ( x )    </strong> A) 1 B) -1 C) 4 D) does not exist

A) 1
B) -1
C) 4
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
13
Find the limit algebraically.

- limx2(2x+7)\lim _ { x \rightarrow 2 } ( 2 x + 7 )

A) -18
B) 9
C) 3
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
14
Use the TABLE feature of a graphing utility to find the limit.

- limx0x+25x+2\lim _ { x \rightarrow 0 } \frac { x + 2 } { 5 x + 2 }

A) 25\frac { 2 } { 5 }

B) 0

C) 1

D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
15
Use the TABLE feature of a graphing utility to find the limit.

- limd(d327d3)\lim _ { d \rightarrow } \left( \frac { d ^ { 3 } - 27 } { d - 3 } \right)

A) 27
B) 9
C) 0
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
16
Use a graphing utility to find the indicated limit rounded to two decimal places.

- limx1x3x2+3x3x4x3+x1\lim _ { x \rightarrow - 1 } \frac { x ^ { 3 } - x ^ { 2 } + 3 x - 3 } { x ^ { 4 } - x ^ { 3 } + x - 1 }

A) 2.04
B) 2.96
C) 3.00
D) 2.00
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
17
Use the TABLE feature of a graphing utility to find the limit.

- limx2(x2+8x2)\lim _ { x \rightarrow 2 } \left( x ^ { 2 } + 8 x - 2 \right)

A) 0
B) -18
C) 18
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
18
Use the grid to graph the function. Find the limit, if it exists

- limx1f(x),f(x)=5x\lim _ { x \rightarrow 1 } f ( x ) , f ( x ) = | 5 x |
 <strong>Use the grid to graph the function. Find the limit, if it exists  - \lim _ { x \rightarrow 1 } f ( x ) , f ( x ) = | 5 x |    </strong> A) -5 B) 1 C) 5 D) does not exist

A) -5
B) 1
C) 5
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
19
Use the graph shown to determine if the limit exists. If it does, find its value.

- limx2f(x)\lim _ { x \rightarrow 2 } f ( x )
 <strong>Use the graph shown to determine if the limit exists. If it does, find its value.  - \lim _ { x \rightarrow 2 } f ( x )    </strong> A) 0 B) 1 C) 2 D) does not exist

A) 0
B) 1
C) 2
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
20
Find the limit algebraically.

- limx6x\lim _ { x \rightarrow 6 } x

A) 0
B) 6
C) -6
D) 1
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
21
Find the limit algebraically.

- limx1(3x219)2\lim _ { x \rightarrow 1 } \left( 3 x ^ { 2 } - 19 \right) ^ { 2 }

A) 100
B) -352
C) 256
D) 144
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
22
Find the limit algebraically.

- limx4(4x32x+123)2/3\lim _ { x \rightarrow - 4 } \left( 4 x ^ { 3 } - 2 x + 123 \right) ^ { 2 / 3 }

A) -125
B) -5
C) 125
D) 25
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
23
Find the limit algebraically.

- limx2(x3+5x27x+1)\lim _ { x \rightarrow 2 } \left( x ^ { 3 } + 5 x ^ { 2 } - 7 x + 1 \right)

A) 15
B) 0
C) 29
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
24
Find the limit algebraically.

- limx0(x25)\lim _ { x \rightarrow 0 } \left( x ^ { 2 } - 5 \right)

A) -5
B) 0
C) 5
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
25
Find the limit algebraically.

- limx13x2+7x23x24x+2\lim _ { x \rightarrow 1 } \frac { 3 x ^ { 2 } + 7 x - 2 } { 3 x ^ { 2 } - 4 x + 2 }

A) 74- \frac { 7 } { 4 }
B) 0
C) 8
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
26
Find the limit algebraically.

- limx12x74x+5\lim _ { x \rightarrow 1 } \frac { 2 x - 7 } { 4 x + 5 }

A) - 59
B) - 75
C) - 12
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
27
Find the limit algebraically.

- limx3x29x3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 9 } { x - 3 }

A) Does not exist
B) 3
C) 1
D) 6
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
28
Find the limit algebraically.

- limx1(x22)3\lim _ { x \rightarrow 1 } \left( x ^ { 2 } - 2 \right) ^ { 3 }

A) -3
B) -1
C) 3
D) 1
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
29
Find the limit algebraically.

- limx1x41x1\lim _ { x \rightarrow 1 } \frac { x ^ { 4 } - 1 } { x - 1 }

A) 2
B) 0
C) 4
D) Does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
30
Find the limit algebraically.

- limx3x22x15x+3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

A) Does not exist
B) 5
C) 0
D) -8
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
31
Find the limit algebraically.

- limx0(x2)\lim _ { x \rightarrow - 0 } ( \sqrt { x } - 2 )

A) -2
B) 2
C) 0
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
32
Find the limit algebraically.

- limx4(x2+4x+1)\lim _ { x \rightarrow 4 } \left( x ^ { 2 } + 4 x + 1 \right)

A) 31
B) -1
C) 1
D) 33
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
33
Find the limit algebraically.

- limx0(x5)(x+5)\lim _ { x \rightarrow0 } ( x - \sqrt { 5 } ) ( x + \sqrt { 5 } )

A) -5
B) 0
C) 5
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
34
Find the limit algebraically.

- limx0x3+12x25x5x\lim _ { x \rightarrow 0 } \frac { x ^ { 3 } + 12 x ^ { 2 } - 5 x } { 5 x }

A) 0
B) -1
C) 5
D) Does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
35
Find the limit algebraically.

- limx108x3\lim _ { x \rightarrow 10 } - 8 x ^ { 3 }

A) -8
B) -1,000
C) -10
D) 8,000
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
36
Find the limit algebraically.

- limx13x2\lim _ { x \rightarrow 1 } \sqrt { 3 x - 2 }

A) -1
B) 1
C) 2
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
37
Find the limit algebraically.

- limx04+xx3\lim _ { x \rightarrow 0 } \frac { 4 + x } { x ^ { 3 } }

A) -4
B) 4
C) Does not exist
D) 0
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
38
Find the limit algebraically.

- limx6x+6(x6)2\lim _ { x \rightarrow 6 } \frac { x + 6 } { ( x - 6 ) ^ { 2 } }

A) 0
B) 6
C) Does not exist
D) -6
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
39
Find the limit algebraically.

- limx9(63x2)\lim _ { x \rightarrow9 } \left( 6 - 3 x ^ { 2 } \right)

A) -48
B) -237
C) 249
D) -21
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
40
Find the limit algebraically.

- limx2x24x+2\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } - 4 } { x + 2 }

A) Does not exist
B) -2
C) 1
D) -4
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
41
Find the limit algebraically.

- limx1x3+5x2+3x9x1\lim _ { x \rightarrow 1 } \frac { x ^ { 3 } + 5 x ^ { 2 } + 3 x - 9 } { x - 1 }

A) -16
B) 0
C) 16
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
42
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -Does  \lim _ { x \rightarrow 4 } g ( x )  xist? If it does, what is it?</strong> A) yes; 0 B) yes; 3 C) yes; 4 D) does not exist

-Does limx4g(x)\lim _ { x \rightarrow 4 } g ( x ) xist? If it does, what is it?

A) yes; 0
B) yes; 3
C) yes; 4
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
43
Use the graph of y = g(x) to answer the question. <strong>Use the graph of y = g(x) to answer the question.   Find f(1).</strong> A) 3 B) 4 C) 0 D) -1
Find f(1).

A) 3
B) 4
C) 0
D) -1
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
44
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = 3; f(x)=3x2+39xf ( x ) = 3 x ^ { 2 } + 39 x

A) 108
B) 57
C) 30
D) 90
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
45
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -What is the domain of g? </strong> A)  \{ x \mid - 4 \leq x < 5 \}  B)  \{ x \mid - 4 \leq x < 4  or  4 < x \leq 5 \}  C)  \{ x \mid - 4 < x < 5 \}  D)  \{ x \mid - 4 < x < - 1  or  - 1 < x < 2  or  2 < x \leq 5 \}

-What is the domain of g?

A) {x4x<5}\{ x \mid - 4 \leq x < 5 \}
B) {x4x<4\{ x \mid - 4 \leq x < 4 or 4<x5}4 < x \leq 5 \}
C) {x4<x<5}\{ x \mid - 4 < x < 5 \}
D) {x4<x<1\{ x \mid - 4 < x < - 1 or 1<x<2- 1 < x < 2 or 2<x5}2 < x \leq 5 \}
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
46
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -Find the y-intercept(s), if any, of g.</strong> A) 3 B) 0 C) -1 D)  - \frac { 4 } { 3 }

-Find the y-intercept(s), if any, of g.

A) 3
B) 0
C) -1
D) 43- \frac { 4 } { 3 }
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
47
Use the graph of y = g(x) to answer the question. <strong>Use the graph of y = g(x) to answer the question.   Find f(-1).</strong> A) 1 B) 0 C) 4 D) -1
Find f(-1).

A) 1
B) 0
C) 4
D) -1
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
48
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -Find f(2)</strong> A) 1 B) 2 C)  - \frac { 1 } { 2 }  D) 3

-Find f(2)

A) 1
B) 2
C) 12- \frac { 1 } { 2 }
D) 3
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
49
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = -3; f(x)=2x2+3f ( x ) = 2 x ^ { 2 } + 3

A) 18
B) -9
C) -12
D) Does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
50
Find the limit algebraically.

- limx02sinx4x\lim _ { x \rightarrow 0 } \frac { 2 \sin x } { 4 x }

A) Does not exist
B) 12\frac { 1 } { 2 }
C) 1
D) 0
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
51
Find the limit as x approaches c of the average rate of change of the function from c to x.
c = 3; f(x) = 5x + 3

A) -5
B) 3
C) 5
D) -3
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
52
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = 4; f(x)=3xf ( x ) = \frac { 3 } { x }

A) 316- \frac { 3 } { 16 }
B) 12- 12
C) 34\frac { 3 } { 4 }
D) Does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
53
Use the graph of y = g(x) to answer the question. <strong>Use the graph of y = g(x) to answer the question.   Find f(-4).</strong> A) -4 B) 0 C) 2 D) 1
Find f(-4).

A) -4
B) 0
C) 2
D) 1
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
54
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    - \text { Find } \lim _ { x \rightarrow 1 } g ( x ) \text {. } </strong> A) 1 B) 0 C) 4 D) does not exist

-  Find limx1g(x)\text { Find } \lim _ { x \rightarrow 1 } g ( x ) \text {. }

A) 1
B) 0
C) 4
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
55
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = 9; f(x)=x3+10f ( x ) = \frac { x } { 3 } + 10

A) 3
B) Does not exist
C) 13
D) 13\frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
56
Find the limit algebraically.

- limx0x36x+8x2\lim _ { x \rightarrow0 } \frac { x ^ { 3 } - 6 x + 8 } { x - 2 }

A) 4
B) 0
C) -4
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
57
Find the limit algebraically.

- limx03tanx7x\lim _ { x \rightarrow 0 } \frac { 3 \tan x } { 7 x }

A) 1
B) Does not exist
C) 37\frac { 3 } { 7 }
D) 0
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
58
Find the limit as x approaches c of the average rate of change of the function from c to x.

-c = -4; f(x)=x3f ( x ) = x ^ { 3 }

A) 0
B) 16
C) 48
D) 32
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
59
Use the graph of y = g(x) to answer the question.  <strong>Use the graph of y = g(x) to answer the question.    -What is the range of g? </strong> A) all real numbers B)  \{ y \mid 2 \leq y \leq 4 \}  C)  \{ y \mid - 2 \leq y \leq 4 \}  D)  \{ y \mid - 2 \leq y \leq 5 \}

-What is the range of g?

A) all real numbers
B) {y2y4}\{ y \mid 2 \leq y \leq 4 \}
C) {y2y4}\{ y \mid - 2 \leq y \leq 4 \}
D) {y2y5}\{ y \mid - 2 \leq y \leq 5 \}
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
60
Find the one-sided limit.

- limx0(45x)\lim _ { x \rightarrow 0 ^ { - } } ( 4 - 5 x )

A) 0
B) -1
C) 4
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
61
Determine whether f is continuous at c.

- f(x)=1x2+8x;c=8f ( x ) = \frac { - 1 } { x ^ { 2 } + 8 x } ; \quad c = - 8

A) not continuous
B) continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
62
Determine whether f is continuous at c.

- f(x)=8x2+3x;c=8f ( x ) = \frac { 8 } { x ^ { 2 } + 3 x } ; \quad c = - 8

A) continuous
B) not continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
63
Determine whether f is continuous at c.

- f(x)=x+2x7;c=0f ( x ) = \frac { x + 2 } { x - 7 } ; c = 0

A) continuous
B) not continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
64
Determine whether f is continuous at c.

- f(x)=x+6(x2)(x3);c=6f ( x ) = \frac { x + 6 } { ( x - 2 ) ( x - 3 ) } ; c = - 6

A) not continuous
B) continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
65
Determine whether f is continuous at c.

- f(x)=5x22x;c=0f ( x ) = \frac { 5 } { x ^ { 2 } - 2 x } ; \quad c = 0

A) continuous
B) not continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
66
Determine whether f is continuous at c.

- f(x)=x236x6;c=6f ( x ) = \frac { x ^ { 2 } - 36 } { x - 6 } ; \quad c = - 6

A) continuous
B) not continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
67
Determine whether f is continuous at c.

- f(x)=x+4(x3)(x+2);c=2f ( x ) = \frac { x + 4 } { ( x - 3 ) ( x + 2 ) } ; \quad c = - 2

A) not continuous
B) continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
68
Find the one-sided limit.

- limx(3π/4)sinx\lim _ { x \rightarrow ( 3 \pi / 4 ) ^ { - } } \sin x

A) 12\frac { 1 } { 2 }
B) 0
C) 22\frac { \sqrt { 2 } } { 2 }
D) 1
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
69
Find the one-sided limit.

- limx3x29x3\lim _ { x \rightarrow3 ^ { - } } \frac { x ^ { 2 } - 9 } { x - 3 }

A) 3
B) -6
C) 6
D) -3
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
70
Determine whether f is continuous at c.

- f(x)=x2x+9;c=9f ( x ) = \frac { x - 2 } { x + 9 } ; c = - 9

A) not continuous
B) continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
71
Determine whether f is continuous at c.

- f(x)=x2(x+9)(x+8);c=9f ( x ) = \frac { x - 2 } { ( x + 9 ) ( x + 8 ) } ; c = - 9

A) not continuous
B) continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
72
Determine whether f is continuous at c.

- f(x)=x7x+9;c=7f ( x ) = \frac { x - 7 } { x + 9 } ; c = 7

A) continuous
B) not continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
73
Find the one-sided limit.

- limx4+16x24x\lim _ { x \rightarrow 4 ^ { + } } \frac { 16 - x ^ { 2 } } { 4 - x }

A) 8
B) 0
C) 4
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
74
Determine whether f is continuous at c.

- f(x)=5x+2;c=2f ( x ) = \frac { 5 } { x + 2 } ; c = - 2

A) not continuous
B) continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
75
Determine whether f is continuous at c.

- f(x)=5x+7;c=0f ( x ) = \frac { 5 } { x + 7 } ; c = 0

A) continuous
B) not continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
76
Find the one-sided limit.

- limxθ+(2cosx)\lim _ { x \rightarrow \theta ^ { + } } ( 2 \cos x )

A) -2
B) 2
C) 0
D) does not exist
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
77
Determine whether f is continuous at c.

- f(x)=x6(x1)(x9);c=0f ( x ) = \frac { x - 6 } { ( x - 1 ) ( x - 9 ) } ; \quad c = 0

A) continuous
B) not continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
78
Find the one-sided limit.

- limx3x22x15x+3\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 2 x - 15 } { x + 3 }

A) Does not exist
B) 5
C) -8
D) 0
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
79
Determine whether f is continuous at c.

- f(x)=x225x5;c=0f ( x ) = \frac { x ^ { 2 } - 25 } { x - 5 } ; \quad c = 0

A) not continuous
B) continuous
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
80
Find the one-sided limit.

- limx2+(x23x3)\lim _ { x \rightarrow 2 ^ { + } } \left( x ^ { 2 } - 3 x - 3 \right)

A) 13
B) -5
C) 1
D) 7
Unlock Deck
Unlock for access to all 145 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 145 flashcards in this deck.