Deck 5: Exponential and Logarithmic Functions

Full screen (f)
exit full mode
Question
Graph the function.

- f(x)=4(x1)1f(x)=4^{(x-1)}-1
 <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Graph the function.
f(x)=3exf(x)=3 e^{-x}
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)   <div style=padding-top: 35px>

B)
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
Question
f(x)=20.74xf ( x ) = 2 \cdot 0.7 ^ { 4 x }
 <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine whether or not the given function is an exponential function.
y=ex7+2xy = e ^ { x ^ { 7 + 2 x } }

A) exponential
B) not exponential
Question
Graph the function.

- y=5(x4)+2y=5(x-4)+2
 <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine if the function is a growth exponential or a decay exponential.
y=30.7xy = 3 ^ { 0.7 x }

A) Growth
B) Decay
Question
Determine whether or not the given function is an exponential function.
y=4xy = 4 ^ { x }

A) exponential
B) not exponential
Question
Determine whether or not the given function is an exponential function.
y=x5y = x ^ { 5 }

A) exponential
B) not exponential
Question
Determine if the function is a growth exponential or a decay exponential.
y=9e9xy = 9 e ^ { - 9 x }

A) Growth
B) Decay
Question
Determine if the function is a growth exponential or a decay exponential.
y=0.27xy = 0.2 ^ { 7 x }

A) Growth
B) Decay
Question
Graph the function.
f(x)=4xf(x)=4^{-x}
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>

C)
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)   <div style=padding-top: 35px>
Question
Determine whether or not the given function is an exponential function.
y =3x5= 3 x - 5

A) exponential
B) not exponential
Question
Graph the function.
f(x)=(14)xf(x)=\left(\frac{1}{4}\right)^{x}
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the function.
f(x)=2xf(x)=2^{x}
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>  C)
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine whether or not the given function is an exponential function.
y=6xey = 6 x ^ { e }

A) exponential
B) not exponential
Question
Graph the function.
f(x)=4xf ( x ) = - 4 ^ { x }
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)   <div style=padding-top: 35px>
Question
Determine whether or not the given function is an exponential function.
y=x7+9xy = x ^ { 7 } + 9 x

A) exponential
B) not exponential
Question
f(x)=e3x3f ( x ) = e ^ { 3 x } - 3
 <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine if the function is a growth exponential or a decay exponential.
y=21.3xy = 2 ^ { - 1.3 x }

A) Growth
B) Decay
Question
Graph the function.
f(x)=2(x3)f(x)=2(x-3)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the function value.
Let f(x)=1.7e0.8xf ( x ) = - 1.7 e ^ { - 0.8 x } . Find f(1.6)f ( - 1.6 ) , rounded to four decimal places.

A) 0.4727- 0.4727
B) -6.1143
C) 0.47270.4727
D) 6.11436.1143
Question
Match the equation with its graph.
y=4(x3)y = 4 ( x - 3 )

A)
 <strong>Match the equation with its graph.  y = 4 ( x - 3 ) </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with its graph.  y = 4 ( x - 3 ) </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with its graph.  y = 4 ( x - 3 ) </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with its graph.  y = 4 ( x - 3 ) </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
In September 1998 the population of the country of West Goma in millions was modeled by f(x)=17.8e0.0015xf ( x ) = 17.8 e ^ { 0.0015 x } . At the same time the population of East Goma in millions was modeled by g(x)=13.2e0.0164xg ( x ) = 13.2 e ^ { 0.0164 x } . In both formulas xx is the year, where x=0x = 0 corresponds to September 1998. Assuming these trends continue, estimate what the population will be when the populations are equal.

A) 18 million
B) 1 million
C) 16 million
D) 17 million
Question
In September 1998 the population of the country of West Goma in millions was modeled by f(x)=17.5e0.0010xf ( x ) = 17.5 e ^ { 0.0010 x } . At the same time the population of East Goma in millions was modeled by g(x)=13.7e0.0129x\mathrm { g } ( \mathrm { x } ) = 13.7 \mathrm { e } 0.0129 \mathrm { x } . In both formulas xx is the year, where x=0x = 0 corresponds to September 1998 . Assuming these trends continue, estimate the year when the population of West Goma will equal the population of East Goma.

A) 21
B) 1977
C) 2019
D) 2016
Question
Match the equation with its graph.
y=133xy = \frac { 1 } { 3 } \cdot 3 ^ { x }

A)
 <strong>Match the equation with its graph.  y = \frac { 1 } { 3 } \cdot 3 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with its graph.  y = \frac { 1 } { 3 } \cdot 3 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with its graph.  y = \frac { 1 } { 3 } \cdot 3 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with its graph.  y = \frac { 1 } { 3 } \cdot 3 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Match the equation with its graph.
y=4x+5y = 4 ^ { x + 5 }

A)
 <strong>Match the equation with its graph.  y = 4 ^ { x + 5 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with its graph.  y = 4 ^ { x + 5 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with its graph.  y = 4 ^ { x + 5 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with its graph.  y = 4 ^ { x + 5 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the function value.
Let f(x)=(16)xf ( x ) = \left( \frac { 1 } { 6 } \right) ^ { x } . Find f(2)f ( - 2 ) .

A) 136\frac { 1 } { 36 }
B) 136- \frac { 1 } { 36 }
C) 36
D) 12- 12
Question
Find the function value.
Let f(x)=e3xf ( x ) = e ^ { 3 x } . Find f(0.50)f ( - 0.50 ) , rounded to four decimal places.

A) 0.2231- 0.2231
B) 0.3502- 0.3502
C) 0.35020.3502
D) 0.22310.2231
Question
Find the function value.
 Let f(x)=ex. Find f(3.9), rounded to four decimal places. \text { Let } f ( x ) = e ^ { - x } \text {. Find } f ( 3.9 ) \text {, rounded to four decimal places. }

A) 1.4347
B) 10.6013
C) 49.4024
D) 0.0202
Question
The sales of a mature product (one which has passed its peak) will decline by the function St)=S0eat\left. \mathrm { S } ^ { \mathrm { t } } \right) = \mathrm { S } _ { 0 } \mathrm { e } ^ { - a t } , where t\mathrm { t } is time in years. Find the sales after 8 years if a=0.18\mathrm { a } = 0.18 and S0=48,500\mathrm { S } _ { 0 } = 48,500 .

A) 58,065
B) 5746
C) 245,075
D) 11,491
Question
y=4(x+4)+1y = 4 ( x + 4 ) + 1

A)  <strong> y = 4 ( x + 4 ) + 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong> y = 4 ( x + 4 ) + 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong> y = 4 ( x + 4 ) + 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong> y = 4 ( x + 4 ) + 1 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the function value.
Let f(x)=3(1x)f ( x ) = 3 ( 1 - x ) . Find f(3)f ( 3 ) .

A) 9
B) 16\frac { 1 } { 6 }
C) 6- 6
D) 19\frac { 1 } { 9 }
Question
Match the equation with its graph.
y=2xy = 2 ^ { - x }

A)
 <strong>Match the equation with its graph.  y = 2 ^ { - x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with its graph.  y = 2 ^ { - x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with its graph.  y = 2 ^ { - x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with its graph.  y = 2 ^ { - x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
y=22xy = 2 \cdot 2 ^ { x }

A)  <strong> y = 2 \cdot 2 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong> y = 2 \cdot 2 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong> y = 2 \cdot 2 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong> y = 2 \cdot 2 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the function value.
Let f(x)=(16)xf ( x ) = \left( \frac { 1 } { 6 } \right) ^ { x } . Find f(3)f ( 3 ) .

A) 216
B) 1216\frac { 1 } { 216 }
C) 1729\frac { 1 } { 729 }
D) 118\frac { 1 } { 18 }
Question
Match the equation with its graph.
y=2x+2y = 2 ^ { x + 2 }

A)
 <strong>Match the equation with its graph.  y = 2 ^ { x + 2 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with its graph.  y = 2 ^ { x + 2 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with its graph.  y = 2 ^ { x + 2 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with its graph.  y = 2 ^ { x + 2 } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
The growth in the population of a certain rodent at a dump site fits the exponential function A(t)=102e0.018tA ( t ) = 102 e ^ { 0.018 t } where t is the number of years since 1965. Estimate the population in the year 2000.

A) 96
B) 195
C) 104
D) 192
Question
Find the function value.
 Let f(x)=3x. Find f(2)\text { Let } f ( x ) = 3 ^ { x } \text {. Find } f ( 2 )

A) 27
B) 8
C) 9
D) 6
Question
Match the equation with its graph.
y=3xy = - 3 ^ { x }

A)
 <strong>Match the equation with its graph.  y = - 3 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Match the equation with its graph.  y = - 3 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation with its graph.  y = - 3 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Match the equation with its graph.  y = - 3 ^ { x } </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the function value.
Let f(x)=5xf ( x ) = 5 ^ { x } . Find f(2)f ( - 2 ) .

A) 132\frac { 1 } { 32 }
B) 110- \frac { 1 } { 10 }
C) 125\frac { 1 } { 25 }
D) 10- 10
Question
Give a definition for the following term: Exponential function .
Question
Provide an appropriate response.
What are the domain and range for the equation y=2xy = 2 ^ { x } ?

A) Domain: (,)( \infty , \infty ) ; range: (,)( \infty , \infty )
B) Domain: (0,)( 0 , \infty ) ; range: (,)( \infty , \infty )
C) Domain: (,)( \infty , \infty ) ; range: (0,)( 0 , \infty )
D) (,)( \infty , \infty ) ; range: [0,)[ 0 , \infty )
Question
The population of a small country increases according to the function B=2,500,000e0.02t\mathrm { B } = 2,500,000 \mathrm { e } ^ { 0.02 \mathrm { t } } where t is measured in years. How many people will the country have after 3 years?

A) 3,054,622
B) 7,033,527
C) 2,870,384
D) 2,654,591
Question
Explain how the graph of y=4x3+2 can be obtained from the graph of y=4xy = 4 ^ { x - 3 } + 2 \text { can be obtained from the graph of } y = 4 ^ { x } .
Question
Explain how the graph of y=43x can be obtained from the graph of y=3xy = - 4 \cdot 3 ^ { x } \text { can be obtained from the graph of } y = 3 ^ { x } \text {. }
Question
Provide an appropriate response.
Explain why f(x) f(x)=2x is an exponential function but f(x)=x2f ( x ) = 2 ^ { x } \text { is an exponential function but } f ( x ) = x ^ { 2 } is not.
Question
Write the logarithmic equation in exponential form.
log39=2\log _ { 3 } 9 = 2

A) 32=93 ^ { 2 } = 9
B) 92=39 ^ { 2 } = 3
C) 39=23 ^ { 9 } = 2
D) 23=92 ^ { 3 } = 9
Question
A computer is purchased for $4100. Its value each year is about 75% of the value the preceding year. Its value, in dollars, after t years is given by the exponential function V(t)=4100(0.75)t\mathrm { V } ( \mathrm { t } ) = 4100 ( 0.75 ) ^ { \mathrm { t } } Find the value of the computer after
2 years.

A) $1297.27
B) $1729.69
C) $2306.25
D) $6150.00
Question
The number of acres in a landfill is given by the function B=2900e0.05tB = 2900 \mathrm { e } ^ { - 0.05 t } where t is measured in years. How many acres will the landfill have after 8 years? (Round to the nearest acre.)

A) 2657 acres
B) 1944 acres
C) 1154 acres
D) 1155 acres
Question
Provide an appropriate response.
Why can' y=2x have an x-intercept y = 2 ^ { x } \text { have an } x \text {-intercept }
Question
Provide an appropriate response.
Why is an exponential function one-to-one?
Question
What is the range of the function y=(15)xy = \left( \frac { 1 } { 5 } \right) ^ { x } ?

A) (,0)( \infty , 0 )
B) (,)( \infty , \infty )
C) (0,)( 0 , \infty )
D) [0,)[ 0 , \infty )
Question
The amount of a certain radioactive isotope present at time t is given by A(t)=400e0.02664t\mathrm { A } ( \mathrm { t } ) = 400 \mathrm { e } ^ { - 0.02664 \mathrm { t } } grams, where t is the time in years that the isotope decays. The initial amount present is 400 grams. How many grams remain
After 20 years? Round to the nearest hundredth.

A) 681.48 g
B) 234.78 g
C) 379.25 g
D) 397.87 g
Question
Provide an appropriate response.
With the exponential function f(x) f(x)=ax, why must a1f ( x ) = a ^ { x } , \text { why must } a \neq 1
Question
Write the logarithmic equation in exponential form.
log141=0\log _ { 14 } 1 = 0

A) 141=014 ^ { 1 } = 0
B) 114=01 ^ { 14 } = 0
C) 014=10 ^ { 14 } = 1
D) 140=114 ^ { 0 } = 1
Question
The half-life of Titanium 45 is 3.13.1 hours. If the formula P(t)=(12)t/3.1\mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 } gives the percent (as a decimal) remaining after time tt (in hours), sketch PP versus t.
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Explain how the graph of y=5(12)x can be obtained from the graph of y=2xy = - 5 \left( \frac { 1 } { 2 } \right) ^ { x } \text { can be obtained from the graph of } y = 2 ^ { x }
Question
The number of books in a small library increases according to the function B = 2700e0.05t, where t is measured in years. How many books will the library have after 4 years?

A) 3298 books
B) 4279 books
C) 4345 books
D) 1887 books
Question
Provide an appropriate response.
What is one ordered pair that is always on the graph of f( f(x)=axf ( x ) = a ^ { x } ?
Question
What is the domain of the function y=(18)xy = \left( \frac { 1 } { 8 } \right) ^ { x } ?

A) (,)( -\infty , \infty )

B) (0,)( 0 , \infty )
C) (,0)( \infty , 0 )
D) [0,)[ 0 , \infty )
Question
Write in logarithmic form.
p=9tp = 9 ^ { t }

A) logt9=p\log _ { t } 9 = \mathrm { p }
B) logp9=t\log _ { p } 9 = t
C) log9p=t\log { 9 } \mathrm { p } = \mathrm { t }
D) log9t=p\log _ { 9 } t = p
Question
Evaluate the logarithm, if possible. Round the answer to four decimal places.
ln 0.000873 A) 3.05903.0590
B) 7.0436- 7.0436
C) 3.0590- 3.0590
D) 7.04367.0436
Question
Write the logarithmic equation in exponential form.
lnx=7\ln x = - 7

A) x=e7x = e ^ { 7 }
B) No solution
C) x=ln7x = \ln - 7
D) x=e7x = e ^ { - 7 }
Question
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 2.81

A) 0.4487
B) 0.4639
C) 1.0332
D) 0.4330
Question
2y=ln(8x)2 y = \ln ( - 8 x )

A) e8x=2ye ^ { - 8 x } = 2 y
B) 8x2y=e- 8 x ^ { 2 } y = e
C) ey=4xe ^ { y } = - 4 x
D) e2y=8xe ^ { 2 y } = - 8 x
Question
Write the logarithmic equation in exponential form.
log2(8)=3\log _ { 2 } ( 8 ) = 3

A) 28=32 ^ { 8 } = 3
B) 32=83 ^ { 2 } = 8
C) 83=28 ^ { 3 } = 2
D) 23=82 ^ { 3 } = 8
Question
y=log(2x)y = \log ( 2 x )

A) y10=2xy ^ { 10 } = 2 x
B) 10y=2x10 y = 2 x
C) 2xy=102 x y = 10
D) 102x=y10 ^ { 2 x } = y
Question
Write the logarithmic equation in exponential form.
logWQ=19\log _ { W } Q = 19

A) w19=Qw ^ { 19 } = \mathrm { Q }
B) 19 W=Q19 \mathrm {~W} = \mathrm { Q }
C) QW=19\mathrm { Q } ^ { \mathrm { W } } = 19
D) Q19=wQ ^ { 19 } = w
Question
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 169

A) 5.1299
B) 2.2279
C) 2.2253
D) 2.2304
Question
Evaluate the logarithm, if possible. Round the answer to four decimal places.
ln 5,500,000

A) 4.0073
B) 15.5203
C) 6.7404
D) 0.0642
Question
Evaluate the logarithm, if possible. Round the answer to four decimal places.
ln 0.994

A) 0.0060
B) 0.0026
C) -0.0026
D) -0.0060
Question
Write in logarithmic form.
103=100010 ^ { 3 } = 1000

A) log310=1000\log _ { 3 } 10 = 1000
B) log31000=10\log _ { 3 } 1000 = 10
C) log103=1000\log _ { 10 } 3 = 1000
D) log101000=3\log _ { 10 } 1000 = 3
Question
Write in logarithmic form.
42=164 ^ { 2 } = 16

A) log42=16\log _ { 4 } 2 = 16
B) log216=4\log _ { 2 } 16 = 4
C) log416=2\log _ { 4 } 16 = 2
D) log164=2\log _ { 16 } 4 = 2
Question
Write in logarithmic form.
63=2166 ^ { 3 } = 216

A) log3216=6\log _ { 3 } 216 = 6
B) log63=216\log _ { 6 } 3 = 216
C) log2166=3\log _ { 216 } 6 = 3
D) log6216=3\log _ { 6 } 216 = 3
Question
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 4508

A) 3.6549
B) 3.6530
C) 3.6540
D) 8.4136
Question
Write the logarithmic equation in exponential form.
log100=10\log _ { 10 } 0 = - 10

A) 1010=0- 10 ^ { 10 } = 0
B) 010=100 ^ { - 10 } = 10
C) 1010=010 ^ { - 10 } = 0
D) 010=100 ^ { 10 } = - 10
Question
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 0.0743

A) 1.1349- 1.1349
В) 1.1232- 1.1232
C) 1.1290- 1.1290
D) 2.5996- 2.5996
Question
Write in logarithmic form.
105=0.0000110 ^ { - 5 } = 0.00001

A) log5.10=5\log _ { 5 } .10 = - 5
B) log100.00001=5\log _ { 10 } 0.00001 = - 5
C) log105=0.00001\log _ { 10 } - 5 = 0.00001
D) log55=.10\log _ { 5 } - 5 = .10
Question
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 0.00474

A) 5.3517- 5.3517
B) 2.3242- 2.3242
C) 2.3152- 2.3152
D) 2.3335- 2.3335
Question
Write in logarithmic form.
97x=y9 ^ { 7 x } = y

A) log97x=y\log _ { 9 } 7 x = y
B) logy7x=9\log _ { y } 7 x = 9
C) log9y=7x\log _ { 9 } y = 7 x
D) logy9=7x\log _ { y } 9 = 7 x
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/304
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Exponential and Logarithmic Functions
1
Graph the function.

- f(x)=4(x1)1f(x)=4^{(x-1)}-1
 <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)

A)  <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)
B)  <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)
C)  <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)
D)  <strong>Graph the function.  - f(x)=4^{(x-1)}-1    </strong> A)   B)   C)   D)

2
Graph the function.
f(x)=3exf(x)=3 e^{-x}
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)

A)
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)

B)
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)
C)
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)
D)
 <strong>Graph the function.  f(x)=3 e^{-x}    </strong> A)    B)   C)   D)
D
3
f(x)=20.74xf ( x ) = 2 \cdot 0.7 ^ { 4 x }
 <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)

A)  <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)
B)  <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)
C)  <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)
D)  <strong> f ( x ) = 2 \cdot 0.7 ^ { 4 x }    </strong> A)   B)   C)   D)
D
4
Determine whether or not the given function is an exponential function.
y=ex7+2xy = e ^ { x ^ { 7 + 2 x } }

A) exponential
B) not exponential
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
5
Graph the function.

- y=5(x4)+2y=5(x-4)+2
 <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)

A)  <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)
B)  <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)
C)  <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)
D)  <strong>Graph the function.  - y=5(x-4)+2    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
6
Determine if the function is a growth exponential or a decay exponential.
y=30.7xy = 3 ^ { 0.7 x }

A) Growth
B) Decay
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
7
Determine whether or not the given function is an exponential function.
y=4xy = 4 ^ { x }

A) exponential
B) not exponential
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
8
Determine whether or not the given function is an exponential function.
y=x5y = x ^ { 5 }

A) exponential
B) not exponential
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
9
Determine if the function is a growth exponential or a decay exponential.
y=9e9xy = 9 e ^ { - 9 x }

A) Growth
B) Decay
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
10
Determine if the function is a growth exponential or a decay exponential.
y=0.27xy = 0.2 ^ { 7 x }

A) Growth
B) Decay
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
11
Graph the function.
f(x)=4xf(x)=4^{-x}
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)

A)
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)
B)
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)

C)
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)
D)
 <strong>Graph the function.  f(x)=4^{-x}   </strong> A)   B)    C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
12
Determine whether or not the given function is an exponential function.
y =3x5= 3 x - 5

A) exponential
B) not exponential
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
13
Graph the function.
f(x)=(14)xf(x)=\left(\frac{1}{4}\right)^{x}
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)
C)
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function.  f(x)=\left(\frac{1}{4}\right)^{x}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
14
Graph the function.
f(x)=2xf(x)=2^{x}
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)    C)
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function.  f(x)=2^{x}   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
15
Determine whether or not the given function is an exponential function.
y=6xey = 6 x ^ { e }

A) exponential
B) not exponential
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
16
Graph the function.
f(x)=4xf ( x ) = - 4 ^ { x }
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)

A)
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)
B)
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)

C)
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)

D)
 <strong>Graph the function.  f ( x ) = - 4 ^ { x }   </strong> A)   B)    C)    D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
17
Determine whether or not the given function is an exponential function.
y=x7+9xy = x ^ { 7 } + 9 x

A) exponential
B) not exponential
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
18
f(x)=e3x3f ( x ) = e ^ { 3 x } - 3
 <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)

A)  <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)
B)  <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)
C)  <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)
D)  <strong> f ( x ) = e ^ { 3 x } - 3    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
19
Determine if the function is a growth exponential or a decay exponential.
y=21.3xy = 2 ^ { - 1.3 x }

A) Growth
B) Decay
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
20
Graph the function.
f(x)=2(x3)f(x)=2(x-3)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)
C)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function.  f(x)=2(x-3)   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
21
Find the function value.
Let f(x)=1.7e0.8xf ( x ) = - 1.7 e ^ { - 0.8 x } . Find f(1.6)f ( - 1.6 ) , rounded to four decimal places.

A) 0.4727- 0.4727
B) -6.1143
C) 0.47270.4727
D) 6.11436.1143
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
22
Match the equation with its graph.
y=4(x3)y = 4 ( x - 3 )

A)
 <strong>Match the equation with its graph.  y = 4 ( x - 3 ) </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with its graph.  y = 4 ( x - 3 ) </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with its graph.  y = 4 ( x - 3 ) </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with its graph.  y = 4 ( x - 3 ) </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
23
In September 1998 the population of the country of West Goma in millions was modeled by f(x)=17.8e0.0015xf ( x ) = 17.8 e ^ { 0.0015 x } . At the same time the population of East Goma in millions was modeled by g(x)=13.2e0.0164xg ( x ) = 13.2 e ^ { 0.0164 x } . In both formulas xx is the year, where x=0x = 0 corresponds to September 1998. Assuming these trends continue, estimate what the population will be when the populations are equal.

A) 18 million
B) 1 million
C) 16 million
D) 17 million
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
24
In September 1998 the population of the country of West Goma in millions was modeled by f(x)=17.5e0.0010xf ( x ) = 17.5 e ^ { 0.0010 x } . At the same time the population of East Goma in millions was modeled by g(x)=13.7e0.0129x\mathrm { g } ( \mathrm { x } ) = 13.7 \mathrm { e } 0.0129 \mathrm { x } . In both formulas xx is the year, where x=0x = 0 corresponds to September 1998 . Assuming these trends continue, estimate the year when the population of West Goma will equal the population of East Goma.

A) 21
B) 1977
C) 2019
D) 2016
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
25
Match the equation with its graph.
y=133xy = \frac { 1 } { 3 } \cdot 3 ^ { x }

A)
 <strong>Match the equation with its graph.  y = \frac { 1 } { 3 } \cdot 3 ^ { x } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with its graph.  y = \frac { 1 } { 3 } \cdot 3 ^ { x } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with its graph.  y = \frac { 1 } { 3 } \cdot 3 ^ { x } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with its graph.  y = \frac { 1 } { 3 } \cdot 3 ^ { x } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
26
Match the equation with its graph.
y=4x+5y = 4 ^ { x + 5 }

A)
 <strong>Match the equation with its graph.  y = 4 ^ { x + 5 } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with its graph.  y = 4 ^ { x + 5 } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with its graph.  y = 4 ^ { x + 5 } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with its graph.  y = 4 ^ { x + 5 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
27
Find the function value.
Let f(x)=(16)xf ( x ) = \left( \frac { 1 } { 6 } \right) ^ { x } . Find f(2)f ( - 2 ) .

A) 136\frac { 1 } { 36 }
B) 136- \frac { 1 } { 36 }
C) 36
D) 12- 12
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
28
Find the function value.
Let f(x)=e3xf ( x ) = e ^ { 3 x } . Find f(0.50)f ( - 0.50 ) , rounded to four decimal places.

A) 0.2231- 0.2231
B) 0.3502- 0.3502
C) 0.35020.3502
D) 0.22310.2231
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
29
Find the function value.
 Let f(x)=ex. Find f(3.9), rounded to four decimal places. \text { Let } f ( x ) = e ^ { - x } \text {. Find } f ( 3.9 ) \text {, rounded to four decimal places. }

A) 1.4347
B) 10.6013
C) 49.4024
D) 0.0202
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
30
The sales of a mature product (one which has passed its peak) will decline by the function St)=S0eat\left. \mathrm { S } ^ { \mathrm { t } } \right) = \mathrm { S } _ { 0 } \mathrm { e } ^ { - a t } , where t\mathrm { t } is time in years. Find the sales after 8 years if a=0.18\mathrm { a } = 0.18 and S0=48,500\mathrm { S } _ { 0 } = 48,500 .

A) 58,065
B) 5746
C) 245,075
D) 11,491
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
31
y=4(x+4)+1y = 4 ( x + 4 ) + 1

A)  <strong> y = 4 ( x + 4 ) + 1 </strong> A)   B)   C)   D)
B)  <strong> y = 4 ( x + 4 ) + 1 </strong> A)   B)   C)   D)
C)  <strong> y = 4 ( x + 4 ) + 1 </strong> A)   B)   C)   D)
D)  <strong> y = 4 ( x + 4 ) + 1 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
32
Find the function value.
Let f(x)=3(1x)f ( x ) = 3 ( 1 - x ) . Find f(3)f ( 3 ) .

A) 9
B) 16\frac { 1 } { 6 }
C) 6- 6
D) 19\frac { 1 } { 9 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
33
Match the equation with its graph.
y=2xy = 2 ^ { - x }

A)
 <strong>Match the equation with its graph.  y = 2 ^ { - x } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with its graph.  y = 2 ^ { - x } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with its graph.  y = 2 ^ { - x } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with its graph.  y = 2 ^ { - x } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
34
y=22xy = 2 \cdot 2 ^ { x }

A)  <strong> y = 2 \cdot 2 ^ { x } </strong> A)   B)   C)   D)
B)  <strong> y = 2 \cdot 2 ^ { x } </strong> A)   B)   C)   D)
C)  <strong> y = 2 \cdot 2 ^ { x } </strong> A)   B)   C)   D)
D)  <strong> y = 2 \cdot 2 ^ { x } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
35
Find the function value.
Let f(x)=(16)xf ( x ) = \left( \frac { 1 } { 6 } \right) ^ { x } . Find f(3)f ( 3 ) .

A) 216
B) 1216\frac { 1 } { 216 }
C) 1729\frac { 1 } { 729 }
D) 118\frac { 1 } { 18 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
36
Match the equation with its graph.
y=2x+2y = 2 ^ { x + 2 }

A)
 <strong>Match the equation with its graph.  y = 2 ^ { x + 2 } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with its graph.  y = 2 ^ { x + 2 } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with its graph.  y = 2 ^ { x + 2 } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with its graph.  y = 2 ^ { x + 2 } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
37
The growth in the population of a certain rodent at a dump site fits the exponential function A(t)=102e0.018tA ( t ) = 102 e ^ { 0.018 t } where t is the number of years since 1965. Estimate the population in the year 2000.

A) 96
B) 195
C) 104
D) 192
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
38
Find the function value.
 Let f(x)=3x. Find f(2)\text { Let } f ( x ) = 3 ^ { x } \text {. Find } f ( 2 )

A) 27
B) 8
C) 9
D) 6
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
39
Match the equation with its graph.
y=3xy = - 3 ^ { x }

A)
 <strong>Match the equation with its graph.  y = - 3 ^ { x } </strong> A)   B)   C)   D)
B)
 <strong>Match the equation with its graph.  y = - 3 ^ { x } </strong> A)   B)   C)   D)
C)
 <strong>Match the equation with its graph.  y = - 3 ^ { x } </strong> A)   B)   C)   D)
D)
 <strong>Match the equation with its graph.  y = - 3 ^ { x } </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
40
Find the function value.
Let f(x)=5xf ( x ) = 5 ^ { x } . Find f(2)f ( - 2 ) .

A) 132\frac { 1 } { 32 }
B) 110- \frac { 1 } { 10 }
C) 125\frac { 1 } { 25 }
D) 10- 10
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
41
Give a definition for the following term: Exponential function .
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
42
Provide an appropriate response.
What are the domain and range for the equation y=2xy = 2 ^ { x } ?

A) Domain: (,)( \infty , \infty ) ; range: (,)( \infty , \infty )
B) Domain: (0,)( 0 , \infty ) ; range: (,)( \infty , \infty )
C) Domain: (,)( \infty , \infty ) ; range: (0,)( 0 , \infty )
D) (,)( \infty , \infty ) ; range: [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
43
The population of a small country increases according to the function B=2,500,000e0.02t\mathrm { B } = 2,500,000 \mathrm { e } ^ { 0.02 \mathrm { t } } where t is measured in years. How many people will the country have after 3 years?

A) 3,054,622
B) 7,033,527
C) 2,870,384
D) 2,654,591
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
44
Explain how the graph of y=4x3+2 can be obtained from the graph of y=4xy = 4 ^ { x - 3 } + 2 \text { can be obtained from the graph of } y = 4 ^ { x } .
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
45
Explain how the graph of y=43x can be obtained from the graph of y=3xy = - 4 \cdot 3 ^ { x } \text { can be obtained from the graph of } y = 3 ^ { x } \text {. }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
46
Provide an appropriate response.
Explain why f(x) f(x)=2x is an exponential function but f(x)=x2f ( x ) = 2 ^ { x } \text { is an exponential function but } f ( x ) = x ^ { 2 } is not.
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
47
Write the logarithmic equation in exponential form.
log39=2\log _ { 3 } 9 = 2

A) 32=93 ^ { 2 } = 9
B) 92=39 ^ { 2 } = 3
C) 39=23 ^ { 9 } = 2
D) 23=92 ^ { 3 } = 9
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
48
A computer is purchased for $4100. Its value each year is about 75% of the value the preceding year. Its value, in dollars, after t years is given by the exponential function V(t)=4100(0.75)t\mathrm { V } ( \mathrm { t } ) = 4100 ( 0.75 ) ^ { \mathrm { t } } Find the value of the computer after
2 years.

A) $1297.27
B) $1729.69
C) $2306.25
D) $6150.00
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
49
The number of acres in a landfill is given by the function B=2900e0.05tB = 2900 \mathrm { e } ^ { - 0.05 t } where t is measured in years. How many acres will the landfill have after 8 years? (Round to the nearest acre.)

A) 2657 acres
B) 1944 acres
C) 1154 acres
D) 1155 acres
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
50
Provide an appropriate response.
Why can' y=2x have an x-intercept y = 2 ^ { x } \text { have an } x \text {-intercept }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
51
Provide an appropriate response.
Why is an exponential function one-to-one?
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
52
What is the range of the function y=(15)xy = \left( \frac { 1 } { 5 } \right) ^ { x } ?

A) (,0)( \infty , 0 )
B) (,)( \infty , \infty )
C) (0,)( 0 , \infty )
D) [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
53
The amount of a certain radioactive isotope present at time t is given by A(t)=400e0.02664t\mathrm { A } ( \mathrm { t } ) = 400 \mathrm { e } ^ { - 0.02664 \mathrm { t } } grams, where t is the time in years that the isotope decays. The initial amount present is 400 grams. How many grams remain
After 20 years? Round to the nearest hundredth.

A) 681.48 g
B) 234.78 g
C) 379.25 g
D) 397.87 g
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
54
Provide an appropriate response.
With the exponential function f(x) f(x)=ax, why must a1f ( x ) = a ^ { x } , \text { why must } a \neq 1
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
55
Write the logarithmic equation in exponential form.
log141=0\log _ { 14 } 1 = 0

A) 141=014 ^ { 1 } = 0
B) 114=01 ^ { 14 } = 0
C) 014=10 ^ { 14 } = 1
D) 140=114 ^ { 0 } = 1
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
56
The half-life of Titanium 45 is 3.13.1 hours. If the formula P(t)=(12)t/3.1\mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 } gives the percent (as a decimal) remaining after time tt (in hours), sketch PP versus t.
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)

A)
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)
B)
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)
C)
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)
D)
 <strong>The half-life of Titanium 45 is  3.1  hours. If the formula  \mathrm { P } ( \mathrm { t } ) = \left( \frac { 1 } { 2 } \right) ^ { \mathrm { t } / 3.1 }  gives the percent (as a decimal) remaining after time  t  (in hours), sketch  P  versus t.  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
57
Explain how the graph of y=5(12)x can be obtained from the graph of y=2xy = - 5 \left( \frac { 1 } { 2 } \right) ^ { x } \text { can be obtained from the graph of } y = 2 ^ { x }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
58
The number of books in a small library increases according to the function B = 2700e0.05t, where t is measured in years. How many books will the library have after 4 years?

A) 3298 books
B) 4279 books
C) 4345 books
D) 1887 books
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
59
Provide an appropriate response.
What is one ordered pair that is always on the graph of f( f(x)=axf ( x ) = a ^ { x } ?
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
60
What is the domain of the function y=(18)xy = \left( \frac { 1 } { 8 } \right) ^ { x } ?

A) (,)( -\infty , \infty )

B) (0,)( 0 , \infty )
C) (,0)( \infty , 0 )
D) [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
61
Write in logarithmic form.
p=9tp = 9 ^ { t }

A) logt9=p\log _ { t } 9 = \mathrm { p }
B) logp9=t\log _ { p } 9 = t
C) log9p=t\log { 9 } \mathrm { p } = \mathrm { t }
D) log9t=p\log _ { 9 } t = p
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
62
Evaluate the logarithm, if possible. Round the answer to four decimal places.
ln 0.000873 A) 3.05903.0590
B) 7.0436- 7.0436
C) 3.0590- 3.0590
D) 7.04367.0436
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
63
Write the logarithmic equation in exponential form.
lnx=7\ln x = - 7

A) x=e7x = e ^ { 7 }
B) No solution
C) x=ln7x = \ln - 7
D) x=e7x = e ^ { - 7 }
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
64
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 2.81

A) 0.4487
B) 0.4639
C) 1.0332
D) 0.4330
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
65
2y=ln(8x)2 y = \ln ( - 8 x )

A) e8x=2ye ^ { - 8 x } = 2 y
B) 8x2y=e- 8 x ^ { 2 } y = e
C) ey=4xe ^ { y } = - 4 x
D) e2y=8xe ^ { 2 y } = - 8 x
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
66
Write the logarithmic equation in exponential form.
log2(8)=3\log _ { 2 } ( 8 ) = 3

A) 28=32 ^ { 8 } = 3
B) 32=83 ^ { 2 } = 8
C) 83=28 ^ { 3 } = 2
D) 23=82 ^ { 3 } = 8
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
67
y=log(2x)y = \log ( 2 x )

A) y10=2xy ^ { 10 } = 2 x
B) 10y=2x10 y = 2 x
C) 2xy=102 x y = 10
D) 102x=y10 ^ { 2 x } = y
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
68
Write the logarithmic equation in exponential form.
logWQ=19\log _ { W } Q = 19

A) w19=Qw ^ { 19 } = \mathrm { Q }
B) 19 W=Q19 \mathrm {~W} = \mathrm { Q }
C) QW=19\mathrm { Q } ^ { \mathrm { W } } = 19
D) Q19=wQ ^ { 19 } = w
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
69
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 169

A) 5.1299
B) 2.2279
C) 2.2253
D) 2.2304
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
70
Evaluate the logarithm, if possible. Round the answer to four decimal places.
ln 5,500,000

A) 4.0073
B) 15.5203
C) 6.7404
D) 0.0642
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
71
Evaluate the logarithm, if possible. Round the answer to four decimal places.
ln 0.994

A) 0.0060
B) 0.0026
C) -0.0026
D) -0.0060
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
72
Write in logarithmic form.
103=100010 ^ { 3 } = 1000

A) log310=1000\log _ { 3 } 10 = 1000
B) log31000=10\log _ { 3 } 1000 = 10
C) log103=1000\log _ { 10 } 3 = 1000
D) log101000=3\log _ { 10 } 1000 = 3
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
73
Write in logarithmic form.
42=164 ^ { 2 } = 16

A) log42=16\log _ { 4 } 2 = 16
B) log216=4\log _ { 2 } 16 = 4
C) log416=2\log _ { 4 } 16 = 2
D) log164=2\log _ { 16 } 4 = 2
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
74
Write in logarithmic form.
63=2166 ^ { 3 } = 216

A) log3216=6\log _ { 3 } 216 = 6
B) log63=216\log _ { 6 } 3 = 216
C) log2166=3\log _ { 216 } 6 = 3
D) log6216=3\log _ { 6 } 216 = 3
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
75
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 4508

A) 3.6549
B) 3.6530
C) 3.6540
D) 8.4136
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
76
Write the logarithmic equation in exponential form.
log100=10\log _ { 10 } 0 = - 10

A) 1010=0- 10 ^ { 10 } = 0
B) 010=100 ^ { - 10 } = 10
C) 1010=010 ^ { - 10 } = 0
D) 010=100 ^ { 10 } = - 10
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
77
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 0.0743

A) 1.1349- 1.1349
В) 1.1232- 1.1232
C) 1.1290- 1.1290
D) 2.5996- 2.5996
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
78
Write in logarithmic form.
105=0.0000110 ^ { - 5 } = 0.00001

A) log5.10=5\log _ { 5 } .10 = - 5
B) log100.00001=5\log _ { 10 } 0.00001 = - 5
C) log105=0.00001\log _ { 10 } - 5 = 0.00001
D) log55=.10\log _ { 5 } - 5 = .10
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
79
Evaluate the logarithm, if possible. Round the answer to four decimal places.
log 0.00474

A) 5.3517- 5.3517
B) 2.3242- 2.3242
C) 2.3152- 2.3152
D) 2.3335- 2.3335
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
80
Write in logarithmic form.
97x=y9 ^ { 7 x } = y

A) log97x=y\log _ { 9 } 7 x = y
B) logy7x=9\log _ { y } 7 x = 9
C) log9y=7x\log _ { 9 } y = 7 x
D) logy9=7x\log _ { y } 9 = 7 x
Unlock Deck
Unlock for access to all 304 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 304 flashcards in this deck.