Deck 5: Probability Distributions and Data Modeling

Full screen (f)
exit full mode
Question
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
Which of the following is true about probability density functions?

A) A graph of the density function must lie at or below the x-axis.
B) The total area under the density function below the x-axis is 2.0.
C) It calculates the probability of a random variable lying within a certain interval.
D) P (a) x P (b) is the area under the density function between two numbers a and b.
Use Space or
up arrow
down arrow
to flip the card.
Question
Which of the following is true of the binomial distribution?

A) The expected value of the binomial distribution is np1 - p), where n is the number of experiments and p is the probability of success.
B) The binomial distribution can assume different shapes and amounts of skewness, depending on the parameters.
C) In Excel's binomial distribution function, setting cumulative to TRUE will provide the probability mass function for a specified value.
D) The expected value of the binomial distribution is λ, a constant.
Question
Which of the following characterizes a random variable having two possible outcomes, each with a constant probability of occurrence?

A) Beta distribution
B) Bernoulli distribution
C) Poisson distribution
D) Binominal distribution
Question
Which of the following is true about the classical definition of probability?

A) It is based on judgment and experience.
B) If the process that generates the outcomes is known, probabilities can be deduced from theoretical arguments.
C) The probability that an outcome will occur is simply the relative frequency associated with that outcome.
D) It is based on observed data.
Question
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-Identify the correct statement from the following.

A) The events that a respondent is female and chooses Math are not independent.
B) All events are independent of each other.
C) The events that a respondent is male and chooses Science are not dependent.
D) The events that a respondent is female and that she chooses Science are independent.
Question
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-Which of the following will hold true if events X and Y are independent?

A) PX) = PY) × PX and Y)
B) PY) = PX|Y)
C) PX and Y) = [PX) + PY)] - PX or Y)
D) PX) = PX|Y)
Question
The of a random variable corresponds to the notion of the mean, or average, for a sample.

A) mode
B) variance
C) expected value
D) standard deviation
Question
The binominal distribution:

A) is a discrete distribution used to model the number of occurrences in some unit of measure.
B) assumes that the average number of occurrences per unit is a constant and that occurrences are independent.
C) is symmetric irrespective of the value of the probability of success.
D) models n independent replications of a Bernoulli experiment, each with a probability p of success.
Question
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
A probability density function:

A) is the probability distribution of discrete outcomes.
B) suggests that the probability that a random variable assumes a specific value must be positive.
C) characterizes outcomes of a continuous random variable.
D) can yield negative values depending on the values of the random variable, X.
Question
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-Use the multiplication law of probability to compute the probability that the respondent is male and prefers Math.

A) 875\frac { 8 } { 75 }
B) 38\frac { 3 } { 8 }
C) 3225\frac { 3 } { 225 }
D) 315\frac { 3 } { 15 }
Question
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-What is the probability that a respondent prefers Science given that the respondent is female?

A) 115\frac { 1 } { 15 }
B) 17\frac { 1 } { 7 }
C) 715\frac { 7 } { 15 }
D) 4
7
Question
Which of the following is a weighted average of the squared deviations from the expected value?

A) skewness
B) mean difference
C) kurtosis
D) variance
Question
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
What is the probability that exactly 13 students will take up Arts in the coming year?

A) 0.08795
B) 0.20087
C) 0.04798
D) 0.06585
Question
For a discrete random variable X, which of the following computes the expected value?

A) f(xi)\sum f \left( x _ { i } \right)
B) i=1xif(xi)\sum _ { i = 1 } ^ { \infty } x _ { i } f \left( x _ { i } \right)
C) i=1xi\sum _ { i = 1 } ^ { \infty } x _ { i }
D) f(x)\sum ^ { f ( x ) }
Question
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
Which of the following characterizes a continuous random variable for which all outcomes between some minimum and maximum value are equally likely?

A) exponential distribution
B) uniform distribution
C) normal distribution
D) lognormal distribution
Question
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
What is the probability of 8 takers or less for Arts subjects in the coming year?

A) 0.00716
B) 0.01260
C) 0.03164
D) 0.04744
Question
Consider an event X comprised of three outcomes whose probabilities are 918\frac { 9 } { 18 } , 118\frac { 1 } { 18 } , and 618\frac { 6 } { 18 } . Compute the probability of the complement of the event.

A) 218\frac { 2 } { 18 }
B) 12\frac { 1 } { 2 }
C) 163\frac { 16 } { 3 }
D) 1618\frac { 16 } { 18 }
Question
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
Which of the following is true of normal distributions?

A) The mean, median, and mode are all equal.
B) Its measure of skewness is always greater than 1.
C) The range of the random variable X is bounded.
D) Mathematical formulas make it easier to compute normal distributions.
Question
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-Which of the following is a continuous random variable?

A) the outcomes of rolling two dice
B) the time to complete a specific task
C) the number of new hires in a year
D) the number of hits on a Web site link
Question
Which of the following is true about variance?

A) It measures the uncertainty of a random variable.
B) Higher variance implies low uncertainty.
C) It is the square root of a random variable's standard deviation.
D) It is the weighted average of all possible outcomes.
Question
What are the properties of a probability mass function?
Question
The Excel function NORM.DIST finds probabilities for the standard normal distribution.
Question
How are probability, experiment, outcome, and sample space related to each other?
Question
Use the data given below to answer the following questions).
The profit from selling folding tables varies uniformly each quarter between $1,500 and $2,300.
What is the probability that profit will be between $2,000 and $2,200?
Question
Explain the similarity between the formulas for computing population mean and expected value of discrete random variable X.
Question
The expected value and variance of the Poisson distribution are equal to λ.
Question
Use the data given below to answer the following questions).
At a casino, a combination of two spinners is used to decide the winner based on the sum of scores from spinning. The spinners each have four colored spaces - red, yellow, blue, and green. Red = 1, Yellow = 2, Blue = 3, and Green = 4
What is the probability that the spinners land on colors summing up to exactly 3?
Question
If PX|Y) = PX), it implies that event Y is dependent on event X.
Question
Use the data given below to answer the following questions).
The profit from selling folding tables varies uniformly each quarter between $1,500 and $2,300.
What is the probability that profit will be less than $1,900?
Question
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
The exponential distribution:

A) has the density function f x) = e-λx , for x ≥ 0.
B) models the time between randomly occurring events.
C) has an expected value λ.
D) is described by the familiar bell-shaped curve.
Question
Use the data given below to answer the following questions).
At a casino, a combination of two spinners is used to decide the winner based on the sum of scores from spinning. The spinners each have four colored spaces - red, yellow, blue, and green. Red = 1, Yellow = 2, Blue = 3, and Green = 4
Compute the expected value of the random variable that denotes the possible summed scores from the two spinners.
Question
How can normal probabilities be computed using Excel? Given the cumulative probability, how can the value of the random variable be found?
Question
Use the data given below to answer the following questions).
At a casino, a combination of two spinners is used to decide the winner based on the sum of scores from spinning. The spinners each have four colored spaces - red, yellow, blue, and green. Red = 1, Yellow = 2, Blue = 3, and Green = 4
Compute the variance of the random variable that denotes the possible summed scores from the two spinners.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/33
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Probability Distributions and Data Modeling
1
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
Which of the following is true about probability density functions?

A) A graph of the density function must lie at or below the x-axis.
B) The total area under the density function below the x-axis is 2.0.
C) It calculates the probability of a random variable lying within a certain interval.
D) P (a) x P (b) is the area under the density function between two numbers a and b.
It calculates the probability of a random variable lying within a certain interval.
2
Which of the following is true of the binomial distribution?

A) The expected value of the binomial distribution is np1 - p), where n is the number of experiments and p is the probability of success.
B) The binomial distribution can assume different shapes and amounts of skewness, depending on the parameters.
C) In Excel's binomial distribution function, setting cumulative to TRUE will provide the probability mass function for a specified value.
D) The expected value of the binomial distribution is λ, a constant.
The binomial distribution can assume different shapes and amounts of skewness, depending on the parameters.
3
Which of the following characterizes a random variable having two possible outcomes, each with a constant probability of occurrence?

A) Beta distribution
B) Bernoulli distribution
C) Poisson distribution
D) Binominal distribution
Bernoulli distribution
4
Which of the following is true about the classical definition of probability?

A) It is based on judgment and experience.
B) If the process that generates the outcomes is known, probabilities can be deduced from theoretical arguments.
C) The probability that an outcome will occur is simply the relative frequency associated with that outcome.
D) It is based on observed data.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
5
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-Identify the correct statement from the following.

A) The events that a respondent is female and chooses Math are not independent.
B) All events are independent of each other.
C) The events that a respondent is male and chooses Science are not dependent.
D) The events that a respondent is female and that she chooses Science are independent.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
6
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-Which of the following will hold true if events X and Y are independent?

A) PX) = PY) × PX and Y)
B) PY) = PX|Y)
C) PX and Y) = [PX) + PY)] - PX or Y)
D) PX) = PX|Y)
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
7
The of a random variable corresponds to the notion of the mean, or average, for a sample.

A) mode
B) variance
C) expected value
D) standard deviation
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
8
The binominal distribution:

A) is a discrete distribution used to model the number of occurrences in some unit of measure.
B) assumes that the average number of occurrences per unit is a constant and that occurrences are independent.
C) is symmetric irrespective of the value of the probability of success.
D) models n independent replications of a Bernoulli experiment, each with a probability p of success.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
9
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
A probability density function:

A) is the probability distribution of discrete outcomes.
B) suggests that the probability that a random variable assumes a specific value must be positive.
C) characterizes outcomes of a continuous random variable.
D) can yield negative values depending on the values of the random variable, X.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
10
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-Use the multiplication law of probability to compute the probability that the respondent is male and prefers Math.

A) 875\frac { 8 } { 75 }
B) 38\frac { 3 } { 8 }
C) 3225\frac { 3 } { 225 }
D) 315\frac { 3 } { 15 }
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
11
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-What is the probability that a respondent prefers Science given that the respondent is female?

A) 115\frac { 1 } { 15 }
B) 17\frac { 1 } { 7 }
C) 715\frac { 7 } { 15 }
D) 4
7
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
12
Which of the following is a weighted average of the squared deviations from the expected value?

A) skewness
B) mean difference
C) kurtosis
D) variance
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
13
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
What is the probability that exactly 13 students will take up Arts in the coming year?

A) 0.08795
B) 0.20087
C) 0.04798
D) 0.06585
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
14
For a discrete random variable X, which of the following computes the expected value?

A) f(xi)\sum f \left( x _ { i } \right)
B) i=1xif(xi)\sum _ { i = 1 } ^ { \infty } x _ { i } f \left( x _ { i } \right)
C) i=1xi\sum _ { i = 1 } ^ { \infty } x _ { i }
D) f(x)\sum ^ { f ( x ) }
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
15
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
Which of the following characterizes a continuous random variable for which all outcomes between some minimum and maximum value are equally likely?

A) exponential distribution
B) uniform distribution
C) normal distribution
D) lognormal distribution
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
16
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
What is the probability of 8 takers or less for Arts subjects in the coming year?

A) 0.00716
B) 0.01260
C) 0.03164
D) 0.04744
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
17
Consider an event X comprised of three outcomes whose probabilities are 918\frac { 9 } { 18 } , 118\frac { 1 } { 18 } , and 618\frac { 6 } { 18 } . Compute the probability of the complement of the event.

A) 218\frac { 2 } { 18 }
B) 12\frac { 1 } { 2 }
C) 163\frac { 16 } { 3 }
D) 1618\frac { 16 } { 18 }
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
18
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
Which of the following is true of normal distributions?

A) The mean, median, and mode are all equal.
B) Its measure of skewness is always greater than 1.
C) The range of the random variable X is bounded.
D) Mathematical formulas make it easier to compute normal distributions.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
19
Use the data given below to answer the following questions).
15 students were asked to choose between the broad categories of Arts, Science, and Math as their preferred area of study.  Respondent  Gender  Preference 1 Fernale  Arts 2 Male  Science 3 Male  Math 4 Fernale  Arts 5 Fernale  Math 6 Male  Science 7 Male  Math 8 Male  Math 9 Fernale  Arts 10 Male  Arts 11 Male  Science 12 Fernale  Science 13 Fernale  Math 14 Male  Arts 15 Fernale  Arts \begin{array} { | c | c | c | } \hline \text { Respondent } & \text { Gender } & \text { Preference } \\\hline 1 & \text { Fernale } & \text { Arts } \\\hline 2 & \text { Male } & \text { Science } \\\hline 3 & \text { Male } & \text { Math } \\\hline 4 & \text { Fernale } & \text { Arts } \\\hline 5 & \text { Fernale } & \text { Math } \\\hline 6 & \text { Male } & \text { Science } \\\hline 7 & \text { Male } & \text { Math } \\\hline 8 & \text { Male } & \text { Math } \\\hline 9 & \text { Fernale } & \text { Arts } \\\hline 10 & \text { Male } & \text { Arts } \\\hline 11 & \text { Male } & \text { Science } \\\hline 12 & \text { Fernale } & \text { Science } \\\hline 13 & \text { Fernale } & \text { Math } \\\hline 14 & \text { Male } & \text { Arts } \\\hline 15 & \text { Fernale } & \text { Arts }\\\hline \end{array}

-Which of the following is a continuous random variable?

A) the outcomes of rolling two dice
B) the time to complete a specific task
C) the number of new hires in a year
D) the number of hits on a Web site link
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
20
Which of the following is true about variance?

A) It measures the uncertainty of a random variable.
B) Higher variance implies low uncertainty.
C) It is the square root of a random variable's standard deviation.
D) It is the weighted average of all possible outcomes.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
21
What are the properties of a probability mass function?
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
22
The Excel function NORM.DIST finds probabilities for the standard normal distribution.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
23
How are probability, experiment, outcome, and sample space related to each other?
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
24
Use the data given below to answer the following questions).
The profit from selling folding tables varies uniformly each quarter between $1,500 and $2,300.
What is the probability that profit will be between $2,000 and $2,200?
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
25
Explain the similarity between the formulas for computing population mean and expected value of discrete random variable X.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
26
The expected value and variance of the Poisson distribution are equal to λ.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
27
Use the data given below to answer the following questions).
At a casino, a combination of two spinners is used to decide the winner based on the sum of scores from spinning. The spinners each have four colored spaces - red, yellow, blue, and green. Red = 1, Yellow = 2, Blue = 3, and Green = 4
What is the probability that the spinners land on colors summing up to exactly 3?
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
28
If PX|Y) = PX), it implies that event Y is dependent on event X.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
29
Use the data given below to answer the following questions).
The profit from selling folding tables varies uniformly each quarter between $1,500 and $2,300.
What is the probability that profit will be less than $1,900?
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
30
Use the data given below to answer the following questions).
On an average, the number of students that choose to study Arts subjects at Greyin Tide University is 17 each year. Hint: Use Poisson distribution formula).
The exponential distribution:

A) has the density function f x) = e-λx , for x ≥ 0.
B) models the time between randomly occurring events.
C) has an expected value λ.
D) is described by the familiar bell-shaped curve.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
31
Use the data given below to answer the following questions).
At a casino, a combination of two spinners is used to decide the winner based on the sum of scores from spinning. The spinners each have four colored spaces - red, yellow, blue, and green. Red = 1, Yellow = 2, Blue = 3, and Green = 4
Compute the expected value of the random variable that denotes the possible summed scores from the two spinners.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
32
How can normal probabilities be computed using Excel? Given the cumulative probability, how can the value of the random variable be found?
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
33
Use the data given below to answer the following questions).
At a casino, a combination of two spinners is used to decide the winner based on the sum of scores from spinning. The spinners each have four colored spaces - red, yellow, blue, and green. Red = 1, Yellow = 2, Blue = 3, and Green = 4
Compute the variance of the random variable that denotes the possible summed scores from the two spinners.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 33 flashcards in this deck.