Deck 11: Sequences, Induction, and Probability

Full screen (f)
exit full mode
Question
Write the first four terms of the sequence whose general term is given.
an=4na _ { n } = 4 ^ { n }

A) 4,16,64,2564,16,64,256
B) 1,16,81,2561,16,81,256
C) 1,4,16,641,4,16,64
D) 16,64,256,102416,64,256,1024
Use Space or
up arrow
down arrow
to flip the card.
Question
Write the first four terms of the sequence whose general term is given.
an=(1)n+1n+7\mathrm { a } _ { \mathrm { n } } = \frac { ( - 1 ) ^ { \mathrm { n } + 1 } } { \mathrm { n } + 7 }

A) 18,19,110,111\frac { 1 } { 8 } , - \frac { 1 } { 9 } , \frac { 1 } { 10 } , - \frac { 1 } { 11 }
B) 18,19,110,111- \frac { 1 } { 8 } , \frac { 1 } { 9 } , - \frac { 1 } { 10 } , \frac { 1 } { 11 }
C) 18,118,130,144\frac { 1 } { 8 } , - \frac { 1 } { 18 } , \frac { 1 } { 30 } , - \frac { 1 } { 44 }
D) 19,110,111,112- \frac { 1 } { 9 } , \frac { 1 } { 10 } , - \frac { 1 } { 11 } , \frac { 1 } { 12 }
Question
Write the first four terms of the sequence whose general term is given.
an=n5\mathrm { a } _ { \mathrm { n } } = \mathrm { n } - 5

A) 4,3,2,1- 4 , - 3 , - 2 , - 1
B) 5,4,3,2- 5 , - 4 , - 3 , - 2
C) 0,1,2,30,1,2,3
D) 20,15,10,5- 20 , - 15 , - 10 , - 5
Question
Write the first four terms of the sequence whose general term is given.
an=2na _ { n } = 2 n

A) 2,4,6,82,4,6,8
B) 0,2,4,60,2,4,6
C) 3,4,5,63,4,5,6
D) 1,0,1,21,0 , - 1 , - 2
Question
Write the first four terms of the sequence whose general term is given.
an=4n2a _ { n } = 4 n - 2

A) 2,6,10,142,6,10,14
B) 2,3,4,52,3,4,5
C) 6,10,14,186,10,14,18
D) 2,6,10,14- 2 , - 6 , - 10 , - 14
Question
Write the first four terms of the sequence whose general term is given.
an=(1)n+1(n+8)a _ { n } = ( - 1 ) ^ { n + 1 } ( n + 8 )

A) 9,10,11,129 , - 10,11 , - 12
В) 9,10,11,12- 9,10 , - 11,12
C) 9,20,33,489 , - 20,33 , - 48
D) 10,11,12,13- 10,11 , - 12,13
Question
Write the first four terms of the sequence whose general term is given.
an=4(3n1)a _ { n } = 4 ( 3 n - 1 )

A) 8,20,32,448,20,32,44
B) 2,5,8,112,5,8,11
C) 4,8,20,32- 4,8,20,32
D) 8,16,24,328,16,24,32
Question
Write the first four terms of the sequence whose general term is given.
an=(13)na _ { n } = \left( \frac { 1 } { 3 } \right) ^ { n }

A) 13,19,127,181\frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 }
B) 1,13,19,1271 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 }
C) 13,16,19,112\frac { 1 } { 3 } , \frac { 1 } { 6 } , \frac { 1 } { 9 } , \frac { 1 } { 12 }
D) 1,19,127,1811 , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 }
Question
Write the first four terms of the sequence whose general term is given.
A deposit of $11,000\$ 11,000 is made in an account that earns 5.6%5.6 \% interest compounded quarterly. The balance in the account after nn quarters is given by the sequence
an=11,000(1+0.0564)n,n=1,2,3,a _ { n } = 11,000 \left( 1 + \frac { 0.056 } { 4 } \right) ^ { n } , n = 1,2,3 , \ldots
Find the balance in the account after 4 years.

A) $13,740.42\$ 13,740.42
B) $4996.52\$ 4996.52
C) $11,629.06\$ 11,629.06
D) $3762.52\$ 3762.52
Question
Write the first four terms of the sequence whose general term is given.
A deposit of $8000\$ 8000 is made in an account that earns 8%8 \% interest compounded quarterly. The balance in the account after nn quarters is given by the sequence
an=8000(1+0.084)nn=1,2,3,a _ { n } = 8000 \left( 1 + \frac { 0.08 } { 4 } \right) ^ { n } \quad n = 1,2,3 , \ldots
Find the balance in the account after 28 quarters.

A) $13,928.19\$ 13,928.19
B) $14,014.19\$ 14,014.19
C) $13,989.19\$ 13,989.19
D) $13,781.19\$ 13,781.19
Question
Write the first four terms of the sequence whose general term is given.
an=(15)na _ { n } = \left( - \frac { 1 } { 5 } \right) ^ { n }

A) 15,125,1125,1625- \frac { 1 } { 5 } , \frac { 1 } { 25 } , - \frac { 1 } { 125 } , \frac { 1 } { 625 }
B) 15,125,1125,1625- \frac { 1 } { 5 } , - \frac { 1 } { 25 } , - \frac { 1 } { 125 } , - \frac { 1 } { 625 }
C) 15,110,115,120- \frac { 1 } { 5 } , \frac { 1 } { 10 } , - \frac { 1 } { 15 } , - \frac { 1 } { 20 }
D) 15,110,115,120\frac { 1 } { 5 } , - \frac { 1 } { 10 } , \frac { 1 } { 15 } , - \frac { 1 } { 20 }
Question
Use Recursion Formulas
a1=4a _ { 1 } = - 4 and an=an11a _ { n } = a _ { n - 1 } - 1 for n2n \geq 2

A) 4,5,6,7- 4 , - 5 , - 6 , - 7
B) 4,3,2,14,3,2,1
C) 4,5,6,74,5,6,7
D) 4,5,4,3- 4 , - 5 , - 4 , - 3
Question
Write the first four terms of the sequence whose general term is given.
an=(2)n\mathrm { a } _ { \mathrm { n } } = ( - 2 ) ^ { \mathrm { n } }

A) 2,4,8,16- 2,4 , - 8,16
B) 2,4,8,16- 2 , - 4 , - 8 , - 16
C) 2,4,8,162 , - 4 , - 8 , - 16
D) 2,4,8,162 , - 4,8 , - 16
Question
Use Recursion Formulas
a1=3a _ { 1 } = 3 and an=an15a _ { n } = a _ { n - 1 } - 5 for n2n \geq 2

A) 3,2,7,123 , - 2 , - 7 , - 12
B) 5,10,15,20- 5 , - 10 , - 15 , - 20
C) 3,8,13,183,8,13,18
D) 3,0,5,103,0 , - 5 , - 10
Question
Use Recursion Formulas
a1=6a _ { 1 } = - 6 and an=4an1a _ { n } = - 4 a _ { n - 1 } for n2n \geq 2

A) 6,24,96,384- 6,24 , - 96,384
B) 6,24,96,3846 , - 24,96 , - 384
C) 6,24,96,384- 6 , - 24 , - 96 , - 384
D) 6,26,98,386- 6,26 , - 98,386
Question
Write the first four terms of the sequence whose general term is given.
A deposit of $6000\$ 6000 is made in an account that earns 9%9 \% interest compounded quarterly. The balance in the account after nn quarters is given by the sequence
an=6000(1+0.094)nn=1,2,3,a _ { n } = 6000 \left( 1 + \frac { 0.09 } { 4 } \right) ^ { n } \quad n = 1,2,3 , \ldots
Find the balance in the account after 7 years.

A) $11,187.27\$ 11,187.27
B) $11,263.27\$ 11,263.27
C) $11,242.27\$ 11,242.27
D) $11,056.27\$ 11,056.27
Question
Use Recursion Formulas
a1=5a _ { 1 } = 5 and an=4an1a _ { n } = 4 a _ { n - 1 } for n2n \geq 2

A) 5,20,80,3205,20,80,320
B) 5,19,18,175,19,18,17
C) 16,64,256,51216,64,256,512
D) 5,22,82,3225,22,82,322
Question
Write the first four terms of the sequence whose general term is given.
an=(1)n(n+5)a _ { n } = ( - 1 ) ^ { n } ( n + 5 )

A) 6,7,8,9- 6,7 , - 8,9
B) 6,7,8,9- 6 , - 7 , - 8 , - 9
C) 6,14,24,36- 6 , - 14 , - 24 , - 36
D) 6,7,8,96,7,8,9
Question
Write the first four terms of the sequence whose general term is given.
an=4n2a _ { n } = \frac { 4 } { n ^ { 2 } }

A) 4,44,49,4164 , \frac { 4 } { 4 } , \frac { 4 } { 9 } , \frac { 4 } { 16 }
B) 1,24,39,4161 , \frac { 2 } { 4 } , \frac { 3 } { 9 } , \frac { 4 } { 16 }
C) 44,49,416,425\frac { 4 } { 4 } , \frac { 4 } { 9 } , \frac { 4 } { 16 } , \frac { 4 } { 25 }
D) 1,14,19,1161 , \frac { 1 } { 4 } , \frac { 1 } { 9 } , \frac { 1 } { 16 }
Question
Write the first four terms of the sequence whose general term is given.
an=n+12n1a _ { n } = \frac { n + 1 } { 2 n - 1 }

A) 2,1,45,572,1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
B) 2,1,45,572 , - 1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
C) 2,1,45,57- 2,1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
D) 2,1,45,57- 2 , - 1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
Question
Use Factorial Notation
7!5!\frac { 7 ! } { 5 ! }

A) 42
B) 2!2 !
C) 75\frac { 7 } { 5 }
D) 7
Question
Use Factorial Notation
5!7!\frac { 5 ! } { 7 ! }

A) 142\frac { 1 } { 42 }
B) 42
C) 2 !
D) 12!\frac { 1 } { 2 ! }
Question
Use Factorial Notation
an=3n(n+2)!a _ { n } = \frac { 3 ^ { n } } { ( n + 2 ) ! }

A) 12,38,940,980\frac { 1 } { 2 } , \frac { 3 } { 8 } , \frac { 9 } { 40 } , \frac { 9 } { 80 }
B) 1,94,275,2721 , \frac { 9 } { 4 } , \frac { 27 } { 5 } , \frac { 27 } { 2 }
C) 1,94,275,2271 , \frac { 9 } { 4 } , \frac { 27 } { 5 } , \frac { 2 } { 27 }
D) 12,38,920,940\frac { 1 } { 2 } , \frac { 3 } { 8 } , \frac { 9 } { 20 } , \frac { 9 } { 40 }
Question
Use Summation Notation
i=142i\sum _ { i = 1 } ^ { 4 } 2 ^ { i }

A) 30
B) 18
C) 14
D) 20
Question
Use Factorial Notation
10!8!2!\frac { 10 ! } { 8 ! 2 ! }

A) 45
B) 10
C) 0 !
D) 1
Question
Use Summation Notation
i=9121i3\sum _ { i = 9 } ^ { 12 } \frac { 1 } { i - 3 }

A) 275504\frac { 275 } { 504 }
B) 323660\frac { 323 } { 660 }
C) 8202187- \frac { 820 } { 2187 }
D) 30
Question
Use Summation Notation
i=15(i4)\sum _ { i = 1 } ^ { 5 } ( i - 4 )

A) 5- 5
B) 1
C) 2- 2
D) 6- 6 )
Question
Use Summation Notation
i=36(2i2)\sum _ { i = 3 } ^ { 6 } ( 2 i - 2 )

A) 28
B) 24
C) 30
D) 16
Question
Use Factorial Notation
n(n+5)!(n+6)!\frac { n ( n + 5 ) ! } { ( n + 6 ) ! }

A) nn+6\frac { n } { n + 6 }
B) n6\frac { n } { 6 }
C) 1n+6\frac { 1 } { n + 6 }
D) n(n+6)!\frac { n } { ( n + 6 ) ! }
Question
Use Summation Notation
i=35(i28)\sum _ { i = 3 } ^ { 5 } \left( i ^ { 2 } - 8 \right)

A) 26
B) 15
C) 0
D) 12- 12
Question
Use Summation Notation
i=1418i\sum _ { i = 1 } ^ { 4 } \frac { 1 } { 8 i }

A) 2596\frac { 25 } { 96 }
B) 132\frac { 1 } { 32 }
C) 532\frac { 5 } { 32 }
D) 1148\frac { 11 } { 48 }
Question
Use Summation Notation
i=479i\sum _ { i = 4 } ^ { 7 } 9 i

A) 198
B) 63
C) 99
D) 135
Question
Use Recursion Formulas
a1=3a _ { 1 } = 3 and an=2an14a _ { n } = 2 a _ { n - 1 } - 4 for n2n \geq 2

A) 3,2,0,43,2,0 , - 4
B) 3,2,8,203,2,8,20
C) 3,6,12,243,6,12,24
D) 3,10,24,523,10,24,52
Question
Use Factorial Notation
an=4(n+1)!n!a _ { n } = \frac { 4 ( n + 1 ) ! } { n ! }

A) 8,12,16,208,12,16,20
B) 8,6,83,568,6 , \frac { 8 } { 3 } , \frac { 5 } { 6 }
C) 5,6,7,85,6,7,8
D) 8,6,163,58,6 , \frac { 16 } { 3 } , 5 Evaluate the factorial expression.
Question
Use Factorial Notation
an=n2(n+1)!a _ { n } = \frac { n ^ { 2 } } { ( n + 1 ) ! }

A) 12,23,38,215\frac { 1 } { 2 } , \frac { 2 } { 3 } , \frac { 3 } { 8 } , \frac { 2 } { 15 }
B) 1,23,14,1151 , \frac { 2 } { 3 } , \frac { 1 } { 4 } , \frac { 1 } { 15 }
C) 12,23,34,45\frac { 1 } { 2 } , \frac { 2 } { 3 } , \frac { 3 } { 4 } , \frac { 4 } { 5 }
D) 1,23,12,251 , \frac { 2 } { 3 } , \frac { 1 } { 2 } , \frac { 2 } { 5 }
Question
Use Factorial Notation
an=(n+1)!n4a _ { n } = \frac { ( n + 1 ) ! } { n ^ { 4 } }

A) 2,38,827,15322 , \frac { 3 } { 8 } , \frac { 8 } { 27 } , \frac { 15 } { 32 }
B) 12,34,2,152\frac { 1 } { 2 } , \frac { 3 } { 4 } , 2 , \frac { 15 } { 2 }
C) 2,38,427,5642 , \frac { 3 } { 8 } , \frac { 4 } { 27 } , \frac { 5 } { 64 }
D) 12,34,1,54\frac { 1 } { 2 } , \frac { 3 } { 4 } , 1 , \frac { 5 } { 4 }
Question
Use Factorial Notation
8!7!\frac { 8 ! } { 7 ! }

A) 8
B) 1
C) 87\frac { 8 } { 7 }
D) 8!8 ! 7
Question
Use Factorial Notation
an=3(n+2)!a _ { n } = 3 ( n + 2 ) !

A) 18,72,360,216018,72,360,2160
B) 18,144,1080,864018,144,1080,8640
C) 6,36,216,14406,36,216,1440
D) 6,18,72,3606,18,72,360
Question
Use Factorial Notation
(n+6)!n+6\frac { ( n + 6 ) ! } { n + 6 }

A) (n+5)!( n + 5 ) !
B) 1
C) 6!6 !
D) n+6!n + 6 !
Question
Use Factorial Notation
10!5!5!\frac { 10 ! } { 5 ! 5 ! }

A) 252
B) 504
C) 30,240
D) 126
Question
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
11+14+17+20++3511 + 14 + 17 + 20 + \ldots + 35

A) k=2103k+5\sum _ { \mathrm { k } = 2 } ^ { 10 } 3 \mathrm { k } + 5
B) k=0243k+5\sum _ { k = 0 } ^ { 24 } 3 k + 5
C) k=1103k+5\sum _ { \mathrm { k } = 1 } ^ { 10 } 3 \mathrm { k } + 5
D) k=2243k+5\sum _ { k = 2 } ^ { 24 } 3 k + 5
Question
Use Summation Notation
i=15(1)i+1(i+1)!\sum _ { \mathrm { i } = 1 } ^ { 5 } \frac { ( - 1 ) ^ { \mathrm { i } + 1 } } { ( \mathrm { i } + 1 ) ! }

A) 53144\frac { 53 } { 144 }
B) 53144- \frac { 53 } { 144 }
C) 2360\frac { 23 } { 60 }
D) 2360- \frac { 23 } { 60 }
Question
Use Summation Notation
i=2511\sum _ { i = 2 } ^ { 5 } 11

A) 44
B) 154
C) 33
D) 132
Question
Use Summation Notation
k=24k(k4)\sum _ { k = 2 } ^ { 4 } k ( k - 4 )

A) 7- 7
B) 10- 10
C) 4- 4
D) 6
Question
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
4+92+5+112++94 + \frac { 9 } { 2 } + 5 + \frac { 11 } { 2 } + \ldots + 9

A) k=818k2\sum _ { \mathrm { k } = 8 } ^ { 18 } \frac { \mathrm { k } } { 2 }
B) k=118k2\sum _ { \mathrm { k } = 1 } ^ { 18 } \frac { \mathrm { k } } { 2 }
C) k=812k2\sum _ { \mathrm { k } = 8 } ^ { 12 } \frac { \mathrm { k } } { 2 }
D) k=218k2\sum _ { \mathrm { k } = 2 } ^ { 18 } \frac { \mathrm { k } } { 2 }
Question
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
3+6+9++273 + 6 + 9 + \ldots + 27

A) i=193i\sum _ { i = 1 } ^ { 9 } 3 \mathrm { i }
B) i=093i\sum _ { i = 0 } ^ { 9 } 3 i
C) i=19i2\sum _ { i = 1 } ^ { 9 } i ^ { 2 }
D) i=193i2\sum _ { i = 1 } ^ { 9 } 3 \mathrm { i } ^ { 2 }
Question
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
13+12+35++78\frac { 1 } { 3 } + \frac { 1 } { 2 } + \frac { 3 } { 5 } + \ldots + \frac { 7 } { 8 }

A) i=114ii+2\sum _ { i = 1 } ^ { 14 } \frac { i } { i + 2 }
B) i=014ii+2\sum _ { i = 0 } ^ { 14 } \frac { \mathrm { i } } { \mathrm { i } + 2 }
C) i=1nii+2\sum _ { i = 1 } ^ { n } \frac { i } { i + 2 }
D) i=214ii+1\sum _ { i = 2 } ^ { 14 } \frac { \mathrm { i } } { \mathrm { i } + 1 }
Question
Use Summation Notation
i=36i!(i1)!\sum _ { i = 3 } ^ { 6 } \frac { i ! } { ( i - 1 ) ! }

A) 18
B) 10
C) 3
D) 6
Question
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
5+6+7+8++225 + 6 + 7 + 8 + \ldots + 22

A) k=724(k2)\sum _ { \mathrm { k } = 7 } ^ { 24 } ( \mathrm { k } - 2 )
B) k=522(k2)\sum _ { k = 5 } ^ { 22 } ( k - 2 )
C) k=320(k2)\sum _ { k = 3 } ^ { 20 } ( \mathrm { k } - 2 )
D) k=117(k2)\sum _ { k = 1 } ^ { 17 } ( \mathrm { k } - 2 )
Question
Use Summation Notation
k=14(1)k(k+4)\sum _ { k = 1 } ^ { 4 } ( - 1 ) ^ { k } ( k + 4 )

A) 2
B) 26- 26
C) 26
D) 18
Question
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
(a+1)+(a+d)+(a+d2)++(a+dn)( a + 1 ) + ( a + d ) + \left( a + d ^ { 2 } \right) + \ldots + \left( a + d ^ { n } \right)

A) k=0n(a+dk)\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } } \left( \mathrm { a } + \mathrm { d } ^ { \mathrm { k } } \right)
B) k=1n(a+dk)\sum _ { k = 1 } ^ { n } \left( a + d ^ { k } \right)
C) k=0n1(a+dk)\sum _ { k = 0 } ^ { n - 1 } \left( a + d ^ { k } \right)
D) k=0nadk\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } } \mathrm { ad } ^ { \mathrm { k } }
Question
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
34+45+56+67++1718\frac { 3 } { 4 } + \frac { 4 } { 5 } + \frac { 5 } { 6 } + \frac { 6 } { 7 } + \ldots + \frac { 17 } { 18 }

A) k=317kk+1\sum _ { k = 3 } ^ { 17 } \frac { k } { k + 1 }
B) k=417k+1k\sum _ { k = 4 } ^ { 17 } \frac { \mathrm { k } + 1 } { \mathrm { k } }
C) k=317k+1k\sum _ { \mathrm { k } = 3 } ^ { 17 } \frac { \mathrm { k } + 1 } { \mathrm { k } }
D) k=417kk+1\sum _ { k = 4 } ^ { 17 } \frac { \mathrm { k } } { \mathrm { k } + 1 }
Question
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
a+ar+ar2++ar11a + a r + a r ^ { 2 } + \ldots + a r ^ { 11 }

A) k=011ark\sum _ { \mathrm { k } = 0 } ^ { 11 } \mathrm { ar } ^ { \mathrm { k } }
B) k=112ark\sum _ { k = 1 } ^ { 12 } a r ^ { k }
C) k=011(ar)k\sum _ { \mathrm { k } = 0 } ^ { 11 } ( \mathrm { ar } ) ^ { \mathrm { k } }
D) k=111ark\sum _ { k = 1 } ^ { 11 } a r ^ { k }
Question
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
2+8+18++502 + 8 + 18 + \ldots + 50

A) i=152i2\sum _ { i = 1 } ^ { 5 } 2 i ^ { 2 }
B) i=052i2\sum _ { i = 0 } ^ { 5 } 2 i ^ { 2 }
C) i=15i2\sum _ { i = 1 } ^ { 5 } i ^ { 2 }
D) i=1522\sum _ { i = 1 } ^ { 5 } 2 ^ { 2 }
Question
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
The bar graph below shows a company's yearly profits from 1991 to 1999. Let an represent the company's profit, in millions, in year n\mathrm { n } , where n=1\mathrm { n } = 1 corresponds to 1991,n=21991 , \mathrm { n } = 2 corresponds to 1992 , and so on.
Find i=37ai\sum _ { i = 3 } ^ { 7 } a _ { i }
 <strong>Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation. The bar graph below shows a company's yearly profits from 1991 to 1999. Let an represent the company's profit, in millions, in year  \mathrm { n } , where  \mathrm { n } = 1  corresponds to  1991 , \mathrm { n } = 2  corresponds to 1992 , and so on. Find  \sum _ { i = 3 } ^ { 7 } a _ { i }    </strong> A) \$356.9 million B) \$400.7 million C)  \$ 142.6  million D)  \$ 371.3  million <div style=padding-top: 35px>

A) \$356.9 million
B) \$400.7 million
C) $142.6\$ 142.6 million
D) $371.3\$ 371.3 million
Question
Use Summation Notation
i=14(14)i\sum _ { i = 1 } ^ { 4 } \left( - \frac { 1 } { 4 } \right) ^ { i }

A) 51256- \frac { 51 } { 256 }
B) 51256\frac { 51 } { 256 }
C) 47256- \frac { 47 } { 256 }
D) 85256\frac { 85 } { 256 }
Question
Use Summation Notation
i=15(i1)!(i+2)!\sum _ { \mathrm { i } = 1 } ^ { 5 } \frac { ( \mathrm { i } - 1 ) ! } { ( \mathrm { i } + 2 ) ! }

A) 521\frac { 5 } { 21 }
B) 241140\frac { 241 } { 140 }
C) 3730\frac { 37 } { 30 }
D) 4320\frac { 43 } { 20 }
Question
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
a+ar+ar2++ar13a + a r + a r ^ { 2 } + \ldots + a r ^ { 13 }

A) i=114ari1\sum _ { i = 1 } ^ { 14 } a r ^ { i - 1}
B) i=113ari\sum _ { \mathrm { i } = 1 } ^ { 13 } a r ^ { \mathrm { i } }
C) i=113(ar)i\sum _ { i = 1 } ^ { 13 } ( a r ) ^ { i }
D) i=113(ar)i1\sum _ { i = 1 } ^ { 13 } ( \operatorname { ar } ) ^ { i - 1 }
Question
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
a+1+a+22++a+66a + 1 + \frac { a + 2 } { 2 } + \ldots + \frac { a + 6 } { 6 }

A) i=16a+ii\sum _ { i = 1 } ^ { 6 } \frac { a + i } { i }
B) i=06a+ii\sum _ { i = 0 } ^ { 6 } \frac { a + i } { i }
C) i=0na+ii\sum _ { i = 0 } ^ { n } \frac { a + i } { i }
D) i=1na+ii\sum _ { i = 1 } ^ { n } \frac { a + i } { i }
Question
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
52+103+154++4095 ^ { 2 } + 10 ^ { 3 } + 15 ^ { 4 } + \ldots + 40 ^ { 9 }

A) i=18(5i)i+1\sum _ { \mathrm { i } = 1 } ^ { 8 } ( 5 \mathrm { i } ) ^ { \mathrm { i } + 1 }
B) i=18(5i)i\sum _ { i = 1 } ^ { 8 } ( 5 i ) ^ { i }
C) i=182(i1)i+1\sum _ { i = 1 } ^ { 8 } 2 ( i - 1 ) ^ { i + 1 }
D) i=185i2i1\sum _ { i = 1 } ^ { 8 } 5 i ^ { 2 i - 1 }
Question
Arithmetic Sequences
Find the Common Difference for an Arithmetic Sequence
5,8,11,14,5,8,11,14 , \ldots

A) 3
B) 9
C) 3- 3
D) 9- 9 )
Question
Use the Formula for the General Term of an Arithmetic Sequence
Choose the one alternative that best completes the statement or answers the question.
Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the
sequence with the given first term, a1, and common difference, d.
Find a18a 18 when a1=10,d=1a _ { 1 } = 10 , d = - 1 .

A) 7- 7
B) 8- 8
C) 27
D) 28 8
Question
Write Terms of an Arithmetic Sequence
an=an1+13;a1=49\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } } - 1 + \frac { 1 } { 3 } ; \mathrm { a } _ { 1 } = \frac { 4 } { 9 }

A) 49,79,109,139,169\frac { 4 } { 9 } , \frac { 7 } { 9 } , \frac { 10 } { 9 } , \frac { 13 } { 9 } , \frac { 16 } { 9 }
B) 49,19,29,59,89\frac { 4 } { 9 } , \frac { 1 } { 9 } , - \frac { 2 } { 9 } , - \frac { 5 } { 9 } , - \frac { 8 } { 9 }
C) 49,89,43,169,209\frac { 4 } { 9 } , \frac { 8 } { 9 } , \frac { 4 } { 3 } , \frac { 16 } { 9 } , \frac { 20 } { 9 }
D) 49,79,119,149,179\frac { 4 } { 9 } , \frac { 7 } { 9 } , \frac { 11 } { 9 } , \frac { 14 } { 9 } , \frac { 17 } { 9 }
Question
Use the Formula for the General Term of an Arithmetic Sequence
Choose the one alternative that best completes the statement or answers the question.
Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the
sequence with the given first term, a1, and common difference, d.
Find a 19 when a1=4,d=53a _ { 1 } = - 4 , d = - \frac { 5 } { 3 } .

A) 34- 34
B) 1073- \frac { 107 } { 3 }
C) 26
D) 833\frac { 83 } { 3 }
Question
Arithmetic Sequences
Find the Common Difference for an Arithmetic Sequence
624,616,608,600,624,616,608,600 , \ldots

A) 8- 8
B) 8
C) 624
D) 624- 624
Question
Write Terms of an Arithmetic Sequence
an=an1+6;a1=3a _ { n } = a _ { n } - 1 + 6 ; a _ { 1 } = 3

A) 3,9,15,21,273,9,15,21,27
B) 2,8,14,20,262,8,14,20,26
C) 6,9,12,15,186,9,12,15,18
D) 3,6,9,15,213,6,9,15,21
Question
Write Terms of an Arithmetic Sequence
an=an12.2;a1=14a _ { n } = a _ { n } - 1 - 2.2 ; a _ { 1 } = - 14

A) 14,16.2,18.4,20.6,22.8- 14 , - 16.2 , - 18.4 , - 20.6 , - 22.8
B) 15,17.2,19.4,21.6,23.8- 15 , - 17.2 , - 19.4 , - 21.6 , - 23.8
C) 2.2,16.2,30.2,44.2,58.2- 2.2 , - 16.2 , - 30.2 , - 44.2 , - 58.2
D) 14,2.2,16.2,18.4,20.6- 14 , - 2.2 , - 16.2 , - 18.4 , - 20.6
Question
Use the Formula for the General Term of an Arithmetic Sequence
Choose the one alternative that best completes the statement or answers the question.
Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the
sequence with the given first term, a1, and common difference, d.
Find a13a _ { 13 } when a1=20,d=3a _ { 1 } = 20 , d = - 3 .

A) 16- 16
B) 19- 19
C) 36- 36
D) 56
Question
Write Terms of an Arithmetic Sequence
an=an1+2;a1=8\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } } - 1 + 2 ; \mathrm { a } _ { 1 } = - 8

A) 8,6,4,2,0- 8 , - 6 , - 4 , - 2,0
B) 9,7,5,3,1- 9 , - 7 , - 5 , - 3 , - 1
C) 2,6,14,22,302 , - 6 , - 14 , - 22 , - 30
D) 8,2,6,4,2- 8,2 , - 6 , - 4 , - 2
Question
Arithmetic Sequences
Find the Common Difference for an Arithmetic Sequence
8,11,14,17,8,11,14,17 , \ldots

A) 3
B) 9
C) 2.252.25
D) 8
Question
Write Terms of an Arithmetic Sequence
an=an18;a1=11\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } } - 1 - 8 ; \mathrm { a } _ { 1 } = - 11

A) 11,19,27,35,43- 11 , - 19 , - 27 , - 35 , - 43
B) 12,20,28,36,44- 12 , - 20 , - 28 , - 36 , - 44
C) 8,19,30,41,52- 8 , - 19 , - 30 , - 41 , - 52
D) 11,8,19,27,35- 11 , - 8 , - 19 , - 27 , - 35
Question
Write Terms of an Arithmetic Sequence
a1=21;d=4a _ { 1 } = - 21 ; d = 4

A) 21,17,13,9,5- 21 , - 17 , - 13 , - 9 , - 5
B) 13,9,5,1,3- 13 , - 9 , - 5 , - 1,3
C) 5,9,13,17,21- 5 , - 9 , - 13 , - 17 , - 21
D) 13,17,21,25,29- 13 , - 17 , - 21 , - 25 , - 29
Question
Write Terms of an Arithmetic Sequence
a1=14;d=3a _ { 1 } = 14 ; d = - 3

A) 14,11,8,5,214,11,8,5,2
B) 0,14,11,8,50,14,11,8,5
C) 14,11,8,5,2- 14 , - 11 , - 8 , - 5 , - 2
D) 18,14,10,6,218,14,10,6,2
Question
Write Terms of an Arithmetic Sequence
a1=8;d=3a _ { 1 } = 8 ; d = 3

A) 8,11,14,17,208,11,14,17,20
B) 11,14,17,20,2311,14,17,20,23
C) 0,8,11,14,170,8,11,14,17
D) 8,10,12,14,168,10,12,14,16
Question
Write Terms of an Arithmetic Sequence
a1=52,d=32a _ { 1 } = - \frac { 5 } { 2 } , d = - \frac { 3 } { 2 }

A) 52,4,112,7,172- \frac { 5 } { 2 } , - 4 , - \frac { 11 } { 2 } , - 7 , - \frac { 17 } { 2 }
B) 52,1,12,2,72- \frac { 5 } { 2 } , - 1 , \frac { 1 } { 2 } , 2 , \frac { 7 } { 2 }
C) 52,2,116,74,1710- \frac { 5 } { 2 } , - 2 , - \frac { 11 } { 6 } , - \frac { 7 } { 4 } , - \frac { 17 } { 10 }
D) 52,12,16,12,710- \frac { 5 } { 2 } , - \frac { 1 } { 2 } , \frac { 1 } { 6 } , \frac { 1 } { 2 } , \frac { 7 } { 10 }
Question
Write Terms of an Arithmetic Sequence
a1=9;d=2a _ { 1 } = 9 ; \mathrm { d } = - 2

A) 9,7,5,3,19,7,5,3,1
B) 11,9,7,5,311,9,7,5,3
C) 7,5,3,1,17,5,3,1 , - 1
D) 9,7,4,3,19,7,4,3,1
Question
Use the Formula for the General Term of an Arithmetic Sequence
Choose the one alternative that best completes the statement or answers the question.
Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the
sequence with the given first term, a1, and common difference, d.
Find a8 when a1=10,d=4a _ { 1 } = - 10 , d = - 4 .

A) 38- 38
B) 42- 42
C) 18
D) 22
Question
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
The finite sequence whose general term is
an=0.11n21.06n+7.29a _ { n } = 0.11 n ^ { 2 } - 1.06 n + 7.29
where n=1,2,3,,9n = 1,2,3 , \ldots , 9 models the total operating costs, in millions of dollars, for a company from 1991 through 1999.1999 .
Find i=15ai\sum _ { \mathrm { i } = 1 } ^ { 5 } \mathrm { a } _ { \mathrm { i } }

A) $26.6\$ 26.6 million
B) \$31.7 million
C) \$21.86 million
D) $25.36\$ 25.36 million
Question
Write Terms of an Arithmetic Sequence
a1=38;d=18a _ { 1 } = - \frac { 3 } { 8 } ; d = - \frac { 1 } { 8 }

A) 38,12,58,34,78- \frac { 3 } { 8 } , - \frac { 1 } { 2 } , - \frac { 5 } { 8 } , - \frac { 3 } { 4 } , - \frac { 7 } { 8 }
B) 38,14,18,0,18- \frac { 3 } { 8 } , - \frac { 1 } { 4 } , - \frac { 1 } { 8 } , 0 , \frac { 1 } { 8 }
C) 38,34,98,32,158- \frac { 3 } { 8 } , - \frac { 3 } { 4 } , - \frac { 9 } { 8 } , - \frac { 3 } { 2 } , - \frac { 15 } { 8 }
D) 38,12,18,34,18- \frac { 3 } { 8 } , - \frac { 1 } { 2 } , - \frac { 1 } { 8 } , - \frac { 3 } { 4 } , \frac { 1 } { 8 }
Question
Arithmetic Sequences
Find the Common Difference for an Arithmetic Sequence
15,17,19,21,- 15 , - 17 , - 19 , - 21 , \ldots

A) 2- 2
B) -6
C) 4- 4
D) 6
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/304
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: Sequences, Induction, and Probability
1
Write the first four terms of the sequence whose general term is given.
an=4na _ { n } = 4 ^ { n }

A) 4,16,64,2564,16,64,256
B) 1,16,81,2561,16,81,256
C) 1,4,16,641,4,16,64
D) 16,64,256,102416,64,256,1024
A
2
Write the first four terms of the sequence whose general term is given.
an=(1)n+1n+7\mathrm { a } _ { \mathrm { n } } = \frac { ( - 1 ) ^ { \mathrm { n } + 1 } } { \mathrm { n } + 7 }

A) 18,19,110,111\frac { 1 } { 8 } , - \frac { 1 } { 9 } , \frac { 1 } { 10 } , - \frac { 1 } { 11 }
B) 18,19,110,111- \frac { 1 } { 8 } , \frac { 1 } { 9 } , - \frac { 1 } { 10 } , \frac { 1 } { 11 }
C) 18,118,130,144\frac { 1 } { 8 } , - \frac { 1 } { 18 } , \frac { 1 } { 30 } , - \frac { 1 } { 44 }
D) 19,110,111,112- \frac { 1 } { 9 } , \frac { 1 } { 10 } , - \frac { 1 } { 11 } , \frac { 1 } { 12 }
A
3
Write the first four terms of the sequence whose general term is given.
an=n5\mathrm { a } _ { \mathrm { n } } = \mathrm { n } - 5

A) 4,3,2,1- 4 , - 3 , - 2 , - 1
B) 5,4,3,2- 5 , - 4 , - 3 , - 2
C) 0,1,2,30,1,2,3
D) 20,15,10,5- 20 , - 15 , - 10 , - 5
A
4
Write the first four terms of the sequence whose general term is given.
an=2na _ { n } = 2 n

A) 2,4,6,82,4,6,8
B) 0,2,4,60,2,4,6
C) 3,4,5,63,4,5,6
D) 1,0,1,21,0 , - 1 , - 2
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
5
Write the first four terms of the sequence whose general term is given.
an=4n2a _ { n } = 4 n - 2

A) 2,6,10,142,6,10,14
B) 2,3,4,52,3,4,5
C) 6,10,14,186,10,14,18
D) 2,6,10,14- 2 , - 6 , - 10 , - 14
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
6
Write the first four terms of the sequence whose general term is given.
an=(1)n+1(n+8)a _ { n } = ( - 1 ) ^ { n + 1 } ( n + 8 )

A) 9,10,11,129 , - 10,11 , - 12
В) 9,10,11,12- 9,10 , - 11,12
C) 9,20,33,489 , - 20,33 , - 48
D) 10,11,12,13- 10,11 , - 12,13
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
7
Write the first four terms of the sequence whose general term is given.
an=4(3n1)a _ { n } = 4 ( 3 n - 1 )

A) 8,20,32,448,20,32,44
B) 2,5,8,112,5,8,11
C) 4,8,20,32- 4,8,20,32
D) 8,16,24,328,16,24,32
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
8
Write the first four terms of the sequence whose general term is given.
an=(13)na _ { n } = \left( \frac { 1 } { 3 } \right) ^ { n }

A) 13,19,127,181\frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 }
B) 1,13,19,1271 , \frac { 1 } { 3 } , \frac { 1 } { 9 } , \frac { 1 } { 27 }
C) 13,16,19,112\frac { 1 } { 3 } , \frac { 1 } { 6 } , \frac { 1 } { 9 } , \frac { 1 } { 12 }
D) 1,19,127,1811 , \frac { 1 } { 9 } , \frac { 1 } { 27 } , \frac { 1 } { 81 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
9
Write the first four terms of the sequence whose general term is given.
A deposit of $11,000\$ 11,000 is made in an account that earns 5.6%5.6 \% interest compounded quarterly. The balance in the account after nn quarters is given by the sequence
an=11,000(1+0.0564)n,n=1,2,3,a _ { n } = 11,000 \left( 1 + \frac { 0.056 } { 4 } \right) ^ { n } , n = 1,2,3 , \ldots
Find the balance in the account after 4 years.

A) $13,740.42\$ 13,740.42
B) $4996.52\$ 4996.52
C) $11,629.06\$ 11,629.06
D) $3762.52\$ 3762.52
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
10
Write the first four terms of the sequence whose general term is given.
A deposit of $8000\$ 8000 is made in an account that earns 8%8 \% interest compounded quarterly. The balance in the account after nn quarters is given by the sequence
an=8000(1+0.084)nn=1,2,3,a _ { n } = 8000 \left( 1 + \frac { 0.08 } { 4 } \right) ^ { n } \quad n = 1,2,3 , \ldots
Find the balance in the account after 28 quarters.

A) $13,928.19\$ 13,928.19
B) $14,014.19\$ 14,014.19
C) $13,989.19\$ 13,989.19
D) $13,781.19\$ 13,781.19
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
11
Write the first four terms of the sequence whose general term is given.
an=(15)na _ { n } = \left( - \frac { 1 } { 5 } \right) ^ { n }

A) 15,125,1125,1625- \frac { 1 } { 5 } , \frac { 1 } { 25 } , - \frac { 1 } { 125 } , \frac { 1 } { 625 }
B) 15,125,1125,1625- \frac { 1 } { 5 } , - \frac { 1 } { 25 } , - \frac { 1 } { 125 } , - \frac { 1 } { 625 }
C) 15,110,115,120- \frac { 1 } { 5 } , \frac { 1 } { 10 } , - \frac { 1 } { 15 } , - \frac { 1 } { 20 }
D) 15,110,115,120\frac { 1 } { 5 } , - \frac { 1 } { 10 } , \frac { 1 } { 15 } , - \frac { 1 } { 20 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
12
Use Recursion Formulas
a1=4a _ { 1 } = - 4 and an=an11a _ { n } = a _ { n - 1 } - 1 for n2n \geq 2

A) 4,5,6,7- 4 , - 5 , - 6 , - 7
B) 4,3,2,14,3,2,1
C) 4,5,6,74,5,6,7
D) 4,5,4,3- 4 , - 5 , - 4 , - 3
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
13
Write the first four terms of the sequence whose general term is given.
an=(2)n\mathrm { a } _ { \mathrm { n } } = ( - 2 ) ^ { \mathrm { n } }

A) 2,4,8,16- 2,4 , - 8,16
B) 2,4,8,16- 2 , - 4 , - 8 , - 16
C) 2,4,8,162 , - 4 , - 8 , - 16
D) 2,4,8,162 , - 4,8 , - 16
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
14
Use Recursion Formulas
a1=3a _ { 1 } = 3 and an=an15a _ { n } = a _ { n - 1 } - 5 for n2n \geq 2

A) 3,2,7,123 , - 2 , - 7 , - 12
B) 5,10,15,20- 5 , - 10 , - 15 , - 20
C) 3,8,13,183,8,13,18
D) 3,0,5,103,0 , - 5 , - 10
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
15
Use Recursion Formulas
a1=6a _ { 1 } = - 6 and an=4an1a _ { n } = - 4 a _ { n - 1 } for n2n \geq 2

A) 6,24,96,384- 6,24 , - 96,384
B) 6,24,96,3846 , - 24,96 , - 384
C) 6,24,96,384- 6 , - 24 , - 96 , - 384
D) 6,26,98,386- 6,26 , - 98,386
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
16
Write the first four terms of the sequence whose general term is given.
A deposit of $6000\$ 6000 is made in an account that earns 9%9 \% interest compounded quarterly. The balance in the account after nn quarters is given by the sequence
an=6000(1+0.094)nn=1,2,3,a _ { n } = 6000 \left( 1 + \frac { 0.09 } { 4 } \right) ^ { n } \quad n = 1,2,3 , \ldots
Find the balance in the account after 7 years.

A) $11,187.27\$ 11,187.27
B) $11,263.27\$ 11,263.27
C) $11,242.27\$ 11,242.27
D) $11,056.27\$ 11,056.27
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
17
Use Recursion Formulas
a1=5a _ { 1 } = 5 and an=4an1a _ { n } = 4 a _ { n - 1 } for n2n \geq 2

A) 5,20,80,3205,20,80,320
B) 5,19,18,175,19,18,17
C) 16,64,256,51216,64,256,512
D) 5,22,82,3225,22,82,322
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
18
Write the first four terms of the sequence whose general term is given.
an=(1)n(n+5)a _ { n } = ( - 1 ) ^ { n } ( n + 5 )

A) 6,7,8,9- 6,7 , - 8,9
B) 6,7,8,9- 6 , - 7 , - 8 , - 9
C) 6,14,24,36- 6 , - 14 , - 24 , - 36
D) 6,7,8,96,7,8,9
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
19
Write the first four terms of the sequence whose general term is given.
an=4n2a _ { n } = \frac { 4 } { n ^ { 2 } }

A) 4,44,49,4164 , \frac { 4 } { 4 } , \frac { 4 } { 9 } , \frac { 4 } { 16 }
B) 1,24,39,4161 , \frac { 2 } { 4 } , \frac { 3 } { 9 } , \frac { 4 } { 16 }
C) 44,49,416,425\frac { 4 } { 4 } , \frac { 4 } { 9 } , \frac { 4 } { 16 } , \frac { 4 } { 25 }
D) 1,14,19,1161 , \frac { 1 } { 4 } , \frac { 1 } { 9 } , \frac { 1 } { 16 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
20
Write the first four terms of the sequence whose general term is given.
an=n+12n1a _ { n } = \frac { n + 1 } { 2 n - 1 }

A) 2,1,45,572,1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
B) 2,1,45,572 , - 1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
C) 2,1,45,57- 2,1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
D) 2,1,45,57- 2 , - 1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
21
Use Factorial Notation
7!5!\frac { 7 ! } { 5 ! }

A) 42
B) 2!2 !
C) 75\frac { 7 } { 5 }
D) 7
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
22
Use Factorial Notation
5!7!\frac { 5 ! } { 7 ! }

A) 142\frac { 1 } { 42 }
B) 42
C) 2 !
D) 12!\frac { 1 } { 2 ! }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
23
Use Factorial Notation
an=3n(n+2)!a _ { n } = \frac { 3 ^ { n } } { ( n + 2 ) ! }

A) 12,38,940,980\frac { 1 } { 2 } , \frac { 3 } { 8 } , \frac { 9 } { 40 } , \frac { 9 } { 80 }
B) 1,94,275,2721 , \frac { 9 } { 4 } , \frac { 27 } { 5 } , \frac { 27 } { 2 }
C) 1,94,275,2271 , \frac { 9 } { 4 } , \frac { 27 } { 5 } , \frac { 2 } { 27 }
D) 12,38,920,940\frac { 1 } { 2 } , \frac { 3 } { 8 } , \frac { 9 } { 20 } , \frac { 9 } { 40 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
24
Use Summation Notation
i=142i\sum _ { i = 1 } ^ { 4 } 2 ^ { i }

A) 30
B) 18
C) 14
D) 20
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
25
Use Factorial Notation
10!8!2!\frac { 10 ! } { 8 ! 2 ! }

A) 45
B) 10
C) 0 !
D) 1
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
26
Use Summation Notation
i=9121i3\sum _ { i = 9 } ^ { 12 } \frac { 1 } { i - 3 }

A) 275504\frac { 275 } { 504 }
B) 323660\frac { 323 } { 660 }
C) 8202187- \frac { 820 } { 2187 }
D) 30
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
27
Use Summation Notation
i=15(i4)\sum _ { i = 1 } ^ { 5 } ( i - 4 )

A) 5- 5
B) 1
C) 2- 2
D) 6- 6 )
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
28
Use Summation Notation
i=36(2i2)\sum _ { i = 3 } ^ { 6 } ( 2 i - 2 )

A) 28
B) 24
C) 30
D) 16
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
29
Use Factorial Notation
n(n+5)!(n+6)!\frac { n ( n + 5 ) ! } { ( n + 6 ) ! }

A) nn+6\frac { n } { n + 6 }
B) n6\frac { n } { 6 }
C) 1n+6\frac { 1 } { n + 6 }
D) n(n+6)!\frac { n } { ( n + 6 ) ! }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
30
Use Summation Notation
i=35(i28)\sum _ { i = 3 } ^ { 5 } \left( i ^ { 2 } - 8 \right)

A) 26
B) 15
C) 0
D) 12- 12
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
31
Use Summation Notation
i=1418i\sum _ { i = 1 } ^ { 4 } \frac { 1 } { 8 i }

A) 2596\frac { 25 } { 96 }
B) 132\frac { 1 } { 32 }
C) 532\frac { 5 } { 32 }
D) 1148\frac { 11 } { 48 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
32
Use Summation Notation
i=479i\sum _ { i = 4 } ^ { 7 } 9 i

A) 198
B) 63
C) 99
D) 135
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
33
Use Recursion Formulas
a1=3a _ { 1 } = 3 and an=2an14a _ { n } = 2 a _ { n - 1 } - 4 for n2n \geq 2

A) 3,2,0,43,2,0 , - 4
B) 3,2,8,203,2,8,20
C) 3,6,12,243,6,12,24
D) 3,10,24,523,10,24,52
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
34
Use Factorial Notation
an=4(n+1)!n!a _ { n } = \frac { 4 ( n + 1 ) ! } { n ! }

A) 8,12,16,208,12,16,20
B) 8,6,83,568,6 , \frac { 8 } { 3 } , \frac { 5 } { 6 }
C) 5,6,7,85,6,7,8
D) 8,6,163,58,6 , \frac { 16 } { 3 } , 5 Evaluate the factorial expression.
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
35
Use Factorial Notation
an=n2(n+1)!a _ { n } = \frac { n ^ { 2 } } { ( n + 1 ) ! }

A) 12,23,38,215\frac { 1 } { 2 } , \frac { 2 } { 3 } , \frac { 3 } { 8 } , \frac { 2 } { 15 }
B) 1,23,14,1151 , \frac { 2 } { 3 } , \frac { 1 } { 4 } , \frac { 1 } { 15 }
C) 12,23,34,45\frac { 1 } { 2 } , \frac { 2 } { 3 } , \frac { 3 } { 4 } , \frac { 4 } { 5 }
D) 1,23,12,251 , \frac { 2 } { 3 } , \frac { 1 } { 2 } , \frac { 2 } { 5 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
36
Use Factorial Notation
an=(n+1)!n4a _ { n } = \frac { ( n + 1 ) ! } { n ^ { 4 } }

A) 2,38,827,15322 , \frac { 3 } { 8 } , \frac { 8 } { 27 } , \frac { 15 } { 32 }
B) 12,34,2,152\frac { 1 } { 2 } , \frac { 3 } { 4 } , 2 , \frac { 15 } { 2 }
C) 2,38,427,5642 , \frac { 3 } { 8 } , \frac { 4 } { 27 } , \frac { 5 } { 64 }
D) 12,34,1,54\frac { 1 } { 2 } , \frac { 3 } { 4 } , 1 , \frac { 5 } { 4 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
37
Use Factorial Notation
8!7!\frac { 8 ! } { 7 ! }

A) 8
B) 1
C) 87\frac { 8 } { 7 }
D) 8!8 ! 7
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
38
Use Factorial Notation
an=3(n+2)!a _ { n } = 3 ( n + 2 ) !

A) 18,72,360,216018,72,360,2160
B) 18,144,1080,864018,144,1080,8640
C) 6,36,216,14406,36,216,1440
D) 6,18,72,3606,18,72,360
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
39
Use Factorial Notation
(n+6)!n+6\frac { ( n + 6 ) ! } { n + 6 }

A) (n+5)!( n + 5 ) !
B) 1
C) 6!6 !
D) n+6!n + 6 !
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
40
Use Factorial Notation
10!5!5!\frac { 10 ! } { 5 ! 5 ! }

A) 252
B) 504
C) 30,240
D) 126
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
41
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
11+14+17+20++3511 + 14 + 17 + 20 + \ldots + 35

A) k=2103k+5\sum _ { \mathrm { k } = 2 } ^ { 10 } 3 \mathrm { k } + 5
B) k=0243k+5\sum _ { k = 0 } ^ { 24 } 3 k + 5
C) k=1103k+5\sum _ { \mathrm { k } = 1 } ^ { 10 } 3 \mathrm { k } + 5
D) k=2243k+5\sum _ { k = 2 } ^ { 24 } 3 k + 5
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
42
Use Summation Notation
i=15(1)i+1(i+1)!\sum _ { \mathrm { i } = 1 } ^ { 5 } \frac { ( - 1 ) ^ { \mathrm { i } + 1 } } { ( \mathrm { i } + 1 ) ! }

A) 53144\frac { 53 } { 144 }
B) 53144- \frac { 53 } { 144 }
C) 2360\frac { 23 } { 60 }
D) 2360- \frac { 23 } { 60 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
43
Use Summation Notation
i=2511\sum _ { i = 2 } ^ { 5 } 11

A) 44
B) 154
C) 33
D) 132
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
44
Use Summation Notation
k=24k(k4)\sum _ { k = 2 } ^ { 4 } k ( k - 4 )

A) 7- 7
B) 10- 10
C) 4- 4
D) 6
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
45
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
4+92+5+112++94 + \frac { 9 } { 2 } + 5 + \frac { 11 } { 2 } + \ldots + 9

A) k=818k2\sum _ { \mathrm { k } = 8 } ^ { 18 } \frac { \mathrm { k } } { 2 }
B) k=118k2\sum _ { \mathrm { k } = 1 } ^ { 18 } \frac { \mathrm { k } } { 2 }
C) k=812k2\sum _ { \mathrm { k } = 8 } ^ { 12 } \frac { \mathrm { k } } { 2 }
D) k=218k2\sum _ { \mathrm { k } = 2 } ^ { 18 } \frac { \mathrm { k } } { 2 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
46
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
3+6+9++273 + 6 + 9 + \ldots + 27

A) i=193i\sum _ { i = 1 } ^ { 9 } 3 \mathrm { i }
B) i=093i\sum _ { i = 0 } ^ { 9 } 3 i
C) i=19i2\sum _ { i = 1 } ^ { 9 } i ^ { 2 }
D) i=193i2\sum _ { i = 1 } ^ { 9 } 3 \mathrm { i } ^ { 2 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
47
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
13+12+35++78\frac { 1 } { 3 } + \frac { 1 } { 2 } + \frac { 3 } { 5 } + \ldots + \frac { 7 } { 8 }

A) i=114ii+2\sum _ { i = 1 } ^ { 14 } \frac { i } { i + 2 }
B) i=014ii+2\sum _ { i = 0 } ^ { 14 } \frac { \mathrm { i } } { \mathrm { i } + 2 }
C) i=1nii+2\sum _ { i = 1 } ^ { n } \frac { i } { i + 2 }
D) i=214ii+1\sum _ { i = 2 } ^ { 14 } \frac { \mathrm { i } } { \mathrm { i } + 1 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
48
Use Summation Notation
i=36i!(i1)!\sum _ { i = 3 } ^ { 6 } \frac { i ! } { ( i - 1 ) ! }

A) 18
B) 10
C) 3
D) 6
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
49
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
5+6+7+8++225 + 6 + 7 + 8 + \ldots + 22

A) k=724(k2)\sum _ { \mathrm { k } = 7 } ^ { 24 } ( \mathrm { k } - 2 )
B) k=522(k2)\sum _ { k = 5 } ^ { 22 } ( k - 2 )
C) k=320(k2)\sum _ { k = 3 } ^ { 20 } ( \mathrm { k } - 2 )
D) k=117(k2)\sum _ { k = 1 } ^ { 17 } ( \mathrm { k } - 2 )
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
50
Use Summation Notation
k=14(1)k(k+4)\sum _ { k = 1 } ^ { 4 } ( - 1 ) ^ { k } ( k + 4 )

A) 2
B) 26- 26
C) 26
D) 18
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
51
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
(a+1)+(a+d)+(a+d2)++(a+dn)( a + 1 ) + ( a + d ) + \left( a + d ^ { 2 } \right) + \ldots + \left( a + d ^ { n } \right)

A) k=0n(a+dk)\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } } \left( \mathrm { a } + \mathrm { d } ^ { \mathrm { k } } \right)
B) k=1n(a+dk)\sum _ { k = 1 } ^ { n } \left( a + d ^ { k } \right)
C) k=0n1(a+dk)\sum _ { k = 0 } ^ { n - 1 } \left( a + d ^ { k } \right)
D) k=0nadk\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } } \mathrm { ad } ^ { \mathrm { k } }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
52
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
34+45+56+67++1718\frac { 3 } { 4 } + \frac { 4 } { 5 } + \frac { 5 } { 6 } + \frac { 6 } { 7 } + \ldots + \frac { 17 } { 18 }

A) k=317kk+1\sum _ { k = 3 } ^ { 17 } \frac { k } { k + 1 }
B) k=417k+1k\sum _ { k = 4 } ^ { 17 } \frac { \mathrm { k } + 1 } { \mathrm { k } }
C) k=317k+1k\sum _ { \mathrm { k } = 3 } ^ { 17 } \frac { \mathrm { k } + 1 } { \mathrm { k } }
D) k=417kk+1\sum _ { k = 4 } ^ { 17 } \frac { \mathrm { k } } { \mathrm { k } + 1 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
53
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
a+ar+ar2++ar11a + a r + a r ^ { 2 } + \ldots + a r ^ { 11 }

A) k=011ark\sum _ { \mathrm { k } = 0 } ^ { 11 } \mathrm { ar } ^ { \mathrm { k } }
B) k=112ark\sum _ { k = 1 } ^ { 12 } a r ^ { k }
C) k=011(ar)k\sum _ { \mathrm { k } = 0 } ^ { 11 } ( \mathrm { ar } ) ^ { \mathrm { k } }
D) k=111ark\sum _ { k = 1 } ^ { 11 } a r ^ { k }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
54
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
2+8+18++502 + 8 + 18 + \ldots + 50

A) i=152i2\sum _ { i = 1 } ^ { 5 } 2 i ^ { 2 }
B) i=052i2\sum _ { i = 0 } ^ { 5 } 2 i ^ { 2 }
C) i=15i2\sum _ { i = 1 } ^ { 5 } i ^ { 2 }
D) i=1522\sum _ { i = 1 } ^ { 5 } 2 ^ { 2 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
55
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
The bar graph below shows a company's yearly profits from 1991 to 1999. Let an represent the company's profit, in millions, in year n\mathrm { n } , where n=1\mathrm { n } = 1 corresponds to 1991,n=21991 , \mathrm { n } = 2 corresponds to 1992 , and so on.
Find i=37ai\sum _ { i = 3 } ^ { 7 } a _ { i }
 <strong>Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation. The bar graph below shows a company's yearly profits from 1991 to 1999. Let an represent the company's profit, in millions, in year  \mathrm { n } , where  \mathrm { n } = 1  corresponds to  1991 , \mathrm { n } = 2  corresponds to 1992 , and so on. Find  \sum _ { i = 3 } ^ { 7 } a _ { i }    </strong> A) \$356.9 million B) \$400.7 million C)  \$ 142.6  million D)  \$ 371.3  million

A) \$356.9 million
B) \$400.7 million
C) $142.6\$ 142.6 million
D) $371.3\$ 371.3 million
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
56
Use Summation Notation
i=14(14)i\sum _ { i = 1 } ^ { 4 } \left( - \frac { 1 } { 4 } \right) ^ { i }

A) 51256- \frac { 51 } { 256 }
B) 51256\frac { 51 } { 256 }
C) 47256- \frac { 47 } { 256 }
D) 85256\frac { 85 } { 256 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
57
Use Summation Notation
i=15(i1)!(i+2)!\sum _ { \mathrm { i } = 1 } ^ { 5 } \frac { ( \mathrm { i } - 1 ) ! } { ( \mathrm { i } + 2 ) ! }

A) 521\frac { 5 } { 21 }
B) 241140\frac { 241 } { 140 }
C) 3730\frac { 37 } { 30 }
D) 4320\frac { 43 } { 20 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
58
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
a+ar+ar2++ar13a + a r + a r ^ { 2 } + \ldots + a r ^ { 13 }

A) i=114ari1\sum _ { i = 1 } ^ { 14 } a r ^ { i - 1}
B) i=113ari\sum _ { \mathrm { i } = 1 } ^ { 13 } a r ^ { \mathrm { i } }
C) i=113(ar)i\sum _ { i = 1 } ^ { 13 } ( a r ) ^ { i }
D) i=113(ar)i1\sum _ { i = 1 } ^ { 13 } ( \operatorname { ar } ) ^ { i - 1 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
59
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
a+1+a+22++a+66a + 1 + \frac { a + 2 } { 2 } + \ldots + \frac { a + 6 } { 6 }

A) i=16a+ii\sum _ { i = 1 } ^ { 6 } \frac { a + i } { i }
B) i=06a+ii\sum _ { i = 0 } ^ { 6 } \frac { a + i } { i }
C) i=0na+ii\sum _ { i = 0 } ^ { n } \frac { a + i } { i }
D) i=1na+ii\sum _ { i = 1 } ^ { n } \frac { a + i } { i }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
60
Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
52+103+154++4095 ^ { 2 } + 10 ^ { 3 } + 15 ^ { 4 } + \ldots + 40 ^ { 9 }

A) i=18(5i)i+1\sum _ { \mathrm { i } = 1 } ^ { 8 } ( 5 \mathrm { i } ) ^ { \mathrm { i } + 1 }
B) i=18(5i)i\sum _ { i = 1 } ^ { 8 } ( 5 i ) ^ { i }
C) i=182(i1)i+1\sum _ { i = 1 } ^ { 8 } 2 ( i - 1 ) ^ { i + 1 }
D) i=185i2i1\sum _ { i = 1 } ^ { 8 } 5 i ^ { 2 i - 1 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
61
Arithmetic Sequences
Find the Common Difference for an Arithmetic Sequence
5,8,11,14,5,8,11,14 , \ldots

A) 3
B) 9
C) 3- 3
D) 9- 9 )
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
62
Use the Formula for the General Term of an Arithmetic Sequence
Choose the one alternative that best completes the statement or answers the question.
Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the
sequence with the given first term, a1, and common difference, d.
Find a18a 18 when a1=10,d=1a _ { 1 } = 10 , d = - 1 .

A) 7- 7
B) 8- 8
C) 27
D) 28 8
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
63
Write Terms of an Arithmetic Sequence
an=an1+13;a1=49\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } } - 1 + \frac { 1 } { 3 } ; \mathrm { a } _ { 1 } = \frac { 4 } { 9 }

A) 49,79,109,139,169\frac { 4 } { 9 } , \frac { 7 } { 9 } , \frac { 10 } { 9 } , \frac { 13 } { 9 } , \frac { 16 } { 9 }
B) 49,19,29,59,89\frac { 4 } { 9 } , \frac { 1 } { 9 } , - \frac { 2 } { 9 } , - \frac { 5 } { 9 } , - \frac { 8 } { 9 }
C) 49,89,43,169,209\frac { 4 } { 9 } , \frac { 8 } { 9 } , \frac { 4 } { 3 } , \frac { 16 } { 9 } , \frac { 20 } { 9 }
D) 49,79,119,149,179\frac { 4 } { 9 } , \frac { 7 } { 9 } , \frac { 11 } { 9 } , \frac { 14 } { 9 } , \frac { 17 } { 9 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
64
Use the Formula for the General Term of an Arithmetic Sequence
Choose the one alternative that best completes the statement or answers the question.
Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the
sequence with the given first term, a1, and common difference, d.
Find a 19 when a1=4,d=53a _ { 1 } = - 4 , d = - \frac { 5 } { 3 } .

A) 34- 34
B) 1073- \frac { 107 } { 3 }
C) 26
D) 833\frac { 83 } { 3 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
65
Arithmetic Sequences
Find the Common Difference for an Arithmetic Sequence
624,616,608,600,624,616,608,600 , \ldots

A) 8- 8
B) 8
C) 624
D) 624- 624
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
66
Write Terms of an Arithmetic Sequence
an=an1+6;a1=3a _ { n } = a _ { n } - 1 + 6 ; a _ { 1 } = 3

A) 3,9,15,21,273,9,15,21,27
B) 2,8,14,20,262,8,14,20,26
C) 6,9,12,15,186,9,12,15,18
D) 3,6,9,15,213,6,9,15,21
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
67
Write Terms of an Arithmetic Sequence
an=an12.2;a1=14a _ { n } = a _ { n } - 1 - 2.2 ; a _ { 1 } = - 14

A) 14,16.2,18.4,20.6,22.8- 14 , - 16.2 , - 18.4 , - 20.6 , - 22.8
B) 15,17.2,19.4,21.6,23.8- 15 , - 17.2 , - 19.4 , - 21.6 , - 23.8
C) 2.2,16.2,30.2,44.2,58.2- 2.2 , - 16.2 , - 30.2 , - 44.2 , - 58.2
D) 14,2.2,16.2,18.4,20.6- 14 , - 2.2 , - 16.2 , - 18.4 , - 20.6
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
68
Use the Formula for the General Term of an Arithmetic Sequence
Choose the one alternative that best completes the statement or answers the question.
Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the
sequence with the given first term, a1, and common difference, d.
Find a13a _ { 13 } when a1=20,d=3a _ { 1 } = 20 , d = - 3 .

A) 16- 16
B) 19- 19
C) 36- 36
D) 56
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
69
Write Terms of an Arithmetic Sequence
an=an1+2;a1=8\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } } - 1 + 2 ; \mathrm { a } _ { 1 } = - 8

A) 8,6,4,2,0- 8 , - 6 , - 4 , - 2,0
B) 9,7,5,3,1- 9 , - 7 , - 5 , - 3 , - 1
C) 2,6,14,22,302 , - 6 , - 14 , - 22 , - 30
D) 8,2,6,4,2- 8,2 , - 6 , - 4 , - 2
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
70
Arithmetic Sequences
Find the Common Difference for an Arithmetic Sequence
8,11,14,17,8,11,14,17 , \ldots

A) 3
B) 9
C) 2.252.25
D) 8
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
71
Write Terms of an Arithmetic Sequence
an=an18;a1=11\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } } - 1 - 8 ; \mathrm { a } _ { 1 } = - 11

A) 11,19,27,35,43- 11 , - 19 , - 27 , - 35 , - 43
B) 12,20,28,36,44- 12 , - 20 , - 28 , - 36 , - 44
C) 8,19,30,41,52- 8 , - 19 , - 30 , - 41 , - 52
D) 11,8,19,27,35- 11 , - 8 , - 19 , - 27 , - 35
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
72
Write Terms of an Arithmetic Sequence
a1=21;d=4a _ { 1 } = - 21 ; d = 4

A) 21,17,13,9,5- 21 , - 17 , - 13 , - 9 , - 5
B) 13,9,5,1,3- 13 , - 9 , - 5 , - 1,3
C) 5,9,13,17,21- 5 , - 9 , - 13 , - 17 , - 21
D) 13,17,21,25,29- 13 , - 17 , - 21 , - 25 , - 29
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
73
Write Terms of an Arithmetic Sequence
a1=14;d=3a _ { 1 } = 14 ; d = - 3

A) 14,11,8,5,214,11,8,5,2
B) 0,14,11,8,50,14,11,8,5
C) 14,11,8,5,2- 14 , - 11 , - 8 , - 5 , - 2
D) 18,14,10,6,218,14,10,6,2
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
74
Write Terms of an Arithmetic Sequence
a1=8;d=3a _ { 1 } = 8 ; d = 3

A) 8,11,14,17,208,11,14,17,20
B) 11,14,17,20,2311,14,17,20,23
C) 0,8,11,14,170,8,11,14,17
D) 8,10,12,14,168,10,12,14,16
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
75
Write Terms of an Arithmetic Sequence
a1=52,d=32a _ { 1 } = - \frac { 5 } { 2 } , d = - \frac { 3 } { 2 }

A) 52,4,112,7,172- \frac { 5 } { 2 } , - 4 , - \frac { 11 } { 2 } , - 7 , - \frac { 17 } { 2 }
B) 52,1,12,2,72- \frac { 5 } { 2 } , - 1 , \frac { 1 } { 2 } , 2 , \frac { 7 } { 2 }
C) 52,2,116,74,1710- \frac { 5 } { 2 } , - 2 , - \frac { 11 } { 6 } , - \frac { 7 } { 4 } , - \frac { 17 } { 10 }
D) 52,12,16,12,710- \frac { 5 } { 2 } , - \frac { 1 } { 2 } , \frac { 1 } { 6 } , \frac { 1 } { 2 } , \frac { 7 } { 10 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
76
Write Terms of an Arithmetic Sequence
a1=9;d=2a _ { 1 } = 9 ; \mathrm { d } = - 2

A) 9,7,5,3,19,7,5,3,1
B) 11,9,7,5,311,9,7,5,3
C) 7,5,3,1,17,5,3,1 , - 1
D) 9,7,4,3,19,7,4,3,1
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
77
Use the Formula for the General Term of an Arithmetic Sequence
Choose the one alternative that best completes the statement or answers the question.
Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the
sequence with the given first term, a1, and common difference, d.
Find a8 when a1=10,d=4a _ { 1 } = - 10 , d = - 4 .

A) 38- 38
B) 42- 42
C) 18
D) 22
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
78
Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
The finite sequence whose general term is
an=0.11n21.06n+7.29a _ { n } = 0.11 n ^ { 2 } - 1.06 n + 7.29
where n=1,2,3,,9n = 1,2,3 , \ldots , 9 models the total operating costs, in millions of dollars, for a company from 1991 through 1999.1999 .
Find i=15ai\sum _ { \mathrm { i } = 1 } ^ { 5 } \mathrm { a } _ { \mathrm { i } }

A) $26.6\$ 26.6 million
B) \$31.7 million
C) \$21.86 million
D) $25.36\$ 25.36 million
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
79
Write Terms of an Arithmetic Sequence
a1=38;d=18a _ { 1 } = - \frac { 3 } { 8 } ; d = - \frac { 1 } { 8 }

A) 38,12,58,34,78- \frac { 3 } { 8 } , - \frac { 1 } { 2 } , - \frac { 5 } { 8 } , - \frac { 3 } { 4 } , - \frac { 7 } { 8 }
B) 38,14,18,0,18- \frac { 3 } { 8 } , - \frac { 1 } { 4 } , - \frac { 1 } { 8 } , 0 , \frac { 1 } { 8 }
C) 38,34,98,32,158- \frac { 3 } { 8 } , - \frac { 3 } { 4 } , - \frac { 9 } { 8 } , - \frac { 3 } { 2 } , - \frac { 15 } { 8 }
D) 38,12,18,34,18- \frac { 3 } { 8 } , - \frac { 1 } { 2 } , - \frac { 1 } { 8 } , - \frac { 3 } { 4 } , \frac { 1 } { 8 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
80
Arithmetic Sequences
Find the Common Difference for an Arithmetic Sequence
15,17,19,21,- 15 , - 17 , - 19 , - 21 , \ldots

A) 2- 2
B) -6
C) 4- 4
D) 6
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 304 flashcards in this deck.