Deck 25: The Application of Linear Programming to Management Accounting

Full screen (f)
exit full mode
Question
Figure 25-2
Heft Company produces A and B with contribution margins per unit of £40 and £30, respectively. Only 500 labour hours and 300 machine hours are available for production.
Time requirements to produce one unit of A and B are as follows:  Product A  Product B  Labour hours per unit 52 Machine hours per unit 14\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&5 & 2 \\\text { Machine hours per unit }&1 & 4\end{array}

-Refer to Figure 25-2. What is the objective function to maximize profits for Heft Company?

A)Minimize 5A + 2B
B)Maximize 1A + 4B
C)Maximize 40A + 30B
D)Minimize 40A + 30B
Use Space or
up arrow
down arrow
to flip the card.
Question
A linear programming problem has the following objective function: 20X + 40Y + 60Z. If the optimal solution provided by the model is to produce and sell 100, 200 and 300 units of X, Y, and Z, respectively, what is the expected return?

A)£36,000
B)£28,000
C)£120
D)£24,000
Question
Figure 25-2
Heft Company produces A and B with contribution margins per unit of £40 and £30, respectively. Only 500 labour hours and 300 machine hours are available for production.
Time requirements to produce one unit of A and B are as follows:  Product A  Product B  Labour hours per unit 52 Machine hours per unit 14\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&5 & 2 \\\text { Machine hours per unit }&1 & 4\end{array}

-Refer to Figure 25-2. What is the constraint on machine hours for Heft Company?

A)1A + 4B \le 500
B)5A + 2B \le 500
C)1A + 4B \le 300
D)40A + 30B \le 500
Question
A linear programming model would NOT include which of the following items?

A)independent variables
B)networks
C)dependent variables
D)objective function
Question
Figure 25-1
Hassel Company manufactures two different products, X and Y. The company has 100 kgs of materials and 300 direct labour hours available for production.
The time requirements and contribution margins per unit are as follows:  Product X  Product Y  Contribution margin per unit £4£5 Materials per unit (lbs.) 12 Direct labour hours per unit 42\begin{array}{lrr}&\text { Product X }&\text { Product Y }\\\text { Contribution margin per unit } & £ 4 & £ 5 \\\text { Materials per unit (lbs.) } & 1 & 2 \\\text { Direct labour hours per unit } & 4 & 2\end{array}

-Refer to Figure 25-1. What is the equation for the constraint on direct labour?

A)£1X + £2Y \le 300
B)£4X + £2Y \le 100
C)£4X + £5Y \le 100
D)£4X + £2Y \le 300
Question
Using the graphic approach to linear programming, the solution is usually

A)a corner point where two or more constraints intersect.
B)where the lines intersect farthest from zero.
C)the point farthest from the Y-axis.
D)the point farthest from the X-axis.
Question
Figure 25-6
Anderson Company manufactures two different products: A and B. The company has 100 kgs of raw materials and 300 direct labour-hours available for production.
The time requirements and contribution margins per unit are as follows: AB Raw materials per unit (lbs.) 12 Direct-labour hours per unit 42 Contribution margin per unit E4E5\begin{array}{lcr}&A&B\\\text { Raw materials per unit (lbs.) } & 1 & 2 \\\text { Direct-labour hours per unit } & 4 & 2 \\\text { Contribution margin per unit } & E 4 & E 5\end{array}

-Refer to Figure 25-6. What is the objective function for Anderson Company?

A)Minimize £4A + £5B.
B)Maximize £4A + £5B.
C)Maximize £1A + £2B.
D)Maximize £4A + £2B.
Question
Figure 25-1
Hassel Company manufactures two different products, X and Y. The company has 100 kgs of materials and 300 direct labour hours available for production.
The time requirements and contribution margins per unit are as follows:  Product X  Product Y  Contribution margin per unit £4£5 Materials per unit (lbs.) 12 Direct labour hours per unit 42\begin{array}{lrr}&\text { Product X }&\text { Product Y }\\\text { Contribution margin per unit } & £ 4 & £ 5 \\\text { Materials per unit (lbs.) } & 1 & 2 \\\text { Direct labour hours per unit } & 4 & 2\end{array}

-Refer to Figure 25-1. What is the objective function for maximizing profits?

A)Minimize £4X + £5Y
B)Maximize £4X + £5Y
C)Maximize £1X + £2Y
D)Maximize £4X + £2Y
Question
Figure 25-4
The following information is available for Wilson Trailer Company, which sells two products:  Trailer A  Trailer B  Processing time 2 hours 4 hours  Vinyl cover used 16 sq. ft. 12 sq. ft.  Selling price £50.00£80.00 Variable cost £35.00£50.00 Fixed cost £10.00£20.00\begin{array} { l c c } & \text { Trailer A } & \text { Trailer B } \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \text { sq. ft. } & 12 \text { sq. ft. } \\\text { Selling price } & £ 50.00 & £ 80.00 \\\text { Variable cost } & £ 35.00 & £ 50.00 \\\text { Fixed cost } & £ 10.00 & £ 20.00\end{array} There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-4. The constraint equation representing the materials available for the production processes is

A)2A + 4B \ge 100.
B)16A + 12B = 75.
C)2A + 4B = 200.
D)16A + 12B \le 75.
Question
A linear programming problem has an objective function of 10X + 12Y. If the optimal solution provided by the model is to produce and sell 400 units of X and 1,000 units of Y, the expected return is

A)£1,400.
B)£40,800.
C)£14,800.
D)£16,000.
Question
Figure 25-5
The following information is available for Walters Furniture Company, which sells two products:  Table X  Table Y  Processing time 4 hours 6 hours  Metal used 30sq.ft.18sq.ft. Selling price £200.00£100.00 Variable cost £150.00£60.00 Fixed cost £30.00£30.00\begin{array}{lcc} & \text { Table X } & \text { Table Y } \\\text { Processing time } & 4 \text { hours } & 6 \text { hours } \\\text { Metal used } & 30 \mathrm{sq} . \mathrm{ft} . & 18 \mathrm{sq} . \mathrm{ft} . \\\text { Selling price } & £ 200.00 & £ 100.00 \\\text { Variable cost } & £ 150.00 & £ 60.00 \\\text { Fixed cost } & £ 30.00 & £ 30.00\end{array} There are 200 hours available in the plant and 200 square metres of metal available per operating period.

-Refer to Figure 25-5. What is the objective function for maximizing sales?

A)Maximize 200X + 100Y
B)Maximize 180X + 90Y
C)Maximize 50X + 40Y
D)Minimize 200X + 100Y
Question
In the graphic method of solving a linear programming problem, which of the following is depicted on the graph?

A)coefficient of correlation
B)constraint
C)least-squares line of best fit
D)break-even point
Question
Figure 25-3
Tiffany Manufacturing Company produces X and Y with contribution margins per unit of £10 and £90, respectively. Only 200 labour hours and 400 machine hours are available for production.
Time requirements to produce one unit of X and Y are as follows:  Product A  Product B  Labour hours per unit 12 Machine hours per unit 51\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&1&2 \\\text { Machine hours per unit }&5&1\end{array}

-Refer to Figure 25-3. What is the constraint on machine hours for Tiffany Manufacturing Company?

A)10X + 90Y \le 200
B)1X + 2Y \le 400
C)1X + 2Y \le 200
D)5X + 1Y \le 400
Question
Figure 25-3
Tiffany Manufacturing Company produces X and Y with contribution margins per unit of £10 and £90, respectively. Only 200 labour hours and 400 machine hours are available for production.
Time requirements to produce one unit of X and Y are as follows:  Product A  Product B  Labour hours per unit 12 Machine hours per unit 51\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&1&2 \\\text { Machine hours per unit }&5&1\end{array}

-Refer to Figure 25-3. What is the objective function to maximize profits for Tiffany Manufacturing Company?

A)Minimize 10X + 90Y
B)Maximize 1X + 2Y
C)Maximize 10X + 90Y
D)Minimize 1X + 2Y
Question
Figure 25-4
The following information is available for Wilson Trailer Company, which sells two products:  Trailer A  Trailer B  Processing time 2 hours 4 hours  Vinyl cover used 16 sq. ft. 12 sq. ft.  Selling price £50.00£80.00 Variable cost £35.00£50.00 Fixed cost £10.00£20.00\begin{array} { l c c } & \text { Trailer A } & \text { Trailer B } \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \text { sq. ft. } & 12 \text { sq. ft. } \\\text { Selling price } & £ 50.00 & £ 80.00 \\\text { Variable cost } & £ 35.00 & £ 50.00 \\\text { Fixed cost } & £ 10.00 & £ 20.00\end{array} There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-4. What is the objective function for maximizing profits?

A)Maximize £15A + £30B
B)Maximize £50A + £80B
C)Maximize £35A + £50B
D)Minimize £15A + £30B
Question
Figure 25-4
The following information is available for Wilson Trailer Company, which sells two products:  Trailer A  Trailer B  Processing time 2 hours 4 hours  Vinyl cover used 16 sq. ft. 12 sq. ft.  Selling price £50.00£80.00 Variable cost £35.00£50.00 Fixed cost £10.00£20.00\begin{array} { l c c } & \text { Trailer A } & \text { Trailer B } \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \text { sq. ft. } & 12 \text { sq. ft. } \\\text { Selling price } & £ 50.00 & £ 80.00 \\\text { Variable cost } & £ 35.00 & £ 50.00 \\\text { Fixed cost } & £ 10.00 & £ 20.00\end{array} There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-4. Which of the following statements is INCORRECT?

A)The materials constraint favours Trailer B over Trailer A.
B)The time constraint favours Trailer A over Trailer B.
C)The material constraint favours Trailer A over Trailer B.
D)The objective function favours Trailer B over Trailer A.
Question
Figure 25-2
Heft Company produces A and B with contribution margins per unit of £40 and £30, respectively. Only 500 labour hours and 300 machine hours are available for production.
Time requirements to produce one unit of A and B are as follows:  Product A  Product B  Labour hours per unit 52 Machine hours per unit 14\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&5 & 2 \\\text { Machine hours per unit }&1 & 4\end{array}

-Refer to Figure 25-2. What is the constraint on labour hours for Heft Company?

A)5A + 1B \le 500
B)5A + 2B \le 500
C)1A + 4B \le 300
D)40A + 30B \le 500
Question
Figure 25-5
The following information is available for Walters Furniture Company, which sells two products:  Table X  Table Y  Processing time 4 hours 6 hours  Metal used 30sq.ft.18sq.ft. Selling price £200.00£100.00 Variable cost £150.00£60.00 Fixed cost £30.00£30.00\begin{array}{lcc} & \text { Table X } & \text { Table Y } \\\text { Processing time } & 4 \text { hours } & 6 \text { hours } \\\text { Metal used } & 30 \mathrm{sq} . \mathrm{ft} . & 18 \mathrm{sq} . \mathrm{ft} . \\\text { Selling price } & £ 200.00 & £ 100.00 \\\text { Variable cost } & £ 150.00 & £ 60.00 \\\text { Fixed cost } & £ 30.00 & £ 30.00\end{array} There are 200 hours available in the plant and 200 square metres of metal available per operating period.

-Refer to Figure 25-5. The constraint equation representing processing time available is

A)4X + 6Y \ge 200.
B)4X + 6Y \le 200.
C)30X + 18Y \le 200.
D)4X + 6Y \le 400.
Question
Figure 25-3
Tiffany Manufacturing Company produces X and Y with contribution margins per unit of £10 and £90, respectively. Only 200 labour hours and 400 machine hours are available for production.
Time requirements to produce one unit of X and Y are as follows:  Product A  Product B  Labour hours per unit 12 Machine hours per unit 51\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&1&2 \\\text { Machine hours per unit }&5&1\end{array}

-Refer to Figure 25-3. What is the constraint on labour hours for Tiffany Manufacturing Company?

A)10X + 90Y \le 200
B)1X + 2Y \le 400
C)1X + 2Y \le 200
D)1X + 4Y \le 400
Question
Figure 25-1
Hassel Company manufactures two different products, X and Y. The company has 100 kgs of materials and 300 direct labour hours available for production.
The time requirements and contribution margins per unit are as follows:  Product X  Product Y  Contribution margin per unit £4£5 Materials per unit (lbs.) 12 Direct labour hours per unit 42\begin{array}{lrr}&\text { Product X }&\text { Product Y }\\\text { Contribution margin per unit } & £ 4 & £ 5 \\\text { Materials per unit (lbs.) } & 1 & 2 \\\text { Direct labour hours per unit } & 4 & 2\end{array}

-Refer to Figure 25-1. What is the equation for the constraint on materials?

A)£1X + £2Y \le 100
B)£4X + £2Y \le 100
C)£4X + £5Y \le 100
D)£4X + £5Y \le 300
Question
Smith Products Ltd.produces two products. The manufacture of these products is partially automated. Total available labour hours are 400, and the total available machine hours are 600. Time requirements and contribution margins per unit for each product are as follows:  Product X  Product Y  Labour hours 23 Machine hours 42 Contribution margin per unit E5£4\begin{array}{lrr}&\text { Product X } & \text { Product Y } \\\text { Labour hours } & 2 & 3 \\\text { Machine hours } & 4 & 2 \\\text { Contribution margin per unit } & E 5 & £ 4\end{array}
a.What is the equation to be maximized?
b.What are the equations that express the constraints?
c.What is the greatest number of units of A that can be produced given the constraints?
d.What is the optimal solution?
Question
Coffee Ltd.manufactures two different miniature models of furniture, a table and a chair. The company has 500 metres of lumber, 400 machine hours, and 600 direct labour hours available for production. The miniature tables and chairs provide £5 and £4 of contribution margin, respectively.
The time and lumber requirements to build a miniature table or chair are as follows:  Table  Chair  Metres oflumber per unit 52 Machine hours per unit 23 Direct labour hours per unit 42\begin{array}{lll}&\text { Table } & \text { Chair } \\\text { Metres oflumber per unit } & 5 & 2 \\\text { Machine hours per unit } & 2 & 3 \\\text { Direct labour hours per unit } & 4 & 2\end{array}
a.What is the objective function being maximized?
b.What are the constraint equations?
c.Graph the constraint equations. Identify the feasible region.
d.What is the optimal solution?
Question
Figure 25-7
The following information is available for the Johnson Boat Company, which sells two products:  3- Person Raft  Kayak  (Variable A )  (Variable B)  Selling price £50£80 Variable costs £35£50 Fixed costs (average) £10£20 Processing time 2 hours 4 hours  Vinyl cover used 16sq.ft.12sq.ft.\begin{array}{lcc}&\text { 3- Person Raft } & \text { Kayak } \\&\text { (Variable } A \text { ) } & \text { (Variable B) }\\\text { Selling price } & £ 50 & £ 80 \\\text { Variable costs } & £ 35 & £ 50 \\\text { Fixed costs (average) } & £ 10 & £ 20 \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \mathrm{sq} . \mathrm{ft} . & 12 \mathrm{sq} . \mathrm{ft} .\end{array}
There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-7. The objective function for this production situation is to:

A)maximize £15A + £30B.
B)maximize £50A + £80B.
C)maximize £35A + £50B.
D)minimize £15A + £30B.
Question
Figure 25-7
The following information is available for the Johnson Boat Company, which sells two products:  3- Person Raft  Kayak  (Variable A )  (Variable B)  Selling price £50£80 Variable costs £35£50 Fixed costs (average) £10£20 Processing time 2 hours 4 hours  Vinyl cover used 16sq.ft.12sq.ft.\begin{array}{lcc}&\text { 3- Person Raft } & \text { Kayak } \\&\text { (Variable } A \text { ) } & \text { (Variable B) }\\\text { Selling price } & £ 50 & £ 80 \\\text { Variable costs } & £ 35 & £ 50 \\\text { Fixed costs (average) } & £ 10 & £ 20 \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \mathrm{sq} . \mathrm{ft} . & 12 \mathrm{sq} . \mathrm{ft} .\end{array}
There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-7. The constraint equation representing the materials available for the production processes is:

A)2A + 4B > 100.
B)16A + 12B = 75.
C)2A + 4B = 200.
D)16A + 12B < 75.
Question
A linear programming model would NOT include which of the following items?

A)independent variables
B)constraints
C)objective function
D)networks
Question
Figure 25-6
Anderson Company manufactures two different products: A and B. The company has 100 kgs of raw materials and 300 direct labour-hours available for production.
The time requirements and contribution margins per unit are as follows: AB Raw materials per unit (lbs.) 12 Direct-labour hours per unit 42 Contribution margin per unit E4E5\begin{array}{lcr}&A&B\\\text { Raw materials per unit (lbs.) } & 1 & 2 \\\text { Direct-labour hours per unit } & 4 & 2 \\\text { Contribution margin per unit } & E 4 & E 5\end{array}

-Refer to Figure 25-6. What is the equation for the constraint on direct labour?

A)£1A + £2B < 300
B)£4A + £2B < 100
C)£4A + £5B < 100
D)£4A + £2B < 300
Question
Figure 25-6
Anderson Company manufactures two different products: A and B. The company has 100 kgs of raw materials and 300 direct labour-hours available for production.
The time requirements and contribution margins per unit are as follows: AB Raw materials per unit (lbs.) 12 Direct-labour hours per unit 42 Contribution margin per unit E4E5\begin{array}{lcr}&A&B\\\text { Raw materials per unit (lbs.) } & 1 & 2 \\\text { Direct-labour hours per unit } & 4 & 2 \\\text { Contribution margin per unit } & E 4 & E 5\end{array}

-Refer to Figure 25-6. What is the equation for the constraint on raw materials?

A)£1A + £2B < 100
B)£4A + £2B < 100
C)£4A + £5B < 100
D)£4A + £5B < 300
Question
Figure 25-7
The following information is available for the Johnson Boat Company, which sells two products:  3- Person Raft  Kayak  (Variable A )  (Variable B)  Selling price £50£80 Variable costs £35£50 Fixed costs (average) £10£20 Processing time 2 hours 4 hours  Vinyl cover used 16sq.ft.12sq.ft.\begin{array}{lcc}&\text { 3- Person Raft } & \text { Kayak } \\&\text { (Variable } A \text { ) } & \text { (Variable B) }\\\text { Selling price } & £ 50 & £ 80 \\\text { Variable costs } & £ 35 & £ 50 \\\text { Fixed costs (average) } & £ 10 & £ 20 \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \mathrm{sq} . \mathrm{ft} . & 12 \mathrm{sq} . \mathrm{ft} .\end{array}
There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-7. Which of the following statements is NOT correct?

A)The materials constraint favours kayaks over rafts.
B)The time constraint favours rafts over kayaks.
C)The material constraint favours rafts over kayaks.
D)The objective function favours kayaks over rafts.
Question
A linear programming problem has an objective function of 10a + 12b. If the optimal solution provided by the model is to produce and sell 400 units of a and 1,000 units of b, the expected profit is:

A)£1,400.
B)£14,800.
C)£16,000.
D)£40,800.
Question
A linear programming problem has the following objective function:
20A + 40B + 60C
If the optimal solution provided by the model is to produce and sell 100, 200, and 300 units of A, B, and C, respectively, what is the expected profit?

A)£36,000
B)£120
C)£24,000
D)£28,000
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/30
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 25: The Application of Linear Programming to Management Accounting
1
Figure 25-2
Heft Company produces A and B with contribution margins per unit of £40 and £30, respectively. Only 500 labour hours and 300 machine hours are available for production.
Time requirements to produce one unit of A and B are as follows:  Product A  Product B  Labour hours per unit 52 Machine hours per unit 14\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&5 & 2 \\\text { Machine hours per unit }&1 & 4\end{array}

-Refer to Figure 25-2. What is the objective function to maximize profits for Heft Company?

A)Minimize 5A + 2B
B)Maximize 1A + 4B
C)Maximize 40A + 30B
D)Minimize 40A + 30B
Maximize 40A + 30B
2
A linear programming problem has the following objective function: 20X + 40Y + 60Z. If the optimal solution provided by the model is to produce and sell 100, 200 and 300 units of X, Y, and Z, respectively, what is the expected return?

A)£36,000
B)£28,000
C)£120
D)£24,000
B
3
Figure 25-2
Heft Company produces A and B with contribution margins per unit of £40 and £30, respectively. Only 500 labour hours and 300 machine hours are available for production.
Time requirements to produce one unit of A and B are as follows:  Product A  Product B  Labour hours per unit 52 Machine hours per unit 14\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&5 & 2 \\\text { Machine hours per unit }&1 & 4\end{array}

-Refer to Figure 25-2. What is the constraint on machine hours for Heft Company?

A)1A + 4B \le 500
B)5A + 2B \le 500
C)1A + 4B \le 300
D)40A + 30B \le 500
1A + 4B \le 300
4
A linear programming model would NOT include which of the following items?

A)independent variables
B)networks
C)dependent variables
D)objective function
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
5
Figure 25-1
Hassel Company manufactures two different products, X and Y. The company has 100 kgs of materials and 300 direct labour hours available for production.
The time requirements and contribution margins per unit are as follows:  Product X  Product Y  Contribution margin per unit £4£5 Materials per unit (lbs.) 12 Direct labour hours per unit 42\begin{array}{lrr}&\text { Product X }&\text { Product Y }\\\text { Contribution margin per unit } & £ 4 & £ 5 \\\text { Materials per unit (lbs.) } & 1 & 2 \\\text { Direct labour hours per unit } & 4 & 2\end{array}

-Refer to Figure 25-1. What is the equation for the constraint on direct labour?

A)£1X + £2Y \le 300
B)£4X + £2Y \le 100
C)£4X + £5Y \le 100
D)£4X + £2Y \le 300
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
6
Using the graphic approach to linear programming, the solution is usually

A)a corner point where two or more constraints intersect.
B)where the lines intersect farthest from zero.
C)the point farthest from the Y-axis.
D)the point farthest from the X-axis.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
7
Figure 25-6
Anderson Company manufactures two different products: A and B. The company has 100 kgs of raw materials and 300 direct labour-hours available for production.
The time requirements and contribution margins per unit are as follows: AB Raw materials per unit (lbs.) 12 Direct-labour hours per unit 42 Contribution margin per unit E4E5\begin{array}{lcr}&A&B\\\text { Raw materials per unit (lbs.) } & 1 & 2 \\\text { Direct-labour hours per unit } & 4 & 2 \\\text { Contribution margin per unit } & E 4 & E 5\end{array}

-Refer to Figure 25-6. What is the objective function for Anderson Company?

A)Minimize £4A + £5B.
B)Maximize £4A + £5B.
C)Maximize £1A + £2B.
D)Maximize £4A + £2B.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
8
Figure 25-1
Hassel Company manufactures two different products, X and Y. The company has 100 kgs of materials and 300 direct labour hours available for production.
The time requirements and contribution margins per unit are as follows:  Product X  Product Y  Contribution margin per unit £4£5 Materials per unit (lbs.) 12 Direct labour hours per unit 42\begin{array}{lrr}&\text { Product X }&\text { Product Y }\\\text { Contribution margin per unit } & £ 4 & £ 5 \\\text { Materials per unit (lbs.) } & 1 & 2 \\\text { Direct labour hours per unit } & 4 & 2\end{array}

-Refer to Figure 25-1. What is the objective function for maximizing profits?

A)Minimize £4X + £5Y
B)Maximize £4X + £5Y
C)Maximize £1X + £2Y
D)Maximize £4X + £2Y
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
9
Figure 25-4
The following information is available for Wilson Trailer Company, which sells two products:  Trailer A  Trailer B  Processing time 2 hours 4 hours  Vinyl cover used 16 sq. ft. 12 sq. ft.  Selling price £50.00£80.00 Variable cost £35.00£50.00 Fixed cost £10.00£20.00\begin{array} { l c c } & \text { Trailer A } & \text { Trailer B } \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \text { sq. ft. } & 12 \text { sq. ft. } \\\text { Selling price } & £ 50.00 & £ 80.00 \\\text { Variable cost } & £ 35.00 & £ 50.00 \\\text { Fixed cost } & £ 10.00 & £ 20.00\end{array} There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-4. The constraint equation representing the materials available for the production processes is

A)2A + 4B \ge 100.
B)16A + 12B = 75.
C)2A + 4B = 200.
D)16A + 12B \le 75.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
10
A linear programming problem has an objective function of 10X + 12Y. If the optimal solution provided by the model is to produce and sell 400 units of X and 1,000 units of Y, the expected return is

A)£1,400.
B)£40,800.
C)£14,800.
D)£16,000.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
11
Figure 25-5
The following information is available for Walters Furniture Company, which sells two products:  Table X  Table Y  Processing time 4 hours 6 hours  Metal used 30sq.ft.18sq.ft. Selling price £200.00£100.00 Variable cost £150.00£60.00 Fixed cost £30.00£30.00\begin{array}{lcc} & \text { Table X } & \text { Table Y } \\\text { Processing time } & 4 \text { hours } & 6 \text { hours } \\\text { Metal used } & 30 \mathrm{sq} . \mathrm{ft} . & 18 \mathrm{sq} . \mathrm{ft} . \\\text { Selling price } & £ 200.00 & £ 100.00 \\\text { Variable cost } & £ 150.00 & £ 60.00 \\\text { Fixed cost } & £ 30.00 & £ 30.00\end{array} There are 200 hours available in the plant and 200 square metres of metal available per operating period.

-Refer to Figure 25-5. What is the objective function for maximizing sales?

A)Maximize 200X + 100Y
B)Maximize 180X + 90Y
C)Maximize 50X + 40Y
D)Minimize 200X + 100Y
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
12
In the graphic method of solving a linear programming problem, which of the following is depicted on the graph?

A)coefficient of correlation
B)constraint
C)least-squares line of best fit
D)break-even point
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
13
Figure 25-3
Tiffany Manufacturing Company produces X and Y with contribution margins per unit of £10 and £90, respectively. Only 200 labour hours and 400 machine hours are available for production.
Time requirements to produce one unit of X and Y are as follows:  Product A  Product B  Labour hours per unit 12 Machine hours per unit 51\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&1&2 \\\text { Machine hours per unit }&5&1\end{array}

-Refer to Figure 25-3. What is the constraint on machine hours for Tiffany Manufacturing Company?

A)10X + 90Y \le 200
B)1X + 2Y \le 400
C)1X + 2Y \le 200
D)5X + 1Y \le 400
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
14
Figure 25-3
Tiffany Manufacturing Company produces X and Y with contribution margins per unit of £10 and £90, respectively. Only 200 labour hours and 400 machine hours are available for production.
Time requirements to produce one unit of X and Y are as follows:  Product A  Product B  Labour hours per unit 12 Machine hours per unit 51\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&1&2 \\\text { Machine hours per unit }&5&1\end{array}

-Refer to Figure 25-3. What is the objective function to maximize profits for Tiffany Manufacturing Company?

A)Minimize 10X + 90Y
B)Maximize 1X + 2Y
C)Maximize 10X + 90Y
D)Minimize 1X + 2Y
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
15
Figure 25-4
The following information is available for Wilson Trailer Company, which sells two products:  Trailer A  Trailer B  Processing time 2 hours 4 hours  Vinyl cover used 16 sq. ft. 12 sq. ft.  Selling price £50.00£80.00 Variable cost £35.00£50.00 Fixed cost £10.00£20.00\begin{array} { l c c } & \text { Trailer A } & \text { Trailer B } \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \text { sq. ft. } & 12 \text { sq. ft. } \\\text { Selling price } & £ 50.00 & £ 80.00 \\\text { Variable cost } & £ 35.00 & £ 50.00 \\\text { Fixed cost } & £ 10.00 & £ 20.00\end{array} There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-4. What is the objective function for maximizing profits?

A)Maximize £15A + £30B
B)Maximize £50A + £80B
C)Maximize £35A + £50B
D)Minimize £15A + £30B
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
16
Figure 25-4
The following information is available for Wilson Trailer Company, which sells two products:  Trailer A  Trailer B  Processing time 2 hours 4 hours  Vinyl cover used 16 sq. ft. 12 sq. ft.  Selling price £50.00£80.00 Variable cost £35.00£50.00 Fixed cost £10.00£20.00\begin{array} { l c c } & \text { Trailer A } & \text { Trailer B } \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \text { sq. ft. } & 12 \text { sq. ft. } \\\text { Selling price } & £ 50.00 & £ 80.00 \\\text { Variable cost } & £ 35.00 & £ 50.00 \\\text { Fixed cost } & £ 10.00 & £ 20.00\end{array} There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-4. Which of the following statements is INCORRECT?

A)The materials constraint favours Trailer B over Trailer A.
B)The time constraint favours Trailer A over Trailer B.
C)The material constraint favours Trailer A over Trailer B.
D)The objective function favours Trailer B over Trailer A.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
17
Figure 25-2
Heft Company produces A and B with contribution margins per unit of £40 and £30, respectively. Only 500 labour hours and 300 machine hours are available for production.
Time requirements to produce one unit of A and B are as follows:  Product A  Product B  Labour hours per unit 52 Machine hours per unit 14\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&5 & 2 \\\text { Machine hours per unit }&1 & 4\end{array}

-Refer to Figure 25-2. What is the constraint on labour hours for Heft Company?

A)5A + 1B \le 500
B)5A + 2B \le 500
C)1A + 4B \le 300
D)40A + 30B \le 500
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
18
Figure 25-5
The following information is available for Walters Furniture Company, which sells two products:  Table X  Table Y  Processing time 4 hours 6 hours  Metal used 30sq.ft.18sq.ft. Selling price £200.00£100.00 Variable cost £150.00£60.00 Fixed cost £30.00£30.00\begin{array}{lcc} & \text { Table X } & \text { Table Y } \\\text { Processing time } & 4 \text { hours } & 6 \text { hours } \\\text { Metal used } & 30 \mathrm{sq} . \mathrm{ft} . & 18 \mathrm{sq} . \mathrm{ft} . \\\text { Selling price } & £ 200.00 & £ 100.00 \\\text { Variable cost } & £ 150.00 & £ 60.00 \\\text { Fixed cost } & £ 30.00 & £ 30.00\end{array} There are 200 hours available in the plant and 200 square metres of metal available per operating period.

-Refer to Figure 25-5. The constraint equation representing processing time available is

A)4X + 6Y \ge 200.
B)4X + 6Y \le 200.
C)30X + 18Y \le 200.
D)4X + 6Y \le 400.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
19
Figure 25-3
Tiffany Manufacturing Company produces X and Y with contribution margins per unit of £10 and £90, respectively. Only 200 labour hours and 400 machine hours are available for production.
Time requirements to produce one unit of X and Y are as follows:  Product A  Product B  Labour hours per unit 12 Machine hours per unit 51\begin{array}{cc}&\text { Product A } & \text { Product B } \\\text { Labour hours per unit }&1&2 \\\text { Machine hours per unit }&5&1\end{array}

-Refer to Figure 25-3. What is the constraint on labour hours for Tiffany Manufacturing Company?

A)10X + 90Y \le 200
B)1X + 2Y \le 400
C)1X + 2Y \le 200
D)1X + 4Y \le 400
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
20
Figure 25-1
Hassel Company manufactures two different products, X and Y. The company has 100 kgs of materials and 300 direct labour hours available for production.
The time requirements and contribution margins per unit are as follows:  Product X  Product Y  Contribution margin per unit £4£5 Materials per unit (lbs.) 12 Direct labour hours per unit 42\begin{array}{lrr}&\text { Product X }&\text { Product Y }\\\text { Contribution margin per unit } & £ 4 & £ 5 \\\text { Materials per unit (lbs.) } & 1 & 2 \\\text { Direct labour hours per unit } & 4 & 2\end{array}

-Refer to Figure 25-1. What is the equation for the constraint on materials?

A)£1X + £2Y \le 100
B)£4X + £2Y \le 100
C)£4X + £5Y \le 100
D)£4X + £5Y \le 300
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
21
Smith Products Ltd.produces two products. The manufacture of these products is partially automated. Total available labour hours are 400, and the total available machine hours are 600. Time requirements and contribution margins per unit for each product are as follows:  Product X  Product Y  Labour hours 23 Machine hours 42 Contribution margin per unit E5£4\begin{array}{lrr}&\text { Product X } & \text { Product Y } \\\text { Labour hours } & 2 & 3 \\\text { Machine hours } & 4 & 2 \\\text { Contribution margin per unit } & E 5 & £ 4\end{array}
a.What is the equation to be maximized?
b.What are the equations that express the constraints?
c.What is the greatest number of units of A that can be produced given the constraints?
d.What is the optimal solution?
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
22
Coffee Ltd.manufactures two different miniature models of furniture, a table and a chair. The company has 500 metres of lumber, 400 machine hours, and 600 direct labour hours available for production. The miniature tables and chairs provide £5 and £4 of contribution margin, respectively.
The time and lumber requirements to build a miniature table or chair are as follows:  Table  Chair  Metres oflumber per unit 52 Machine hours per unit 23 Direct labour hours per unit 42\begin{array}{lll}&\text { Table } & \text { Chair } \\\text { Metres oflumber per unit } & 5 & 2 \\\text { Machine hours per unit } & 2 & 3 \\\text { Direct labour hours per unit } & 4 & 2\end{array}
a.What is the objective function being maximized?
b.What are the constraint equations?
c.Graph the constraint equations. Identify the feasible region.
d.What is the optimal solution?
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
23
Figure 25-7
The following information is available for the Johnson Boat Company, which sells two products:  3- Person Raft  Kayak  (Variable A )  (Variable B)  Selling price £50£80 Variable costs £35£50 Fixed costs (average) £10£20 Processing time 2 hours 4 hours  Vinyl cover used 16sq.ft.12sq.ft.\begin{array}{lcc}&\text { 3- Person Raft } & \text { Kayak } \\&\text { (Variable } A \text { ) } & \text { (Variable B) }\\\text { Selling price } & £ 50 & £ 80 \\\text { Variable costs } & £ 35 & £ 50 \\\text { Fixed costs (average) } & £ 10 & £ 20 \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \mathrm{sq} . \mathrm{ft} . & 12 \mathrm{sq} . \mathrm{ft} .\end{array}
There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-7. The objective function for this production situation is to:

A)maximize £15A + £30B.
B)maximize £50A + £80B.
C)maximize £35A + £50B.
D)minimize £15A + £30B.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
24
Figure 25-7
The following information is available for the Johnson Boat Company, which sells two products:  3- Person Raft  Kayak  (Variable A )  (Variable B)  Selling price £50£80 Variable costs £35£50 Fixed costs (average) £10£20 Processing time 2 hours 4 hours  Vinyl cover used 16sq.ft.12sq.ft.\begin{array}{lcc}&\text { 3- Person Raft } & \text { Kayak } \\&\text { (Variable } A \text { ) } & \text { (Variable B) }\\\text { Selling price } & £ 50 & £ 80 \\\text { Variable costs } & £ 35 & £ 50 \\\text { Fixed costs (average) } & £ 10 & £ 20 \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \mathrm{sq} . \mathrm{ft} . & 12 \mathrm{sq} . \mathrm{ft} .\end{array}
There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-7. The constraint equation representing the materials available for the production processes is:

A)2A + 4B > 100.
B)16A + 12B = 75.
C)2A + 4B = 200.
D)16A + 12B < 75.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
25
A linear programming model would NOT include which of the following items?

A)independent variables
B)constraints
C)objective function
D)networks
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
26
Figure 25-6
Anderson Company manufactures two different products: A and B. The company has 100 kgs of raw materials and 300 direct labour-hours available for production.
The time requirements and contribution margins per unit are as follows: AB Raw materials per unit (lbs.) 12 Direct-labour hours per unit 42 Contribution margin per unit E4E5\begin{array}{lcr}&A&B\\\text { Raw materials per unit (lbs.) } & 1 & 2 \\\text { Direct-labour hours per unit } & 4 & 2 \\\text { Contribution margin per unit } & E 4 & E 5\end{array}

-Refer to Figure 25-6. What is the equation for the constraint on direct labour?

A)£1A + £2B < 300
B)£4A + £2B < 100
C)£4A + £5B < 100
D)£4A + £2B < 300
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
27
Figure 25-6
Anderson Company manufactures two different products: A and B. The company has 100 kgs of raw materials and 300 direct labour-hours available for production.
The time requirements and contribution margins per unit are as follows: AB Raw materials per unit (lbs.) 12 Direct-labour hours per unit 42 Contribution margin per unit E4E5\begin{array}{lcr}&A&B\\\text { Raw materials per unit (lbs.) } & 1 & 2 \\\text { Direct-labour hours per unit } & 4 & 2 \\\text { Contribution margin per unit } & E 4 & E 5\end{array}

-Refer to Figure 25-6. What is the equation for the constraint on raw materials?

A)£1A + £2B < 100
B)£4A + £2B < 100
C)£4A + £5B < 100
D)£4A + £5B < 300
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
28
Figure 25-7
The following information is available for the Johnson Boat Company, which sells two products:  3- Person Raft  Kayak  (Variable A )  (Variable B)  Selling price £50£80 Variable costs £35£50 Fixed costs (average) £10£20 Processing time 2 hours 4 hours  Vinyl cover used 16sq.ft.12sq.ft.\begin{array}{lcc}&\text { 3- Person Raft } & \text { Kayak } \\&\text { (Variable } A \text { ) } & \text { (Variable B) }\\\text { Selling price } & £ 50 & £ 80 \\\text { Variable costs } & £ 35 & £ 50 \\\text { Fixed costs (average) } & £ 10 & £ 20 \\\text { Processing time } & 2 \text { hours } & 4 \text { hours } \\\text { Vinyl cover used } & 16 \mathrm{sq} . \mathrm{ft} . & 12 \mathrm{sq} . \mathrm{ft} .\end{array}
There are 100 hours available in the plant and 75 square metres of vinyl available per operating period.

-Refer to Figure 25-7. Which of the following statements is NOT correct?

A)The materials constraint favours kayaks over rafts.
B)The time constraint favours rafts over kayaks.
C)The material constraint favours rafts over kayaks.
D)The objective function favours kayaks over rafts.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
29
A linear programming problem has an objective function of 10a + 12b. If the optimal solution provided by the model is to produce and sell 400 units of a and 1,000 units of b, the expected profit is:

A)£1,400.
B)£14,800.
C)£16,000.
D)£40,800.
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
30
A linear programming problem has the following objective function:
20A + 40B + 60C
If the optimal solution provided by the model is to produce and sell 100, 200, and 300 units of A, B, and C, respectively, what is the expected profit?

A)£36,000
B)£120
C)£24,000
D)£28,000
Unlock Deck
Unlock for access to all 30 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 30 flashcards in this deck.