Deck 1: Functions, Graphs, and Models; Linear Functions

Full screen (f)
exit full mode
Question
Evaluate the function.
 Given f(x)=2x23x3, find f(4)\text { Given } f ( x ) = 2 x ^ { 2 } - 3 x - 3 , \text { find } f ( - 4 )

A) 44
B) 26
C) 1
D) 41
Use Space or
up arrow
down arrow
to flip the card.
Question
Determine whether or not the relationship shown in the table is a function.
x66148y54638\begin{array} { r | r | r | r | r | r } \mathrm { x } & - 6 & - 6 & 1 & 4 & 8 \\\hline \mathrm { y } & 5 & 4 & 6 & 3 & 8\end{array} Does the table define x as a function of y?

A) Yes
B) No
Question
Determine whether or not the relationship shown in the table is a function.
 Down payment (%) 5102025 Price of Home ($) 102,700122,900158,400169,000\begin{array} { l | c c c c } \text { Down payment (\%) } & 5 & 10 & 20 & 25 \\\hline \text { Price of Home (\$) } & 102,700 & 122,900 & 158,400 & 169,000\end{array} Does the table define the price of a home that a particular family can afford as a function of the percent down payment?

A) Yes
B) No
Question
Determine whether or not the relationship shown in the table is a function.
x224910y24121\begin{array} { r | r | r | r | r | r } \mathrm { x } & - 2 & 2 & 4 & 9 & 10 \\\hline \mathrm { y } & 2 & 4 & - 1 & 2 & 1\end{array} Does the table define y as a function of x?

A) Yes
B) No
Question
Determine whether or not the relationship shown in the table is a function.
 Number of Classes Missed 1234567 Average Final Exam Score 80788174737065\begin{array} { l | c c c c c c c } \text { Number of Classes Missed } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \text { Average Final Exam Score } & 80 & 78 & 81 & 74 & 73 & 70 & 65\end{array} Does the table define the number of classes missed as a function of the average final exam score?

A) Yes
B) No
Question
Determine whether or not the relationship shown in the table is a function.
xy512735745\begin{array} { c | c } x & y \\\hline 5 & 12 \\7 & 3 \\5 & 7 \\4 & 5\end{array} Does the table define y as a function of x?

A) Yes
B) No
Question
Determine whether or not the relationship shown in the table is a function.
 January 1234567 Weight (lbs) 197196198197196195194\begin{array} { l | c c c c c c c } \text { January } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \text { Weight (lbs) } & 197 & 196 & 198 & 197 & 196 & 195 & 194\end{array} Does the table define weight as a function of the day in January?

A) Yes
B) No
Question
Use the table to answer the question.
x83101915y=f(x)311610742038\begin{array} { l | c | c | c | c | c | c | c } \mathrm { x } & - 8 & - 3 & - 1 & 0 & 1 & 9 & 15 \\\hline \mathrm { y } = \mathrm { f } ( \mathrm { x } ) & - 31 & - 16 & - 10 & - 7 & - 4 & 20 & 38\end{array} Is -3 an input or output of this function?

A) Output
B) Input
Question
Use the table to answer the question.
x2018121731y=g(x)591125334371\begin{array} { l | c | c | c | c | c | c | c } x & - 2 & 0 & 1 & 8 & 12 & 17 & 31 \\\hline y = g ( x ) & 5 & 9 & 11 & 25 & 33 & 43 & 71\end{array} Is 31 an input or output of this function?

A) Input
B) Output
Question
 <strong>   For the function  y = f ( x )  described by the table, find  f ( 2 ) .</strong> A) 7 B) 0 C) 2 D) Not shown <div style=padding-top: 35px>

For the function y=f(x)y = f ( x ) described by the table, find f(2)f ( 2 ) .

A) 7
B) 0
C) 2
D) Not shown
Question
Given f(x)=x25x1f ( x ) = x ^ { 2 } - 5 x - 1 , find f(2)f ( - 2 )

A) 5- 5
B) 7- 7
C) 15
D) 13
Question
Determine whether or not the relationship shown in the table is a function.
 Name  Test Score  Bob L. 80 Susan H. 83 Jim H. 76 Bruce B. 96\begin{array} { r | r } \text { Name } & \text { Test Score } \\\hline \text { Bob L. } & 80 \\\hline \text { Susan H. } & 83 \\\hline \text { Jim H. } & 76 \\\hline \text { Bruce B. } & 96\end{array} Does the table define test score as a function of name?

A) Yes
B) No
Question
Use the table to answer the question.
x3016131831y=g(x)391121354571\begin{array} { l | c | c | c | c | c | c | c } x & - 3 & 0 & 1 & 6 & 13 & 18 & 31 \\\hline y = g ( x ) & 3 & 9 & 11 & 21 & 35 & 45 & 71\end{array} Is g(6) an input or output of this function?

A) Input
B) Output
Question
Determine whether or not the relationship shown in the table is a function.
 January 1234567 Weight (lbs) 218217219218217216215\begin{array} { l | c c c c c c c } \text { January } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \text { Weight (lbs) } & 218 & 217 & 219 & 218 & 217 & 216 & 215\end{array} Does the table define the day in January as a function of weight?

A) Yes
B) No
Question
Use the table to answer the question.
x63101516y=f(x)25161074841\begin{array} { l | c | c | c | c | c | c | c } x & - 6 & - 3 & - 1 & 0 & 1 & 5 & 16 \\\hline y = f ( x ) & - 25 & - 16 & - 10 & - 7 & - 4 & 8 & 41\end{array} Is f(16) an input or output of this function?

A) Input
B) Output
Question
Determine whether or not the relationship shown in the table is a function.
x135811y81483\begin{array} { c | c | c | c | c | c } x & 1 & 3 & 5 & 8 & 11 \\\hline y & 8 & 1 & 4 & 8 & - 3\end{array} Does the table define x as a function of y?

A) Yes
B) No
Question
 <strong>  For the function  y = f ( x )  described by the table, find  f ( 1 ) .</strong> A)  - 2  B)  - 5  C) 0 D) Not shown <div style=padding-top: 35px>
For the function y=f(x)y = f ( x ) described by the table, find f(1)f ( 1 ) .

A) 2- 2
B) 5- 5
C) 0
D) Not shown
Question
Determine whether or not the relationship shown in the table is a function.
 Number of Classes Missed 1234567 Average Final Exam Score 75737669686560\begin{array} { l | c c c c c c c } \text { Number of Classes Missed } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \text { Average Final Exam Score } & 75 & 73 & 76 & 69 & 68 & 65 & 60\end{array} Does the table define the average final exam score as a function of the number of classes missed?

A) Yes
B) No
Question
Evaluate the function.
Given f(x)=19x4f ( x ) = 19 x - 4 , find f(17)f ( 17 ) .

A) 19
B) 319
C) 327- 327
D) 327
Question
Evaluate the function.
Given f(x)=(x+3)2f ( x ) = ( x + 3 ) ^ { 2 } , find f(2)f ( 2 )

A) 1
B) 25- 25
C) 10
D) 25
Question
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Decide whether or not the set of ordered pairs defines a function.
{(6,1),(6,7),(2,8),(6,9),(7,2)}\{ ( - 6 , - 1 ) , ( - 6,7 ) , ( 2 , - 8 ) , ( 6 , - 9 ) , ( 7,2 ) \}

A) Yes
B) No
Question
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Decide whether or not the set of ordered pairs defines a function.
{(3,3),(1,5),(4,7),(5,3)}\{ ( - 3 , - 3 ) , ( - 1,5 ) , ( 4 , - 7 ) , ( 5,3 ) \}

A) No
B) Yes
Question
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
 <strong>  If  y = f ( x ) , find  f ( 1 ) .</strong> A) 1 B) 2 C) 0 D)  - 2  <div style=padding-top: 35px>
If y=f(x)y = f ( x ) , find f(1)f ( 1 ) .

A) 1
B) 2
C) 0
D) 2- 2
Question
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
 <strong>  If  y = f ( x ) , find  f ( - 2 ) .</strong> A)  - 1  B) 1 C)  - 4  D) 4 <div style=padding-top: 35px>
If y=f(x)y = f ( x ) , find f(2)f ( - 2 ) .

A) 1- 1
B) 1
C) 4- 4
D) 4
Question
 <strong>   \text { For the function } \mathrm { y } = \mathrm { f } ( \mathrm { x } ) \text { described by the table, find } \mathrm { f } ( 2 ) </strong> A) 10 B) 13 C) 7 D) 16 <div style=padding-top: 35px>
 For the function y=f(x) described by the table, find f(2)\text { For the function } \mathrm { y } = \mathrm { f } ( \mathrm { x } ) \text { described by the table, find } \mathrm { f } ( 2 )

A) 10
B) 13
C) 7
D) 16
Question
Decide whether or not the set of ordered pairs defines a function.
{(3,6),(2,8),(6,6),(8,4),(12,1)}\{ ( - 3 , - 6 ) , ( 2 , - 8 ) , ( 6,6 ) , ( 8 , - 4 ) , ( 12 , - 1 ) \}

A) No
B) Yes
Question
Decide whether or not the set of ordered pairs defines a function.
{(2,4),(2,7),(4,4),(8,3),(10,5)}\{ ( 2,4 ) , ( 2,7 ) , ( 4,4 ) , ( 8 , - 3 ) , ( 10,5 ) \}

A) Yes
B) No
Question
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Decide whether or not the set of ordered pairs defines a function.
{(6,9),(6,4),(1,4),(6,4),(8,1)}\{ ( - 6 , - 9 ) , ( - 6 , - 4 ) , ( 1,4 ) , ( 6 , - 4 ) , ( 8 , - 1 ) \}

A) Yes
B) No
Question
 <strong>  If  y = f ( x ) , find  f ( 4 ) .</strong> A)  - 2  B) 2 C)  - 3  D) 3 <div style=padding-top: 35px>
If y=f(x)y = f ( x ) , find f(4)f ( 4 ) .

A) 2- 2
B) 2
C) 3- 3
D) 3
Question
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Decide whether or not the set of ordered pairs defines a function.
{(8,8),(3,8),(2,8),(2,5)}\{ ( - 8 , - 8 ) , ( - 3,8 ) , ( - 2 , - 8 ) , ( 2 , - 5 ) \}

A) Yes
B) No
Question
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Decide whether or not the set of ordered pairs defines a function.
{(3,5),(2,9),(3,8),(3,6)}\{ ( - 3,5 ) , ( - 2 , - 9 ) , ( 3 , - 8 ) , ( 3,6 ) \}

A) No
B) Yes
Question
Decide whether or not the set of ordered pairs defines a function.
{(3,8),(2,3),(1,3),(1,5)}\{ ( - 3,8 ) , ( - 2 , - 3 ) , ( 1,3 ) , ( 1 , - 5 ) \}

A) No
B) Yes
Question
Find the domain of the function.
y=8x2y = \frac { - 8 } { x - 2 }

A) (2,)( 2 , \infty )
B) all real numbers except 2- 2
C) (,2)( - \infty , 2 )
D) all real numbers except 2
Question
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Decide whether or not the set of ordered pairs defines a function.
{(3,5),(1,2),(2,3),(7,2)}\{ ( - 3 , - 5 ) , ( - 1,2 ) , ( 2 , - 3 ) , ( 7,2 ) \}

A) No
B) Yes
Question
Find the domain of the function.
y=xx4y = \frac { x } { \sqrt { x - 4 } }

A) (4,)( 4 , \infty )
B) all real numbers except 4
C) [4,)[ 4 , \infty )
D) (,)( - \infty , \infty )
Question
Find the domain and range for the function.
 <strong>Find the domain and range for the function.  </strong> A) D:  \{ - 6 , - 4 , - 2,0,2,4,6 \} ;  R:  \{ - 4 , - 2 , - 1,3,4,6 \}  B) D:  \{ - 6 , - 4 , - 2,2,4,6 \} ; \mathrm { R } : \{ - 4 , - 2 , - 1,3,4,6 \}  C) D:  \{ - 6 , - 4,4,6 \} ; \mathrm { R } : \{ - 4 , - 2,4,6 \}  D) D:  \{ - 4 , - 2 , - 1,3,4,6 \} ; \mathrm { R } : \{ - 6 , - 4 , - 2,2,4,6 \}  <div style=padding-top: 35px>

A) D: {6,4,2,0,2,4,6};\{ - 6 , - 4 , - 2,0,2,4,6 \} ; R: {4,2,1,3,4,6}\{ - 4 , - 2 , - 1,3,4,6 \}
B) D: {6,4,2,2,4,6};R:{4,2,1,3,4,6}\{ - 6 , - 4 , - 2,2,4,6 \} ; \mathrm { R } : \{ - 4 , - 2 , - 1,3,4,6 \}
C) D: {6,4,4,6};R:{4,2,4,6}\{ - 6 , - 4,4,6 \} ; \mathrm { R } : \{ - 4 , - 2,4,6 \}
D) D: {4,2,1,3,4,6};R:{6,4,2,2,4,6}\{ - 4 , - 2 , - 1,3,4,6 \} ; \mathrm { R } : \{ - 6 , - 4 , - 2,2,4,6 \}
Question
Find the domain of the function.
y=7+xy = \sqrt { 7 + x }

A) [7,)[ - 7 , \infty )
В) (,)( - \infty , \infty )
C) (,7]( - \infty , - 7 ]
D) [0,)[ 0 , \infty )
Question
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) No B) Yes <div style=padding-top: 35px>

A) No
B) Yes
Question
 <strong>   </strong> A) D:  [ 0,4 ] ; R : [ - 3,4 ]  B) D:  [ - 3,4 ] ;  R:  [ 0,4 ]  C) D:  ( - 3,4 ) ;  R:  ( 0,4 )  D) D:  [ 3,4 ] ; R : [ 0,4 ]  <div style=padding-top: 35px>
 <strong>   </strong> A) D:  [ 0,4 ] ; R : [ - 3,4 ]  B) D:  [ - 3,4 ] ;  R:  [ 0,4 ]  C) D:  ( - 3,4 ) ;  R:  ( 0,4 )  D) D:  [ 3,4 ] ; R : [ 0,4 ]  <div style=padding-top: 35px>

A) D: [0,4];R:[3,4][ 0,4 ] ; R : [ - 3,4 ]
B) D: [3,4];[ - 3,4 ] ; R: [0,4][ 0,4 ]
C) D: (3,4);( - 3,4 ) ; R: (0,4)( 0,4 )
D) D: [3,4];R:[0,4][ 3,4 ] ; R : [ 0,4 ]
Question
Find the domain of the function.
y=61xy = 6 - \frac { 1 } { x }

A) (,)( - \infty , \infty )
B) (6,)( 6 , \infty )
C) all real numbers except 0
D) (,1)( - \infty , 1 )
Question
Find the domain of the function.
y=20xy = \sqrt { 20 - x }

A) (,)( - \infty , \infty )
B) (20,)( \sqrt { 20 } , \infty )
C) all real numbers except 20
D) [,20][ \infty , 20 ]
Question
Decide whether or not the set of ordered pairs defines a function.
{(1,4),(2,5),(5,3),(7,5),(11,8)}\{ ( 1,4 ) , ( 2,5 ) , ( 5 , - 3 ) , ( 7,5 ) , ( 11,8 ) \}

A) Yes
B) No
Question
Find the domain of the function.
y=6x5y = \sqrt { 6 x - 5 }

A) (56,)\left( \frac { 5 } { 6 } , \infty \right)
B) (,)( \infty , \infty )
C) [56,]\left[ \frac { 5 } { 6 } , \infty \right]
D) [56,)\left[ - \frac { 5 } { 6 } , \infty \right)
Question
Find the domain of the function.
y=1712xy = \frac { 17 } { 12 - x }

A) All real numbers except 12
B) (12,)( 12 , \infty )
C) All real numbers except 12- 12
D) (,12)( - \infty , 12 )
Question
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) No B) Yes <div style=padding-top: 35px>

A) No
B) Yes
Question
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
 <strong> </strong> A) D:  \{ - 4 , - 3,0,1,2,3 \} ;  R:  \{ - 5 , - 2,3,5 \}  B) D:  \{ - 5 , - 2,3,5 \} ;  R:  \{ - 4 , - 3,1,2,3 \}  C) D:  \{ - 4 , - 3,1,2,3 \} ;  R:  \{ - 5 , - 2,3,5 \}  D) D:  \{ - 5 , - 2,3,5 \} ; R : \{ - 4 , - 3,0,1,2,3 \}  <div style=padding-top: 35px>

A) D: {4,3,0,1,2,3};\{ - 4 , - 3,0,1,2,3 \} ; R: {5,2,3,5}\{ - 5 , - 2,3,5 \}
B) D: {5,2,3,5};\{ - 5 , - 2,3,5 \} ; R: {4,3,1,2,3}\{ - 4 , - 3,1,2,3 \}
C) D: {4,3,1,2,3};\{ - 4 , - 3,1,2,3 \} ; R: {5,2,3,5}\{ - 5 , - 2,3,5 \}
D) D: {5,2,3,5};R:{4,3,0,1,2,3}\{ - 5 , - 2,3,5 \} ; R : \{ - 4 , - 3,0,1,2,3 \}
Question
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) No B) Yes <div style=padding-top: 35px>

A) No
B) Yes
Question
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
 <strong>   </strong> A) D:  [ - 3,0 ] ;  R:  [ - 1,3 ]  B) D:  [ 0,3 ] ; \mathrm { R } : ( - \infty , 3 ]  C) D:  ( - \infty , 3 ] ;  R:  [ 0,3 ]  D) D:  [ - 1,3 ] ;  R:  [ - 3,0 ]  <div style=padding-top: 35px>
 <strong>   </strong> A) D:  [ - 3,0 ] ;  R:  [ - 1,3 ]  B) D:  [ 0,3 ] ; \mathrm { R } : ( - \infty , 3 ]  C) D:  ( - \infty , 3 ] ;  R:  [ 0,3 ]  D) D:  [ - 1,3 ] ;  R:  [ - 3,0 ]  <div style=padding-top: 35px>

A) D: [3,0];[ - 3,0 ] ; R: [1,3][ - 1,3 ]
B) D: [0,3];R:(,3][ 0,3 ] ; \mathrm { R } : ( - \infty , 3 ]
C) D: (,3];( - \infty , 3 ] ; R: [0,3][ 0,3 ]
D) D: [1,3];[ - 1,3 ] ; R: [3,0][ - 3,0 ]
Question
y=10+ 104x+12\frac { 10 } { 4 x + 12 }

A)  <strong> y=10+ \frac { 10 } { 4 x + 12 } </strong> A)    B) all real numbers except 3 C)  ( - 3 , \infty )  D) all real numbers except  -3 <div style=padding-top: 35px>

B) all real numbers except 3
C) (3,)( - 3 , \infty )
D) all real numbers except -3
Question
The salary s of an employee in a given year y.

A) No
B) Yes; y, s; there is one salary s in any given year y.
Question
Decide whether or not the equation defines y as a function of x.
y=6x+19y = \frac { 6 } { x + 19 }

A) Yes
B) No
Question
Suppose the cost of producing x objects was defined by the function C(x)=60x60x10C ( x ) = \frac { 60 x } { \sqrt { 60 x - 10 } } What is the domain of the function defined by this equation?

A) (16,)\left( \frac { 1 } { 6 } , \infty \right)
B) (,16]\left( \infty , \frac { 1 } { 6 } \right]
C) (x,16)\left( x , \frac { 1 } { 6 } \right)
D) [16,)\left[ \frac { 1 } { 6 } , \infty \right)
Question
Decide whether or not the equation defines y as a function of x.
y=2x3y = 2 x - 3

A) Yes
B) No
Question
Decide whether or not the equation defines y as a function of x.
y=2x2+2x1y = 2 x ^ { 2 } + 2 x - 1

A) Yes
B) No
Question
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The balance b in a checking account on a given day x.

A) Yes; x, b; there is one balance b on a given day x.
B) No
Question
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
Derek's weight w in second grade g.

A) No
B) Yes; g, w; there is one weight for second grade.
Question
A customer's savings account number n given the number of years y the account has been active.

A) No
B) Yes; y, n; there is one account number n in any given year y.
Question
Decide whether or not the equation defines y as a function of x.
y2=(x6)(x+4)y ^ { 2 } = ( x - 6 ) ( x + 4 )

A) Yes
B) No
Question
Decide whether or not the equation defines y as a function of x.
xy2=8x - y ^ { 2 } = - 8

A) Yes
B) No
Question
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The temperature t on a backyard thermometer at 5 pm on a given day x.

A) Yes; x, t; there is one temperature t on any given day x at 5 pm.
B) No
Question
Decide whether or not the equation defines y as a function of x.
x2+y=6x ^ { 2 } + y = - 6

A) Yes
B) No
Question
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
Addy's height h on the first day d of school throughout elementary school.

A) No
B) Yes; d, h; there is one height for each school year.
Question
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The temperature t on a backyard thermometer on a given day x.

A) Yes; x, t; there is one temperature t on any given day x.
B) No
Question
The number of shares s of a certain stock traded on a given day x.

A) No
B) Yes; x, s; there is one number of shares s traded on any given day x.
Question
This chart shows the fees for an 18-hole round of golf for each of the last 5 years at a local municipal golf course. Assume that this chart defines a function with the name of f. State the domain of f.  Year  Fee 2008$222009$242010$262011$262012$30\begin{array} { c | c } \text { Year } & \text { Fee } \\\hline 2008 & \$ 22 \\2009 & \$ 24 \\2010 & \$ 26 \\2011 & \$ 26 \\2012 & \$ 30\end{array}

A) {(2008, 22), (2009, 24), (2010, 26), (2011, 26), (2012, 30)}
B) {2008, 2009, 2010, 2011, 2012}
C) {22, 24, 26, 30}
D) {(22, 2008), (24, 2009), (26, 2010), (26, 2011), (30, 2012)}
Question
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The salary s of an employee on her hiring date d.

A) No
B) Yes; d, s; there is one salary s on the hiring date d.
Question
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The balance in a checking account b at the close of business on a given day x.

A) Yes; x, b; there is one balance b on any given day x at the close of the business day.
B) No
Question
Decide whether or not the equation defines y as a function of x.
y=3x7y = \sqrt { 3 x - 7 }

A) Yes
B) No
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/306
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: Functions, Graphs, and Models; Linear Functions
1
Evaluate the function.
 Given f(x)=2x23x3, find f(4)\text { Given } f ( x ) = 2 x ^ { 2 } - 3 x - 3 , \text { find } f ( - 4 )

A) 44
B) 26
C) 1
D) 41
D
2
Determine whether or not the relationship shown in the table is a function.
x66148y54638\begin{array} { r | r | r | r | r | r } \mathrm { x } & - 6 & - 6 & 1 & 4 & 8 \\\hline \mathrm { y } & 5 & 4 & 6 & 3 & 8\end{array} Does the table define x as a function of y?

A) Yes
B) No
B
3
Determine whether or not the relationship shown in the table is a function.
 Down payment (%) 5102025 Price of Home ($) 102,700122,900158,400169,000\begin{array} { l | c c c c } \text { Down payment (\%) } & 5 & 10 & 20 & 25 \\\hline \text { Price of Home (\$) } & 102,700 & 122,900 & 158,400 & 169,000\end{array} Does the table define the price of a home that a particular family can afford as a function of the percent down payment?

A) Yes
B) No
A
4
Determine whether or not the relationship shown in the table is a function.
x224910y24121\begin{array} { r | r | r | r | r | r } \mathrm { x } & - 2 & 2 & 4 & 9 & 10 \\\hline \mathrm { y } & 2 & 4 & - 1 & 2 & 1\end{array} Does the table define y as a function of x?

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
5
Determine whether or not the relationship shown in the table is a function.
 Number of Classes Missed 1234567 Average Final Exam Score 80788174737065\begin{array} { l | c c c c c c c } \text { Number of Classes Missed } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \text { Average Final Exam Score } & 80 & 78 & 81 & 74 & 73 & 70 & 65\end{array} Does the table define the number of classes missed as a function of the average final exam score?

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
6
Determine whether or not the relationship shown in the table is a function.
xy512735745\begin{array} { c | c } x & y \\\hline 5 & 12 \\7 & 3 \\5 & 7 \\4 & 5\end{array} Does the table define y as a function of x?

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
7
Determine whether or not the relationship shown in the table is a function.
 January 1234567 Weight (lbs) 197196198197196195194\begin{array} { l | c c c c c c c } \text { January } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \text { Weight (lbs) } & 197 & 196 & 198 & 197 & 196 & 195 & 194\end{array} Does the table define weight as a function of the day in January?

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
8
Use the table to answer the question.
x83101915y=f(x)311610742038\begin{array} { l | c | c | c | c | c | c | c } \mathrm { x } & - 8 & - 3 & - 1 & 0 & 1 & 9 & 15 \\\hline \mathrm { y } = \mathrm { f } ( \mathrm { x } ) & - 31 & - 16 & - 10 & - 7 & - 4 & 20 & 38\end{array} Is -3 an input or output of this function?

A) Output
B) Input
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
9
Use the table to answer the question.
x2018121731y=g(x)591125334371\begin{array} { l | c | c | c | c | c | c | c } x & - 2 & 0 & 1 & 8 & 12 & 17 & 31 \\\hline y = g ( x ) & 5 & 9 & 11 & 25 & 33 & 43 & 71\end{array} Is 31 an input or output of this function?

A) Input
B) Output
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
10
 <strong>   For the function  y = f ( x )  described by the table, find  f ( 2 ) .</strong> A) 7 B) 0 C) 2 D) Not shown

For the function y=f(x)y = f ( x ) described by the table, find f(2)f ( 2 ) .

A) 7
B) 0
C) 2
D) Not shown
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
11
Given f(x)=x25x1f ( x ) = x ^ { 2 } - 5 x - 1 , find f(2)f ( - 2 )

A) 5- 5
B) 7- 7
C) 15
D) 13
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
12
Determine whether or not the relationship shown in the table is a function.
 Name  Test Score  Bob L. 80 Susan H. 83 Jim H. 76 Bruce B. 96\begin{array} { r | r } \text { Name } & \text { Test Score } \\\hline \text { Bob L. } & 80 \\\hline \text { Susan H. } & 83 \\\hline \text { Jim H. } & 76 \\\hline \text { Bruce B. } & 96\end{array} Does the table define test score as a function of name?

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
13
Use the table to answer the question.
x3016131831y=g(x)391121354571\begin{array} { l | c | c | c | c | c | c | c } x & - 3 & 0 & 1 & 6 & 13 & 18 & 31 \\\hline y = g ( x ) & 3 & 9 & 11 & 21 & 35 & 45 & 71\end{array} Is g(6) an input or output of this function?

A) Input
B) Output
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
14
Determine whether or not the relationship shown in the table is a function.
 January 1234567 Weight (lbs) 218217219218217216215\begin{array} { l | c c c c c c c } \text { January } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \text { Weight (lbs) } & 218 & 217 & 219 & 218 & 217 & 216 & 215\end{array} Does the table define the day in January as a function of weight?

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
15
Use the table to answer the question.
x63101516y=f(x)25161074841\begin{array} { l | c | c | c | c | c | c | c } x & - 6 & - 3 & - 1 & 0 & 1 & 5 & 16 \\\hline y = f ( x ) & - 25 & - 16 & - 10 & - 7 & - 4 & 8 & 41\end{array} Is f(16) an input or output of this function?

A) Input
B) Output
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
16
Determine whether or not the relationship shown in the table is a function.
x135811y81483\begin{array} { c | c | c | c | c | c } x & 1 & 3 & 5 & 8 & 11 \\\hline y & 8 & 1 & 4 & 8 & - 3\end{array} Does the table define x as a function of y?

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
17
 <strong>  For the function  y = f ( x )  described by the table, find  f ( 1 ) .</strong> A)  - 2  B)  - 5  C) 0 D) Not shown
For the function y=f(x)y = f ( x ) described by the table, find f(1)f ( 1 ) .

A) 2- 2
B) 5- 5
C) 0
D) Not shown
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
18
Determine whether or not the relationship shown in the table is a function.
 Number of Classes Missed 1234567 Average Final Exam Score 75737669686560\begin{array} { l | c c c c c c c } \text { Number of Classes Missed } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \text { Average Final Exam Score } & 75 & 73 & 76 & 69 & 68 & 65 & 60\end{array} Does the table define the average final exam score as a function of the number of classes missed?

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
19
Evaluate the function.
Given f(x)=19x4f ( x ) = 19 x - 4 , find f(17)f ( 17 ) .

A) 19
B) 319
C) 327- 327
D) 327
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
20
Evaluate the function.
Given f(x)=(x+3)2f ( x ) = ( x + 3 ) ^ { 2 } , find f(2)f ( 2 )

A) 1
B) 25- 25
C) 10
D) 25
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
21
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
22
Decide whether or not the set of ordered pairs defines a function.
{(6,1),(6,7),(2,8),(6,9),(7,2)}\{ ( - 6 , - 1 ) , ( - 6,7 ) , ( 2 , - 8 ) , ( 6 , - 9 ) , ( 7,2 ) \}

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
23
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
24
Decide whether or not the set of ordered pairs defines a function.
{(3,3),(1,5),(4,7),(5,3)}\{ ( - 3 , - 3 ) , ( - 1,5 ) , ( 4 , - 7 ) , ( 5,3 ) \}

A) No
B) Yes
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
25
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
26
 <strong>  If  y = f ( x ) , find  f ( 1 ) .</strong> A) 1 B) 2 C) 0 D)  - 2
If y=f(x)y = f ( x ) , find f(1)f ( 1 ) .

A) 1
B) 2
C) 0
D) 2- 2
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
27
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
28
 <strong>  If  y = f ( x ) , find  f ( - 2 ) .</strong> A)  - 1  B) 1 C)  - 4  D) 4
If y=f(x)y = f ( x ) , find f(2)f ( - 2 ) .

A) 1- 1
B) 1
C) 4- 4
D) 4
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
29
 <strong>   \text { For the function } \mathrm { y } = \mathrm { f } ( \mathrm { x } ) \text { described by the table, find } \mathrm { f } ( 2 ) </strong> A) 10 B) 13 C) 7 D) 16
 For the function y=f(x) described by the table, find f(2)\text { For the function } \mathrm { y } = \mathrm { f } ( \mathrm { x } ) \text { described by the table, find } \mathrm { f } ( 2 )

A) 10
B) 13
C) 7
D) 16
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
30
Decide whether or not the set of ordered pairs defines a function.
{(3,6),(2,8),(6,6),(8,4),(12,1)}\{ ( - 3 , - 6 ) , ( 2 , - 8 ) , ( 6,6 ) , ( 8 , - 4 ) , ( 12 , - 1 ) \}

A) No
B) Yes
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
31
Decide whether or not the set of ordered pairs defines a function.
{(2,4),(2,7),(4,4),(8,3),(10,5)}\{ ( 2,4 ) , ( 2,7 ) , ( 4,4 ) , ( 8 , - 3 ) , ( 10,5 ) \}

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
32
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
33
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
34
Decide whether or not the set of ordered pairs defines a function.
{(6,9),(6,4),(1,4),(6,4),(8,1)}\{ ( - 6 , - 9 ) , ( - 6 , - 4 ) , ( 1,4 ) , ( 6 , - 4 ) , ( 8 , - 1 ) \}

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
35
 <strong>  If  y = f ( x ) , find  f ( 4 ) .</strong> A)  - 2  B) 2 C)  - 3  D) 3
If y=f(x)y = f ( x ) , find f(4)f ( 4 ) .

A) 2- 2
B) 2
C) 3- 3
D) 3
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
36
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
37
Decide whether or not the set of ordered pairs defines a function.
{(8,8),(3,8),(2,8),(2,5)}\{ ( - 8 , - 8 ) , ( - 3,8 ) , ( - 2 , - 8 ) , ( 2 , - 5 ) \}

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
38
State whether the graph is or is not that of a function.
<strong>State whether the graph is or is not that of a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
39
Decide whether or not the set of ordered pairs defines a function.
{(3,5),(2,9),(3,8),(3,6)}\{ ( - 3,5 ) , ( - 2 , - 9 ) , ( 3 , - 8 ) , ( 3,6 ) \}

A) No
B) Yes
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
40
Decide whether or not the set of ordered pairs defines a function.
{(3,8),(2,3),(1,3),(1,5)}\{ ( - 3,8 ) , ( - 2 , - 3 ) , ( 1,3 ) , ( 1 , - 5 ) \}

A) No
B) Yes
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
41
Find the domain of the function.
y=8x2y = \frac { - 8 } { x - 2 }

A) (2,)( 2 , \infty )
B) all real numbers except 2- 2
C) (,2)( - \infty , 2 )
D) all real numbers except 2
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
42
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
43
Decide whether or not the set of ordered pairs defines a function.
{(3,5),(1,2),(2,3),(7,2)}\{ ( - 3 , - 5 ) , ( - 1,2 ) , ( 2 , - 3 ) , ( 7,2 ) \}

A) No
B) Yes
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
44
Find the domain of the function.
y=xx4y = \frac { x } { \sqrt { x - 4 } }

A) (4,)( 4 , \infty )
B) all real numbers except 4
C) [4,)[ 4 , \infty )
D) (,)( - \infty , \infty )
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
45
Find the domain and range for the function.
 <strong>Find the domain and range for the function.  </strong> A) D:  \{ - 6 , - 4 , - 2,0,2,4,6 \} ;  R:  \{ - 4 , - 2 , - 1,3,4,6 \}  B) D:  \{ - 6 , - 4 , - 2,2,4,6 \} ; \mathrm { R } : \{ - 4 , - 2 , - 1,3,4,6 \}  C) D:  \{ - 6 , - 4,4,6 \} ; \mathrm { R } : \{ - 4 , - 2,4,6 \}  D) D:  \{ - 4 , - 2 , - 1,3,4,6 \} ; \mathrm { R } : \{ - 6 , - 4 , - 2,2,4,6 \}

A) D: {6,4,2,0,2,4,6};\{ - 6 , - 4 , - 2,0,2,4,6 \} ; R: {4,2,1,3,4,6}\{ - 4 , - 2 , - 1,3,4,6 \}
B) D: {6,4,2,2,4,6};R:{4,2,1,3,4,6}\{ - 6 , - 4 , - 2,2,4,6 \} ; \mathrm { R } : \{ - 4 , - 2 , - 1,3,4,6 \}
C) D: {6,4,4,6};R:{4,2,4,6}\{ - 6 , - 4,4,6 \} ; \mathrm { R } : \{ - 4 , - 2,4,6 \}
D) D: {4,2,1,3,4,6};R:{6,4,2,2,4,6}\{ - 4 , - 2 , - 1,3,4,6 \} ; \mathrm { R } : \{ - 6 , - 4 , - 2,2,4,6 \}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
46
Find the domain of the function.
y=7+xy = \sqrt { 7 + x }

A) [7,)[ - 7 , \infty )
В) (,)( - \infty , \infty )
C) (,7]( - \infty , - 7 ]
D) [0,)[ 0 , \infty )
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
47
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) No B) Yes

A) No
B) Yes
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
48
 <strong>   </strong> A) D:  [ 0,4 ] ; R : [ - 3,4 ]  B) D:  [ - 3,4 ] ;  R:  [ 0,4 ]  C) D:  ( - 3,4 ) ;  R:  ( 0,4 )  D) D:  [ 3,4 ] ; R : [ 0,4 ]
 <strong>   </strong> A) D:  [ 0,4 ] ; R : [ - 3,4 ]  B) D:  [ - 3,4 ] ;  R:  [ 0,4 ]  C) D:  ( - 3,4 ) ;  R:  ( 0,4 )  D) D:  [ 3,4 ] ; R : [ 0,4 ]

A) D: [0,4];R:[3,4][ 0,4 ] ; R : [ - 3,4 ]
B) D: [3,4];[ - 3,4 ] ; R: [0,4][ 0,4 ]
C) D: (3,4);( - 3,4 ) ; R: (0,4)( 0,4 )
D) D: [3,4];R:[0,4][ 3,4 ] ; R : [ 0,4 ]
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
49
Find the domain of the function.
y=61xy = 6 - \frac { 1 } { x }

A) (,)( - \infty , \infty )
B) (6,)( 6 , \infty )
C) all real numbers except 0
D) (,1)( - \infty , 1 )
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
50
Find the domain of the function.
y=20xy = \sqrt { 20 - x }

A) (,)( - \infty , \infty )
B) (20,)( \sqrt { 20 } , \infty )
C) all real numbers except 20
D) [,20][ \infty , 20 ]
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
51
Decide whether or not the set of ordered pairs defines a function.
{(1,4),(2,5),(5,3),(7,5),(11,8)}\{ ( 1,4 ) , ( 2,5 ) , ( 5 , - 3 ) , ( 7,5 ) , ( 11,8 ) \}

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
52
Find the domain of the function.
y=6x5y = \sqrt { 6 x - 5 }

A) (56,)\left( \frac { 5 } { 6 } , \infty \right)
B) (,)( \infty , \infty )
C) [56,]\left[ \frac { 5 } { 6 } , \infty \right]
D) [56,)\left[ - \frac { 5 } { 6 } , \infty \right)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
53
Find the domain of the function.
y=1712xy = \frac { 17 } { 12 - x }

A) All real numbers except 12
B) (12,)( 12 , \infty )
C) All real numbers except 12- 12
D) (,12)( - \infty , 12 )
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
54
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
55
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) No B) Yes

A) No
B) Yes
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
56
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
57
 <strong> </strong> A) D:  \{ - 4 , - 3,0,1,2,3 \} ;  R:  \{ - 5 , - 2,3,5 \}  B) D:  \{ - 5 , - 2,3,5 \} ;  R:  \{ - 4 , - 3,1,2,3 \}  C) D:  \{ - 4 , - 3,1,2,3 \} ;  R:  \{ - 5 , - 2,3,5 \}  D) D:  \{ - 5 , - 2,3,5 \} ; R : \{ - 4 , - 3,0,1,2,3 \}

A) D: {4,3,0,1,2,3};\{ - 4 , - 3,0,1,2,3 \} ; R: {5,2,3,5}\{ - 5 , - 2,3,5 \}
B) D: {5,2,3,5};\{ - 5 , - 2,3,5 \} ; R: {4,3,1,2,3}\{ - 4 , - 3,1,2,3 \}
C) D: {4,3,1,2,3};\{ - 4 , - 3,1,2,3 \} ; R: {5,2,3,5}\{ - 5 , - 2,3,5 \}
D) D: {5,2,3,5};R:{4,3,0,1,2,3}\{ - 5 , - 2,3,5 \} ; R : \{ - 4 , - 3,0,1,2,3 \}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
58
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) No B) Yes

A) No
B) Yes
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
59
Decide whether or not the arrow diagram defines a function.
<strong>Decide whether or not the arrow diagram defines a function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
60
 <strong>   </strong> A) D:  [ - 3,0 ] ;  R:  [ - 1,3 ]  B) D:  [ 0,3 ] ; \mathrm { R } : ( - \infty , 3 ]  C) D:  ( - \infty , 3 ] ;  R:  [ 0,3 ]  D) D:  [ - 1,3 ] ;  R:  [ - 3,0 ]
 <strong>   </strong> A) D:  [ - 3,0 ] ;  R:  [ - 1,3 ]  B) D:  [ 0,3 ] ; \mathrm { R } : ( - \infty , 3 ]  C) D:  ( - \infty , 3 ] ;  R:  [ 0,3 ]  D) D:  [ - 1,3 ] ;  R:  [ - 3,0 ]

A) D: [3,0];[ - 3,0 ] ; R: [1,3][ - 1,3 ]
B) D: [0,3];R:(,3][ 0,3 ] ; \mathrm { R } : ( - \infty , 3 ]
C) D: (,3];( - \infty , 3 ] ; R: [0,3][ 0,3 ]
D) D: [1,3];[ - 1,3 ] ; R: [3,0][ - 3,0 ]
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
61
y=10+ 104x+12\frac { 10 } { 4 x + 12 }

A)  <strong> y=10+ \frac { 10 } { 4 x + 12 } </strong> A)    B) all real numbers except 3 C)  ( - 3 , \infty )  D) all real numbers except  -3

B) all real numbers except 3
C) (3,)( - 3 , \infty )
D) all real numbers except -3
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
62
The salary s of an employee in a given year y.

A) No
B) Yes; y, s; there is one salary s in any given year y.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
63
Decide whether or not the equation defines y as a function of x.
y=6x+19y = \frac { 6 } { x + 19 }

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
64
Suppose the cost of producing x objects was defined by the function C(x)=60x60x10C ( x ) = \frac { 60 x } { \sqrt { 60 x - 10 } } What is the domain of the function defined by this equation?

A) (16,)\left( \frac { 1 } { 6 } , \infty \right)
B) (,16]\left( \infty , \frac { 1 } { 6 } \right]
C) (x,16)\left( x , \frac { 1 } { 6 } \right)
D) [16,)\left[ \frac { 1 } { 6 } , \infty \right)
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
65
Decide whether or not the equation defines y as a function of x.
y=2x3y = 2 x - 3

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
66
Decide whether or not the equation defines y as a function of x.
y=2x2+2x1y = 2 x ^ { 2 } + 2 x - 1

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
67
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The balance b in a checking account on a given day x.

A) Yes; x, b; there is one balance b on a given day x.
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
68
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
Derek's weight w in second grade g.

A) No
B) Yes; g, w; there is one weight for second grade.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
69
A customer's savings account number n given the number of years y the account has been active.

A) No
B) Yes; y, n; there is one account number n in any given year y.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
70
Decide whether or not the equation defines y as a function of x.
y2=(x6)(x+4)y ^ { 2 } = ( x - 6 ) ( x + 4 )

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
71
Decide whether or not the equation defines y as a function of x.
xy2=8x - y ^ { 2 } = - 8

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
72
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The temperature t on a backyard thermometer at 5 pm on a given day x.

A) Yes; x, t; there is one temperature t on any given day x at 5 pm.
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
73
Decide whether or not the equation defines y as a function of x.
x2+y=6x ^ { 2 } + y = - 6

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
74
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
Addy's height h on the first day d of school throughout elementary school.

A) No
B) Yes; d, h; there is one height for each school year.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
75
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The temperature t on a backyard thermometer on a given day x.

A) Yes; x, t; there is one temperature t on any given day x.
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
76
The number of shares s of a certain stock traded on a given day x.

A) No
B) Yes; x, s; there is one number of shares s traded on any given day x.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
77
This chart shows the fees for an 18-hole round of golf for each of the last 5 years at a local municipal golf course. Assume that this chart defines a function with the name of f. State the domain of f.  Year  Fee 2008$222009$242010$262011$262012$30\begin{array} { c | c } \text { Year } & \text { Fee } \\\hline 2008 & \$ 22 \\2009 & \$ 24 \\2010 & \$ 26 \\2011 & \$ 26 \\2012 & \$ 30\end{array}

A) {(2008, 22), (2009, 24), (2010, 26), (2011, 26), (2012, 30)}
B) {2008, 2009, 2010, 2011, 2012}
C) {22, 24, 26, 30}
D) {(22, 2008), (24, 2009), (26, 2010), (26, 2011), (30, 2012)}
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
78
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The salary s of an employee on her hiring date d.

A) No
B) Yes; d, s; there is one salary s on the hiring date d.
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
79
Determine whether the given relationship defines a function. If so, identify the independent and dependent variable, and
why the relationship is a function.
The balance in a checking account b at the close of business on a given day x.

A) Yes; x, b; there is one balance b on any given day x at the close of the business day.
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
80
Decide whether or not the equation defines y as a function of x.
y=3x7y = \sqrt { 3 x - 7 }

A) Yes
B) No
Unlock Deck
Unlock for access to all 306 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 306 flashcards in this deck.