Deck 47: Matrices and Systems of Equations

Full screen (f)
exit full mode
Question
Select the order for the following matrix.​ [5433]\left[ \begin{array} { l l l l } 5 & - 4 & 3 & 3\end{array} \right]

A)2 × 2
B)4 × 4
C)3 × 1
D)4 × 1
E)1 × 4
Use Space or
up arrow
down arrow
to flip the card.
Question
Select the augmented matrix for the system of linear equations.​ {x+14y12z=125x4y+5z=012x+y=9\left\{ \begin{aligned}x + 14 y - 12 z & = 12 \\5 x - 4 y + 5 z & = 0 \\12 x + y & = 9\end{aligned} \right.

A)​ [1141212545012109]\left[ \begin{array} { c c c c c } 1 & 14 & 12 & \vdots & 12 \\5 & - 4 & 5 & \vdots & 0 \\12 & 1 & 0 & \vdots & 9\end{array} \right]
B) [11412:12545:01210:9]\left[\begin{array}{cccl}1 & 14 & -12 & :12 \\5 & -4 & 5 & :0\\12 & 1 & 0 & :9\end{array}\right]
C)​ [11412:12545:01210:9]\left[\begin{array}{cccl}1 & 14 & -12 & :12 \\5 & 4 & 5 & :0\\12 & 1 & 0 & :9\end{array}\right]
D)​ [1141212545012109]\left[ \begin{array} { c c c c c } 1 & 14 & 12 & \vdots & 12 \\5 & 4 & 5 & \vdots & 0 \\12 & 1 & 0 & \vdots & 9\end{array} \right]
E)​ [11412:12545:01219:0]\left[\begin{array}{cccl}1 & 14 & -12 & :12 \\5 & -4 & 5 & :0\\12 & 1 & 9 & :0\end{array}\right]
Question
Fill in the blank(s)using elementary row operations to form a row-equivalent matrix. ​​ [694547]\left[ \begin{array} { c c c } 6 & 9 & 4 \\5 & - 4 & 7\end{array} \right][243547]\left[ \begin{array} { c c c } 2 & \cdots & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]

A)​ [2943547]\left[ \begin{array} { c c c } 2 & 9 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
B)​ [2243547]\left[ \begin{array} { c c c } 2 & 2 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
C)​ [2343547]\left[ \begin{array} { l l l } 2 & - 3 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
D)​ [2543547]\left[ \begin{array} { c c c } 2 & 5 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
E)​ [2343547]\left[ \begin{array} { c c c } 2 & 3 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
Question
Fill in the blank(s)using elementary row operations to form a row-equivalent matrix.​ [111524]\left[ \begin{array} { c c c } 1 & 1 & 1 \\5 & - 2 & 4\end{array} \right] [11101]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & \cdots & - 1\end{array} \right]

A)​ [111031]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & 3 & - 1\end{array} \right]
B)​ [111001]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & 0 & - 1\end{array} \right]
C)​ [111091]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & - 9 & - 1\end{array} \right]
D) [111071]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & - 7 & - 1\end{array} \right]
E)​ [111071]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & 7 & - 1\end{array} \right]
Question
Select the system of linear equations represented by the following augmented matrix.​ [960743]\left[ \begin{array} { r r r } 9 & - 6 & \vdots & 0 \\7 & 4 & \vdots & - 3\end{array} \right]

A)​ {9x6y=07x+4y=3\left\{ \begin{array} { l } 9 x - 6 y = 0 \\7 x + 4 y = 3\end{array} \right.
B)​ {9x6y=07x4y=3\left\{ \begin{array} { l } 9 x - 6 y = 0 \\7 x - 4 y = 3\end{array} \right.
C)​ {9x6y=07x+4y=0\left\{ \begin{array} { l } 9 x - 6 y = 0 \\7 x + 4 y = 0\end{array} \right.
D)​ {9x6y=07x+4y=3\left\{ \begin{array} { l } 9 x - 6 y = 0 \\7 x + 4 y = - 3\end{array} \right.
E)​ {9x+6y=07x+4y=3\left\{ \begin{array} { l } 9 x + 6 y = 0 \\7 x + 4 y = - 3\end{array} \right.
Question
Find the system of linear equations represented by the augmented matrix.Then use back substitution to solve.(Use variables x,y,z,and w if applicable. )​ [146015]\left[\begin{array}{lll}1 & -4 & \vdots 6\\0 & 1 & \vdots -5\\\end{array} \right]

A)​ {x+4y=6y=5\left\{ \begin{aligned}x + 4 y & = 6 \\y & = - 5\end{aligned} \right. (-14,-5)

B)​ {x4y=6y=5\left\{ \begin{aligned}x - 4 y & = 6 \\y & = - 5\end{aligned} \right. (-14,-5)

C)​ {x4y=6y=5\left\{ \begin{aligned}x - 4 y & = 6 \\y & = - 5\end{aligned} \right. ​(-14,5)
D)​ {x+4y=6y=5\left\{ \begin{aligned}x + 4 y & = 6 \\y & = - 5\end{aligned} \right. ​(-5,-14)
E)​ {x4y=6y=5\left\{ \begin{aligned}x - 4 y & = 6 \\y & = - 5\end{aligned} \right. ​(-5,-14)
Question
Identify the elementary row operation being performed to obtain the new row-equivalent matrix. ​
Original Matrix New Row-Equivalent Matrix [415549]\left[ \begin{array} { r r r } 4 & - 1 & - 5 \\- 5 & 4 & 9\end{array} \right] [41511011]\left[ \begin{array} { r r r } 4 & - 1 & - 5 \\11 & 0 & - 11\end{array} \right]

A)Add 4 times Row 2 to Row 1.
B)Add 5 times Row 2 to Row 1.
C)Add 9 times Row 1 to Row 2.
D)Add 4 times Row 1 to Row 2.
E)Add 5 times Row 1 to Row 2.
Question
Select the augmented matrix for the system of linear equations.​ {8x4y+z=1416x9z=12\left\{ \begin{aligned}8 x - 4 y + z & = 14 \\16 x - 9 z & = 12\end{aligned} \right.

A)​ [84114169120]\left[ \begin{array} { c c c c c } 8 & - 4 & 1 & \vdots & 14 \\16 & - 9 & 12 & \vdots & 0\end{array} \right]
B)​ [84114169012]\left[ \begin{array} { c c c c c } 8 & - 4 & 1 & \vdots & 14 \\16 & - 9 & 0 & \vdots & 12\end{array} \right]
C)​ [84114160912]\left[ \begin{array} { c c c c c } 8 & 4 & 1 & \vdots & 14 \\16 & 0 & - 9 & \vdots & 12\end{array} \right]
D)​ [84014160912]\left[ \begin{array} { c c c c c } 8 & - 4 & 0 & \vdots & 14 \\16 & 0 & 9 & \vdots & 12\end{array} \right]
E)​ [841:141609:12]\left[ \begin{array} { c c c l } 8 & - 4 & 1 & :14 \\16 & 0 & - 9 & :12\end{array} \right]
Question
Select the system of linear equations represented by the following augmented matrix.(Variables x,y,z,and w are used whenever applicable. )​ [13:834:5]\left[ \begin{array} { c c c l } 1 & 3 & :8 \\3 & -4 & :5\end{array} \right]

A)​ {x3y=83x4y=5\left\{ \begin{array} { r } x - 3 y = 8 \\3 x - 4 y = 5\end{array} \right.
B)​ {x+y=83x4y=5\left\{ \begin{array} { r } x + y = 8 \\3 x - 4 y = 5\end{array} \right.
C)​ {x+3y=84x+3y=5\left\{ \begin{array} { r } x + 3 y = 8 \\4 x + 3 y = 5\end{array} \right.
D)​ {x+3y=83x4y=5\left\{ \begin{array} { r } x + 3 y = 8 \\3 x - 4 y = 5\end{array} \right.
E)​ {x+3y=83x+4y=5\left\{ \begin{array} { r } x + 3 y = 8 \\3 x + 4 y = 5\end{array} \right.
Question
Select the order for the following matrix.​ [3510000554485]\left[ \begin{array} { c c c c } - 3 & 5 & 10 & 0 \\0 & 0 & 5 & 5 \\4 & 4 & 8 & 5\end{array} \right]

A)4 × 3
B)4 × 2
C)4 × 4
D)3 × 3
E)3 × 4
Question
Select the order for the following matrix.​ [987053]\left[ \begin{array} { r r r } - 9 & 8 & 7 \\0 & - 5 & 3\end{array} \right]

A)2 × 3
B)3 × 1
C)3 × 2
D)3 × 3
E)2 × 2
Question
Find the system of linear equations represented by the augmented matrix.Then use back substitution to solve.(Use variables x,y,z,and w if applicable. )​ [170011]\left[ \begin{array} { c c c c } 1 & 7 & \vdots & 0 \\0 & 1 & \vdots & - 1\end{array} \right]

A)​ {x+7y=0y=0\left\{ \begin{array} { r } x + 7 y = 0 \\y = 0\end{array} \right. ​​(7,0)
B)​ {x+7y=0x=1\left\{ \begin{aligned}x + 7 y & = 0 \\x & = - 1\end{aligned} \right. ​​(-1,7)
C)​ {x+7y=0y=1\left\{ \begin{aligned}x + 7 y & = 0 \\y & = - 1\end{aligned} \right. ​​(7,-1)
D)​ {x+7y=0y=1\left\{ \begin{array} { r } x + 7 y = 0 \\y = 1\end{array} \right. ​​(7,1)
E)​ {x+7y=0y=1\left\{ \begin{aligned}x + 7 y & = 0 \\y & = - 1\end{aligned} \right. ​​​(7,1)
Question
Identify the elementary row operation being performed to obtain the new row-equivalent matrix. ​
Original Matrix New Row-Equivalent Matrix [461419]\left[ \begin{array} { c c c } - 4 & 6 & 1 \\4 & - 1 & - 9\end{array} \right] [20053419]\left[ \begin{array} { c c c } 20 & 0 & - 53 \\4 & - 1 & - 9\end{array} \right]

A)Add 6 times Row 2 to Row 1.
B)Add 3 times Row 1 to Row 2.
C)Add 6 times Row 1 to Row 2.
D)Add 4 times Row 2 to Row 1.
E)Add 3 times Row 2 to Row 1.
Question
Determine whether the following matrix is in row-echelon form.If it is,determine if it is also in reduced row-echelon form. ​​ [101001030010]\left[ \begin{array} { l l l l } 1 & 0 & 1 & 0 \\0 & 1 & 0 & 3 \\0 & 0 & 1 & 0\end{array} \right]

A)Row-echelon form
B)Not in row-echelon form
C)Reduced row-echelon form
Question
Select the system of linear equations represented by the following augmented matrix.​ [2041301265302]\left[\begin{array}{l}{\begin{array}{lllr}2 & 0 & 4 & \vdots-13\end{array}} \\\begin{array}{lllr}0 & 1&-2 & \vdots 6\end{array} \\\begin{array}{lllr}5 & 3 & 0 & \vdots 2\end{array} \\\end{array}\right]

A)​ {2x4z=13y2z=64x+y=3\left\{ \begin{array} { r r } 2 x - 4 z = & 13 \\y - 2 z = & - 6 \\4 x + y = & 3\end{array} \right.
B)​ {2x4z=13y+2z=64x+y=3\left\{\begin{aligned}2 x-4 z= & -13 \\y+2 z= & 6 \\4 x+y= & 3\end{aligned}\right.
C)​ {x+y2z=13x+y+2z=64x+y+z=3\left\{ \begin{array} { r r } x + y - 2 z = & - 13 \\x + y + 2 z = & 6 \\4 x + y + z = & 3\end{array} \right.
D) {x2z=13x2z=64x+y=3\left\{ \begin{aligned}x - 2 z = & - 13 \\x - 2 z = & 6 \\4 x + y = & 3\end{aligned} \right.
E)​ {2x+4z=13y2z=65x+3y=2\left\{ \begin{array} { r r } 2 x + 4 z = & - 13 \\y - 2 z = & 6 \\5 x + 3 y = & 2\end{array} \right.
Question
Find the system of linear equations represented by the augmented matrix.Then use back substitution to solve.(Use variables x,y,z and if applicable. )​ [116801160016]\left[\begin{array}{l}{\begin{array}{cccc}1 & -1 & 6 & \vdots8\end{array}} \\\begin{array}{llll}0 & 1 & -1 & \vdots6\end{array} \\\begin{array}{llll}0 & 0 & -1 & \vdots-6\end{array} \\\end{array}\right]

A)​ {xy+6z=8y+z=6z=6\left\{ \begin{aligned}x - y + 6 z & = 8 \\y + z & = 6 \\z & = - 6\end{aligned} \right. ​​(56,12,-6)
B)​ {xy+6z=8yz=6z=6\left\{ \begin{aligned}x - y + 6 z & = 8 \\y - z & = - 6 \\z & = 6\end{aligned} \right. ​ ​(44,0,-6)
C)​ {xy+6z=8y+z=6z=6\left\{ \begin{array} { r } x - y + 6 z = 8 \\y + z = 6 \\z = 6\end{array} \right. ​​(-40,12,6)
D)​ {xy+6z=8yz=6z=6\left\{ \begin{aligned}x - y + 6 z & = 8 \\y - z & = 6 \\z & = - 6\end{aligned} \right. ​ ​(44,0,-6)
E)​ {xy+6z=8y+z=6z=6\left\{ \begin{aligned}x - y + 6 z & = 8 \\y + z & = - 6 \\z & = 6\end{aligned} \right. ​​(-40,12,6)
Question
Select the augmented matrix for the system of linear equations.​ {6x5y=7x+5y=15\left\{ \begin{aligned}6 x - 5 y & = - 7 \\- x + 5 y & = 15\end{aligned} \right.

A)​ [5675115]\left[ \begin{array} { c c : c } 5 & - 6 & - 7 \\5 & - 1 & 15\end{array} \right]
B) [6571515]\left[\begin{array}{cc:c}6 & 5 & -7 \\-1 & 5 & 15\end{array}\right]
C) [6571515]\left[\begin{array}{cc:c}6 & 5 & 7 \\1 & 5 & 15\end{array}\right]
D) [6571515]\left[\begin{array}{cccc}6 & -5 & \vdots & -7 \\-1 & 5 & \vdots & 15\end{array}\right]
E) [5675115]\left[\begin{array}{cc:c}5 & 6 & 7 \\5 & -1 & 15\end{array}\right]
Question
Perform the sequence of row operations on the following matrix. Add -3 times R1 to R2.​ [134315411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\3 & - 1 & - 5 \\4 & 1 & - 1\end{array} \right]

A)​ [1340417411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\0 & 4 & - 17 \\4 & 1 & - 1\end{array} \right]
B) [13401017411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\0 & - 10 & - 17 \\4 & 1 & - 1\end{array} \right]
C) [1340103411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\0 & - 10 & 3 \\4 & 1 & - 1\end{array} \right]
D) [13401017411]\left[ \begin{array} { c c c } - 1 & 3 & 4 \\0 & - 10 & - 17 \\4 & - 1 & - 1\end{array} \right]
E) [1340117411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\0 & 1 & - 17 \\4 & 1 & - 1\end{array} \right]
Question
Perform the sequence of row operations on the following matrix. Add R3 to R4.​ [71023441]\left[ \begin{array} { c c } 7 & 1 \\0 & 2 \\- 3 & 4 \\4 & 1\end{array} \right]

A)​ [71027541]\left[ \begin{array} { l l } 7 & 1 \\0 & 2 \\7 & 5 \\4 & 1\end{array} \right]
B)​ [710234117]\left[ \begin{array} { c c } 7 & 1 \\0 & 2 \\- 3 & 4 \\11 & 7\end{array} \right]
C)​ [71021541]\left[ \begin{array} { l l } 7 & 1 \\0 & 2 \\1 & 5 \\4 & 1\end{array} \right]
D) [710234711]\left[ \begin{array} { c c } 7 & 1 \\0 & 2 \\- 3 & 4 \\7 & 11\end{array} \right]
E)​ [71023415]\left[ \begin{array} { c c } 7 & 1 \\0 & 2 \\- 3 & 4 \\1 & 5\end{array} \right]
Question
Fill in the blank(s)using elementary row operations to form a row-equivalent matrix.​ [165101220016]\left[ \begin{array} { c c c c } 1 & 6 & 5 & - 1 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right] ​​ [1601220016]\left[ \begin{array} { c c c c } 1 & 6 & \cdots & \cdots \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]

A)​ [1011301220016]\left[ \begin{array} { c c c c } 1 & 0 & - 1 & - 13 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
B)​ [16171301220016]\left[ \begin{array} { c c c c } 1 & 6 & - 17 & - 13 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
C)​ [1617701220016]\left[ \begin{array} { c c c c } 1 & 6 & 17 & - 7 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
D) [16171301220016]\left[ \begin{array} { c c c c } 1 & 6 & 17 & - 13 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
E)​ [101701220016]\left[ \begin{array} { c c c c } 1 & 0 & - 1 & - 7 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
Question
An augmented matrix that represents a system of linear equations (in variables x,y,z and w if applicable)has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix.​ [105016]\left[\begin{array}{lll}1 & 0 & \vdots 5\\0 & 1 & \vdots -6\\\end{array} \right]

A)(-6,7)
B)(-6,5)
C)(-5,6)
D)(5,-6)
E)(6,5)
Question
Determine whether the matrix is in row-echelon form.If it is,determine if it is also in reduced row-echelon form. [188401060019]\left[ \begin{array} { r r r r } 1 & 8 & - 8 & 4 \\0 & 1 & 0 & 6 \\0 & 0 & 1 & - 9\end{array} \right]

A)row-echelon form and reduced row-echelon form
B)row-echelon form
C)neither
Question
Determine the order of the matrix.​ [438]\left[ \begin{array} { l l l } 4 & 3 & - 8\end{array} \right]

A)1 × 1
B)3
C)3 × 3
D)3 × 1
E)1 × 3
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x3z=73x+y2z=22x+2y+z=4\left\{ \begin{aligned}x - 3 z & = - 7 \\3 x + y - 2 z & = 2 \\2 x + 2 y + z & = 4\end{aligned} \right.

A)(-5,-5,4)
B)​(5,-5,-4)
C)​(-5,-5,-4)
D)​(5,5,4)
E)​(5,-5,4)
Question
Write the augmented matrix for the system of linear equations. {x3y2z=24y+4z=4x+4z=2\left\{ \begin{aligned}x - 3 y - 2 z & = - 2 \\4 y + 4 z & = 4 \\x + 4 z & = - 2\end{aligned} \right.

A) [132204441402]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\0 & 4 & 4 & \vdots & 4 \\1 & 4 & 0 & \vdots & - 2\end{array} \right]
B) [1322444041402]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\4 & 44 & 0 & \vdots & 4 \\1 & 4 & 0 & \vdots & - 2\end{array} \right]
C) [132214441142]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\1 & 4 & 4 & \vdots & 4 \\1 & 1 & 4 & \vdots & - 2\end{array} \right]
D) [1322444142]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\& 4 & 4 & \vdots & 4 \\1 & & 4 & \vdots & - 2\end{array} \right]
E) [132204441042]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\0 & 4 & 4 & \vdots & 4 \\1 & 0 & 4 & \vdots & - 2\end{array} \right]
Question
The currents in an electrical network are given by the solution of the system​ {I1I2+I3=53I1+4I2=19I2+3I3=28\left\{ \begin{aligned}I _ { 1 } - I _ { 2 } + I _ { 3 } & = 5 \\3 I _ { 1 } + 4 I _ { 2 } & = 19 \\I _ { 2 } + 3 I _ { 3 } & = 28\end{aligned} \right. ​ where I1,I2 and I3 are measured in amperes.Solve the system of equations using matrices.

A)I1 = 5,I2 = 4,I3 = 8
B)I1 = 4,I2 = 4,I3 = 8 ​
C)I1 = 3,I2 = 4,I3 = 8 ​
D)I1 = 2,I2 = 4,I3 = 8 ​
E)I1 = 1,I2 = 4,I3 = 8
Question
An augmented matrix that represents a system of linear equations (in variables x,y,z and w if applicable)has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix.​ [100801060010]\left[\begin{array}{l}{\begin{array}{cccc}1 & 0 & 0 & \vdots8\end{array}} \\\begin{array}{llll}0 & 1 & 0 & \vdots-6\end{array} \\\begin{array}{llll}0 & 0 & 1 & \vdots0\end{array} \\\end{array}\right]

A)​(0,8,-6)
B)(8,0,-6)
C)(8,-6,0)
D)(-8,-6,0)
E)(8,6,0)
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x+yz=202xy+z=293x+2y+z=29\left\{ \begin{array} { r l c } - x + y - z & = - 20 \\2 x - y + z & = 29 \\3 x + 2 y + z & = 29\end{array} \right.

A)​(-9,-3,8)
B)​(-9,-3,-8)
C)(9,-3,8)
D)​(9,-3,-8)
E)​(9,3,8)
Question
Write the matrix in reduced row-echelon form. [5736662442424]\left[ \begin{array} { r r r r } 5 & - 7 & - 3 & 6 \\- 6 & - 6 & 2 & - 44 \\2 & - 4 & - 2 & - 4\end{array} \right]

A) [100601030015]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 6 \\0 & 1 & 0 & 3 \\0 & 0 & 1 & 5\end{array} \right]
B) [100101010011]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 1 \\0 & 1 & 0 & 1 \\0 & 0 & 1 & 1\end{array} \right]
C) [100701020015]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 7 \\0 & 1 & 0 & 2 \\0 & 0 & 1 & 5\end{array} \right]
D) [100001000010]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & 1 & 0\end{array} \right]
E) [100701050012]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 7 \\0 & 1 & 0 & 5 \\0 & 0 & 1 & 2\end{array} \right]
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {2x+6y=102x+3y=7\left\{ \begin{array} { l } 2 x + 6 y = 10 \\2 x + 3 y = 7\end{array} \right.

A)​​(10,1)
B)​(2,1)
C)​​(2,-6)
D)​(-2,1)
E)​​(2,-1)
Question
Fill in the blank using elementary row operations to form a row-equivalent matrix. [2121019]\left[ \begin{array} { r r r } 2 & 1 & - 2 \\- 10 & - 1 & 9\end{array} \right] [21201]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & \square & - 1\end{array} \right]

A) [212061]\left[ \begin{array} { c c c } 2 & 1 & - 2 \\0 & - 6 & - 1\end{array} \right]
B) [212041]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & 4 & - 1\end{array} \right]
C) [212041]\left[ \begin{array} { r r r } 2 & 1 & - 2 \\0 & - 4 & - 1\end{array} \right]
D) [212011]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & 1 & - 1\end{array} \right]
E) [212001]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & 0 & - 1\end{array} \right]
Question
An augmented matrix that represents a system of linear equations (in variables x,y,z and w if applicable)has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix.​ [100301090013]\left[\begin{array}{l}{\begin{array}{cccc}1 & 0 & 0 & \vdots-3\end{array}} \\\begin{array}{llll}0 & 1 & 0 & \vdots-9\end{array} \\\begin{array}{llll}0 & 0 & 1 & \vdots3\end{array} \\\end{array}\right]

A)​(-3,9,3)
B)(3,-9,3)
C)(-3,-9,3)
D)(-3,-9,-3)
E)(-3,3,-9)
Question
Use matrices to find the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {5x5y=52x3y=18\left\{ \begin{aligned}5 x - 5 y & = 5 \\- 2 x - 3 y & = 18\end{aligned} \right.

A)​(3,4)
B)(-3,4)
C)(5,18)
D)(-3,-4)
E)(3,-4)
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. ​​ {3x+2yz+w=0xy+4zw=282x+y+2zw=3x+y+z+w=8\left\{ \begin{array} { r l r } 3 x + 2 y - z + w & = 0 \\x - y + 4 z - w & = 28 \\- 2 x + y + 2 z - w & = 3 \\x + y + z + w & = 8\end{array} \right.

A)​(-3,-2,6,1)
B)(-3,2,-6,-1)
C)(3,-2,6,1)
D)(3,-2,6,-1)
E)(3,-2,-6,1)
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x4y+3z2w=103x2y+z4w=224x+3y2z+w=22x+y4z+3w=10\left\{ \begin{aligned}x - 4 y + 3 z - 2 w & = 10 \\3 x - 2 y + z - 4 w & = - 22 \\- 4 x + 3 y - 2 z + w & = - 2 \\- 2 x + y - 4 z + 3 w & = - 10\end{aligned} \right.

A)​(-2,-1,8,6)
B)(-2,0,8,6)
C)(-2,0,8,-6)
D)​(-2,-1,-8,-6)
E)(-2,0,-8,6)
Question
Determine the order of the matrix.​ [854781]\left[ \begin{array} { l l l } 8 & 5 & 4 \\7 & 8 & 1\end{array} \right]

A)3 × 3
B)2 × 2
C)3 × 1
D)2 × 3
E)3 × 2
Question
Identify the elementary row operation being performed to obtain the new row-equivalent matrix. Original Matrix
New Row-Equivalent Matrix [185899]\left[ \begin{array} { r r r } - 1 & - 8 & 5 \\- 8 & 9 & 9\end{array} \right] [171023899]\left[ \begin{array} { r r r } - 17 & 10 & 23 \\- 8 & 9 & 9\end{array} \right]

A)Add 2 times R1 to R2.
B)Add -2 times R1 to R2.
C)Add 2 times R2 to R1.
D)Add -2 times R2 to R1.
E)Add 2 times R1 to R1.
Question
Use the matrix capabilities of a graphing utility to reduce the augmented matrix corresponding to the system of equations,and solve the system.​ {x+2y+2z+4w=203x+6y+5z+12w=53x+3y3z+2w=186xyz+w=30\left\{ \begin{aligned}x + 2 y + 2 z + 4 w & = 20 \\3 x + 6 y + 5 z + 12 w & = 53 \\x + 3 y - 3 z + 2 w & = - 18 \\6 x - y - z + w & = - 30\end{aligned} \right.

A)​(-4,1,7,-2)
B)(-4,-1,7,2)
C)(-4,1,-7,2)
D)(-4,-1,-7,-2)
E)(-4,1,7,2)
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x+2y=62x+y=9\left\{ \begin{array} { l } x + 2 y = 6 \\2 x + y = 9\end{array} \right.

A)​(1,4)
B)​(3,4)
C)(1,12)
D)(4,1)
E)(12,4)
Question
Write the system of linear equations represented by the augmented matrix.(Use variables x,y,z,and w. ) [10032740080535800199]\left[\begin{array}{l}{\begin{array}{lllll}-1 & 0 & 0 &3&\vdots2\end{array}} \\\begin{array}{lllll}-7 & 4 & 0 &0& \vdots8\end{array} \\\begin{array}{lllll}0 & 5 & 3 &-5& \vdots-8\end{array} \\\begin{array}{lllll}0 & 0 & -1 &-9& \vdots9\end{array} \\\end{array}\right]

A) {x+3w=27x+4y=85y+3z5w=8y9z=9\left\{ \begin{array} { r l r } - x + 3 w & = 2 \\- 7 x + 4 y & = 8 \\5 y + 3 z - 5 w & = - 8 \\- y - 9 z & = 9\end{array} \right.
B) {x+3z=27x+4z=85y+3z5w=8z9w=9\left\{ \begin{array} { r l r } - x + 3 z & = 2 \\- 7 x + 4 z & = 8 \\5 y + 3 z - 5 w & = - 8 \\- z - 9 w & = 9\end{array} \right.
C) {x+3y=27x+4y=85x+3y5z=8x9y=9\left\{ \begin{array} { r l r } - x + 3 y & = & 2 \\- 7 x + 4 y & = & 8 \\5 x + 3 y - 5 z & = - 8 \\- x - 9 y & = 9\end{array} \right.
D) {x+3w=27x+4y=85y+3z5w=8z9w=9\left\{ \begin{aligned}- x + 3 w & = 2 \\- 7 x + 4 y & = 8 \\5 y + 3 z - 5 w & = - 8 \\- z - 9 w & = 9\end{aligned} \right.
E) {x+3z=27x+4y=85y+3z5w=8z9w=9\left\{ \begin{array} { r l r } - x + 3 z & = 2 \\- 7 x + 4 y & = 8 \\5 y + 3 z - 5 w & = - 8 \\- z - 9 w & = 9\end{array} \right.
Question
Determine whether the matrix is in row-echelon form.If it is,determine if it is also in reduced row-echelon form. [199601020011]\left[ \begin{array} { r r r r } 1 & 9 & - 9 & - 6 \\0 & 1 & 0 & - 2 \\0 & 0 & 1 & 1\end{array} \right]

A)row-echelon form
B)row-echelon form and reduced row-echelon form
C)neither
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {4x+9y+z=176x6y8z=129x+8y+z=43\left\{ \begin{array} { c } 4 x + 9 y + z = - 17 \\6 x - 6 y - 8 z = 12 \\9 x + 8 y + z = - 43\end{array} \right.

A)x = 5,y = -1,z = -6
B)x = -5,y = -1,z = -6
C)x = -5,y = 1,z = -6
D)x = 1,y = 5,z = 6
E)no solution
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {4x9y9z=746x+8y2z=226xy+9z=4\left\{ \begin{aligned}4 x - 9 y - 9 z & = - 74 \\6 x + 8 y - 2 z & = - 22 \\6 x - y + 9 z & = 4\end{aligned} \right.

A)x = 5,y = -2,z = 4
B)x = 2,y = 5,z = -4
C)x = -5,y = -2,z = 4
D)no solution
E)x = -5,y = 2,z = 4
Question
Use a system of equations to find the specified equation that passes through the points.Solve the system using matrices. Parabola: y = ax2 + bx + c  <strong>Use a system of equations to find the specified equation that passes through the points.Solve the system using matrices. Parabola: y = ax<sup>2</sup> + bx + c  </strong> A)​  y = 2 x ^ { 2 } - x + 6  B)​  y = - x ^ { 2 } + 6  C)​  y = - x ^ { 2 } + x + 6  D)​  y = + x ^ { 2 } + 6  E)​  y = - x ^ { 2 } - x + 6  <div style=padding-top: 35px>

A)​ y=2x2x+6y = 2 x ^ { 2 } - x + 6
B)​ y=x2+6y = - x ^ { 2 } + 6
C)​ y=x2+x+6y = - x ^ { 2 } + x + 6
D)​ y=+x2+6y = + x ^ { 2 } + 6
E)​ y=x2x+6y = - x ^ { 2 } - x + 6
Question
Write the system of linear equations represented by the augmented matrix.(Use variables x,y,z,and w. ) [1004:53700:30481:60037:7]\left[\begin{array}{rrrrl}1 & 0 & 0 & 4 & :-5\\3 & -7 & 0 & 0 & :3\\0&-4&8&-1&:-6 \\0 & 0 & 3 & 7 &:7\end{array}\right]

A) {x+4y=53x7y=34x+8yz=63x+7y=7\left\{ \begin{array} { r l r } x + 4 y & = & - 5 \\3 x - 7 y & = & 3 \\- 4 x + 8 y - z & = & - 6 \\3 x + 7 y & = & 7\end{array} \right.
B) {x+4z=53x7y=34y+8zw=63zz+7w=7\left\{ \begin{array} { r l r } x + 4 z & = - 5 \\3 x - 7 y & = 3 \\- 4 y + 8 z - w & = - 6 \\3 z z + 7 w & = 7\end{array} \right.
C) {x+4z=53x7z=34y+8zw=63zz+7w=7\left\{ \begin{array} { r l r } x + 4 z & = - 5 \\3 x - 7 z & = 3 \\- 4 y + 8 z - w & = - 6 \\3 z z + 7 w & = 7\end{array} \right.
D) {x+4w=53x7y=34y+8zw=63y+7z=7\left\{ \begin{array} { r l r } x + 4 w & = - 5 \\3 x - 7 y & = 3 \\- 4 y + 8 z - w & = - 6 \\3 y + 7 z & = 7\end{array} \right.
E) {x+4w=53x7y=34y+8zw=63z+7w=7\left\{ \begin{aligned}x + 4 w & = - 5 \\3 x - 7 y & = 3 \\- 4 y + 8 z - w & = - 6 \\3 z + 7 w & = 7\end{aligned} \right.
Question
Perform the sequence of row operations on the matrix.What did the operations accomplish?​ [1174571335]\left[ \begin{array} { c c c } 1 & 1 & - 7 \\4 & 5 & - 7 \\1 & 3 & 35\end{array} \right] ​ Add -4 times R1 to R2,
Add -1 times R1 to R3,
Add -2 times R2 to R3,
Add -1 times R2 to R1.

A) [100010001]\left[ \begin{array} { l l l } 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
B) [10280121000]\left[ \begin{array} { r r r } 1 & 0 & - 28 \\0 & 1 & 21 \\0 & 0 & 0\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
C) [11280121000]\left[ \begin{array} { r r r } 1 & 1 & - 28 \\0 & 1 & 21 \\0 & 0 & 0\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
D) [11701210242]\left[ \begin{array} { c c c } 1 & 1 & - 7 \\0 & 1 & 21 \\0 & 2 & 42\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
E) [10280021000]\left[ \begin{array} { r r r } 1 & 0 & - 28 \\0 & 0 & 21 \\0 & 0 & 0\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
Question
Determine whether the two systems of linear equations yield the same solutions.If so,find the solutions using matrices. {xy6z=33y+3z=18z=4\left\{ \begin{aligned}x - y - 6 z & = - 33 \\y + 3 z & = 18 \\z & = 4\end{aligned} \right. {x7y3z=57y9z=30z=4\left\{ \begin{array} { r l r } x - 7 y - 3 z & = - 57 \\y - 9 z & = - 30 \\z & = 4\end{array} \right.

A)x = -3,y = 6,z = 4
B)The systems yield different solutions.
C)x = 3,y = 4,z = -3
D)x = 3,y = -6,z = 4
E)x = 6,y = 4,z = -3
Question
Write the augmented matrix for the system of linear equations. {x+7y+7z=63y+3z=6x+7z=7\left\{ \begin{aligned}x + 7 y + 7 z & = - 6 \\3 y + 3 z & = 6 \\x + 7 z & = - 7\end{aligned} \right.

A) [177613361177]\left[ \begin{array} { r r r r r } 1 & 7 & 7 & \vdots & - 6 \\1 & 3 & 3 & \vdots & 6 \\1 & 1 & 7 & \vdots & - 7\end{array} \right]
B) [177613361077]\left[ \begin{array} { r r r r r } 1 & 7 & 7 & \vdots & - 6 \\1 & 3 & 3 & \vdots & 6 \\1 & 0 & 7 & \vdots & - 7\end{array} \right]
C) [1776336177]\left[ \begin{array} { r r r r r } 1 & 7 & 7 & \vdots & - 6 \\& 3 & 3 & \vdots & 6 \\1 & & 7 & \vdots & - 7\end{array} \right]
D) [1776333061707]\left[\begin{array}{rrrrr}1 & 7 & 7 & \vdots & -6 \\3 & 33 & 0 & \vdots & 6 \\1 & 7 & 0 & \vdots & -7\end{array}\right]
E) [177603361707]\left[ \begin{array} { r r r r r } 1 & 7 & 7 & \vdots & - 6 \\0 & 3 & 3 & \vdots & 6 \\1 & 7 & 0 & \vdots & - 7\end{array} \right]
Question
Write the matrix in reduced row-echelon form. [451131113517]\left[ \begin{array} { r r r } 4 & 5 & 11 \\3 & 1 & - 11 \\3 & 5 & 17\end{array} \right]

A) [106000000]\left[ \begin{array} { r r r } 1 & 0 & - 6 \\0 & 0 & 0 \\0 & 0 & 0\end{array} \right]
B) [100010000]\left[ \begin{array} { l l l } 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 0\end{array} \right]
C) [104015001]\left[ \begin{array} { c c c } 1 & 0 & - 4 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]
D) [107016000]\left[ \begin{array} { c c c } 1 & 0 & - 7 \\0 & 1 & - 6 \\0 & 0 & 0\end{array} \right]
E) [106017000]\left[ \begin{array} { r r r } 1 & 0 & - 6 \\0 & 1 & 7 \\0 & 0 & 0\end{array} \right]
Question
Determine the order of the matrix. [677967]\left[ \begin{array} { r r r } 6 & - 7 & 7 \\9 & 6 & 7\end{array} \right]

A)2 × 3
B)3 × 3
C)3 × 1
D)3 × 2
E)2 × 2
Question
An augmented matrix that represents a system of linear equations (in variables x,y,and z)has been reduced using Gauss-Jordan elimination.Write the solution represented by the augmented matrix. [100:2010:3001:4]\left[\begin{array}{llll}1&0&0&:2\\0 & 1 & 0 & :3 \\0 & 0 & 1 & :4\end{array}\right]

A)x = 0,y = 0,z = 0
B)x = 2x,y = 4y,z = 3z
C)x = 2,y = 3,z = 4
D)x = -2,y = -3,z = -4
E)x = 2,y = 0,z = 0
Question
Identify the elementary row operation being performed to obtain the new row-equivalent matrix. Original Matrix
New Row-Equivalent Matrix [986853]\left[ \begin{array} { r r r } - 9 & - 8 & 6 \\- 8 & - 5 & - 3\end{array} \right] [7212853]\left[ \begin{array} { r r r } 7 & 2 & 12 \\- 8 & - 5 & - 3\end{array} \right]

A)Add -2 times R1 to R2.
B)Add 2 times R2 to R1.
C)Add 2 times R1 to R2.
D)Add -2 times R1 to R1.
E)Add -2 times R2 to R1.
Question
Write the system of linear equations represented by the augmented matrix.Then use back-substitution to solve.(Use variables x,y,and z. ) [12534012140015]\left[\begin{array}{rrrrrr}1 & 2 & 5 & \vdots & 34 \\0 & 1 & 2 & \vdots & 14 \\0 & 0 & 1 & \vdots & 5\end{array}\right]

A)x = 35,y = -3,z = 1
B)x = 4,y = 1,z = 5
C)x = 1,y = -4,z = -5
D)x = 1,y = 4,z = 5
E)x = -4,y = 5,z = -1
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {7x6y=405x+7y=34\left\{ \begin{aligned}7 x - 6 y & = - 40 \\- 5 x + 7 y & = 34\end{aligned} \right.

A)x = 4,y = -2
B)x = -4,y = 2
C)x = 2,y = -4
D)x = 2,y = 4
E)no solution
Question
Write the system of linear equations represented by the augmented matrix.Then use back-substitution to solve.(Use variables x,y,and z. ) [1933901200012]\left[ \begin{array} { r r r r r } 1 & 9 & - 3 &\vdots& - 39 \\0 & 1 & 2 & \vdots & 0 \\0 & 0 & 1 & \vdots & 2\end{array} \right]

A)x = 4,y = 2,z = -3
B)x = 3,y = -4,z = 2
C)x = 3,y = 4,z = -2
D)x = -18,y = -1,z = 4
E)x = -4,y = 3,z = 2
Question
Fill in the blank using elementary row operations to form a row-equivalent matrix. [153214]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\- 2 & 1 & 4\end{array} \right] [153010]\left[\begin{array}{rrr}-1 & 5 & -3 \\0 & \square & 10\end{array}\right]

A) [1530910]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & - 9 & 10\end{array} \right]
B) [1530010]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & 0 & 10\end{array} \right]
C) [15301110]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & 11 & 10\end{array} \right]
D) [1530510]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & 5 & 10\end{array} \right]
E) [1530910]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & 9 & 10\end{array} \right]
Question
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {2x+9y=359x+2y=30\left\{ \begin{aligned}2 x + 9 y & = - 35 \\- 9 x + 2 y & = 30\end{aligned} \right.

A)x = -3,y = -4
B)x = 4,y = 3
C)x = -4,y = -3
D)x = -3,y = 4
E)no solution
Question
Write the matrix in reduced row-echelon form. [96333811477768]\left[ \begin{array} { r r r r } 9 & - 6 & - 3 & - 33 \\8 & - 1 & 1 & - 47 \\- 7 & - 7 & 6 & - 8\end{array} \right]

A) [100001000010]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & 1 & 0\end{array} \right]
B) [100501060011]\left[ \begin{array} { l l l r } 1 & 0 & 0 & - 5 \\0 & 1 & 0 & - 6 \\0 & 0 & 1 & 1\end{array} \right]
C) [100601020016]\left[ \begin{array} { r r r r } 1 & 0 & 0 & - 6 \\0 & 1 & 0 & 2 \\0 & 0 & 1 & - 6\end{array} \right]
D) [100501010016]\left[ \begin{array} { r r r r } 1 & 0 & 0 & - 5 \\0 & 1 & 0 & 1 \\0 & 0 & 1 & - 6\end{array} \right]
E) [100101010011]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 1 \\0 & 1 & 0 & 1 \\0 & 0 & 1 & 1\end{array} \right]
Question
Determine whether the two systems of linear equations yield the same solutions.If so,find the solutions using matrices. {x+2y4z=8y7z=4z=1\left\{ \begin{aligned}x + 2 y - 4 z & = - 8 \\y - 7 z & = 4 \\z & = - 1\end{aligned} \right. {xy5z=21y6z=3z=1\left\{ \begin{aligned}x - y - 5 z & = 21 \\y - 6 z & = 3 \\z & = - 1\end{aligned} \right.

A)x = 6,y = 3,z = -1
B)x = -6,y = -3,z = -1
C)x = 3,y = -1,z = -6
D)The systems yield different solutions.
E)x = -3,y = -1,z = -6
Question
The currents in an electrical network are given by the solutions of the system {I1+I2I3=02I1+3I3=374I2+I3=25\left\{ \begin{array} { r l r } I _ { 1 } + I _ { 2 } - I _ { 3 } & = 0 \\2 I _ { 1 } + 3 I _ { 3 } & = 37 \\4 I _ { 2 } + I _ { 3 } & = 25\end{array} \right. where I1,I2,and I3 are measured in amperes.Solve the system of equations using matrices.

A)no solution
B)I1 = 3,I2 = 3,I3 = 7
C)I1 = 5,I2 = 4,I3 = 9
D)I1 = 3,I2 = 3,I3 = 6
E)I1 = 5,I2 = 9,I3 = 4
Question
The currents in an electrical network are given by the solutions of the system {I1+I2I3=04I1+5I3=236I2+I3=9\left\{ \begin{aligned}I _ { 1 } + I _ { 2 } - I _ { 3 } & = 0 \\4 I _ { 1 } + 5 I _ { 3 } & = 23 \\6 I _ { 2 } + I _ { 3 } & = 9\end{aligned} \right. where I1,I2,and I3 are measured in amperes.Solve the system of equations using matrices.

A)I1 = 2,I2 = 3,I3 = 1
B)I1 = 2,I2 = 1,I3 = 3
C)I1 = 4,I2 = 4,I3 = 9
D)I1 = 4,I2 = 4,I3 = 8
E)no solution
Question
Solve the system using Gauss-Jordan elimination.​ {x+y+2z+t=62x+2y+z+t=622x+y+z+t=49x+y+z+2t=62\left\{ \begin{aligned}x + y + 2 z + t & = 62 \\x + 2 y + z + t & = 62 \\2 x + y + z + t & = 49 \\x + y + z + 2 t & = 62\end{aligned} \right.

A) (2,15,15,15)( 2 , - 15,15 , - 15 )
B) (2,15,15,15)( - 2,15,15,15 )
C) (2,15,15,15)( 2 , - 15,15,15 )
D) (2,15,15,15)( 2,15,15,15 )
E) (2,15,15,15)( 2,15 , - 15,15 )
Question
Solve the system by Gauss - Jordan elimination.​ {13x+34y23z=4x+12y+13z=3016x18yz=30\left\{ \begin{aligned}\frac { 1 } { 3 } x + \frac { 3 } { 4 } y - \frac { 2 } { 3 } z & = - 4 \\x + \frac { 1 } { 2 } y + \frac { 1 } { 3 } z & = 30 \\\frac { 1 } { 6 } x - \frac { 1 } { 8 } y - z & = - 30\end{aligned} \right.

A) (12,16,30)( - 12 , - 16 , - 30 )
B) (12,16,30)( - 12,16 , - 30 )
C) (12,16,30)( 12,16,30 )
D) (0,16,30)( 0,16 , - 30 )
E) (12,16,30)( 12 , - 16,30 )
Question
Solve the system using Gauss-Jordan elimination.​ {w+x=9w+y=0x+z=0\left\{ \begin{array} { l } w + x = 9 \\w + y = 0 \\x + z = 0\end{array} \right.

A) w=9+z,x=z,y=9z,zw = - 9 + z , x = - z , y = - 9 - z , z
B) w=9+z,x=z,y=9z,zw = 9 + z , x = - z , y = - 9 - z , z
C) w=9+z,x=z,y=9z,zw = 9 + z , x = - z , y = 9 - z , z
D) w=9+z,x=z,y=9+z,zw = 9 + z , x = - z , y = 9 + z , z
E) w=9z,x=z,y=9z,zw = 9 - z , x = - z , y = - 9 - z , z
Question
Solve the system using Gaussian elimination.​ {x+y=2x+z=4y+z=4\left\{ \begin{array} { l } x + y = - 2 \\x + z = - 4 \\y + z = - 4\end{array} \right.

A) (1,1,3)( 1,1,3 )
B) (1,1,3)( - 1 , - 1 , - 3 )
C) (1,1,3)( 1,1 , - 3 )
D) (1,1,3)( 1 , - 1 , - 3 )
E) (1,1,3)( - 1,1 , - 3 )
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/65
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 47: Matrices and Systems of Equations
1
Select the order for the following matrix.​ [5433]\left[ \begin{array} { l l l l } 5 & - 4 & 3 & 3\end{array} \right]

A)2 × 2
B)4 × 4
C)3 × 1
D)4 × 1
E)1 × 4
1 × 4
2
Select the augmented matrix for the system of linear equations.​ {x+14y12z=125x4y+5z=012x+y=9\left\{ \begin{aligned}x + 14 y - 12 z & = 12 \\5 x - 4 y + 5 z & = 0 \\12 x + y & = 9\end{aligned} \right.

A)​ [1141212545012109]\left[ \begin{array} { c c c c c } 1 & 14 & 12 & \vdots & 12 \\5 & - 4 & 5 & \vdots & 0 \\12 & 1 & 0 & \vdots & 9\end{array} \right]
B) [11412:12545:01210:9]\left[\begin{array}{cccl}1 & 14 & -12 & :12 \\5 & -4 & 5 & :0\\12 & 1 & 0 & :9\end{array}\right]
C)​ [11412:12545:01210:9]\left[\begin{array}{cccl}1 & 14 & -12 & :12 \\5 & 4 & 5 & :0\\12 & 1 & 0 & :9\end{array}\right]
D)​ [1141212545012109]\left[ \begin{array} { c c c c c } 1 & 14 & 12 & \vdots & 12 \\5 & 4 & 5 & \vdots & 0 \\12 & 1 & 0 & \vdots & 9\end{array} \right]
E)​ [11412:12545:01219:0]\left[\begin{array}{cccl}1 & 14 & -12 & :12 \\5 & -4 & 5 & :0\\12 & 1 & 9 & :0\end{array}\right]
[11412:12545:01210:9]\left[\begin{array}{cccl}1 & 14 & -12 & :12 \\5 & -4 & 5 & :0\\12 & 1 & 0 & :9\end{array}\right]
3
Fill in the blank(s)using elementary row operations to form a row-equivalent matrix. ​​ [694547]\left[ \begin{array} { c c c } 6 & 9 & 4 \\5 & - 4 & 7\end{array} \right][243547]\left[ \begin{array} { c c c } 2 & \cdots & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]

A)​ [2943547]\left[ \begin{array} { c c c } 2 & 9 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
B)​ [2243547]\left[ \begin{array} { c c c } 2 & 2 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
C)​ [2343547]\left[ \begin{array} { l l l } 2 & - 3 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
D)​ [2543547]\left[ \begin{array} { c c c } 2 & 5 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
E)​ [2343547]\left[ \begin{array} { c c c } 2 & 3 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
[2343547]\left[ \begin{array} { c c c } 2 & 3 & \frac { 4 } { 3 } \\5 & - 4 & 7\end{array} \right]
4
Fill in the blank(s)using elementary row operations to form a row-equivalent matrix.​ [111524]\left[ \begin{array} { c c c } 1 & 1 & 1 \\5 & - 2 & 4\end{array} \right] [11101]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & \cdots & - 1\end{array} \right]

A)​ [111031]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & 3 & - 1\end{array} \right]
B)​ [111001]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & 0 & - 1\end{array} \right]
C)​ [111091]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & - 9 & - 1\end{array} \right]
D) [111071]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & - 7 & - 1\end{array} \right]
E)​ [111071]\left[ \begin{array} { c c c } 1 & 1 & 1 \\0 & 7 & - 1\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
5
Select the system of linear equations represented by the following augmented matrix.​ [960743]\left[ \begin{array} { r r r } 9 & - 6 & \vdots & 0 \\7 & 4 & \vdots & - 3\end{array} \right]

A)​ {9x6y=07x+4y=3\left\{ \begin{array} { l } 9 x - 6 y = 0 \\7 x + 4 y = 3\end{array} \right.
B)​ {9x6y=07x4y=3\left\{ \begin{array} { l } 9 x - 6 y = 0 \\7 x - 4 y = 3\end{array} \right.
C)​ {9x6y=07x+4y=0\left\{ \begin{array} { l } 9 x - 6 y = 0 \\7 x + 4 y = 0\end{array} \right.
D)​ {9x6y=07x+4y=3\left\{ \begin{array} { l } 9 x - 6 y = 0 \\7 x + 4 y = - 3\end{array} \right.
E)​ {9x+6y=07x+4y=3\left\{ \begin{array} { l } 9 x + 6 y = 0 \\7 x + 4 y = - 3\end{array} \right.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
6
Find the system of linear equations represented by the augmented matrix.Then use back substitution to solve.(Use variables x,y,z,and w if applicable. )​ [146015]\left[\begin{array}{lll}1 & -4 & \vdots 6\\0 & 1 & \vdots -5\\\end{array} \right]

A)​ {x+4y=6y=5\left\{ \begin{aligned}x + 4 y & = 6 \\y & = - 5\end{aligned} \right. (-14,-5)

B)​ {x4y=6y=5\left\{ \begin{aligned}x - 4 y & = 6 \\y & = - 5\end{aligned} \right. (-14,-5)

C)​ {x4y=6y=5\left\{ \begin{aligned}x - 4 y & = 6 \\y & = - 5\end{aligned} \right. ​(-14,5)
D)​ {x+4y=6y=5\left\{ \begin{aligned}x + 4 y & = 6 \\y & = - 5\end{aligned} \right. ​(-5,-14)
E)​ {x4y=6y=5\left\{ \begin{aligned}x - 4 y & = 6 \\y & = - 5\end{aligned} \right. ​(-5,-14)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
7
Identify the elementary row operation being performed to obtain the new row-equivalent matrix. ​
Original Matrix New Row-Equivalent Matrix [415549]\left[ \begin{array} { r r r } 4 & - 1 & - 5 \\- 5 & 4 & 9\end{array} \right] [41511011]\left[ \begin{array} { r r r } 4 & - 1 & - 5 \\11 & 0 & - 11\end{array} \right]

A)Add 4 times Row 2 to Row 1.
B)Add 5 times Row 2 to Row 1.
C)Add 9 times Row 1 to Row 2.
D)Add 4 times Row 1 to Row 2.
E)Add 5 times Row 1 to Row 2.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
8
Select the augmented matrix for the system of linear equations.​ {8x4y+z=1416x9z=12\left\{ \begin{aligned}8 x - 4 y + z & = 14 \\16 x - 9 z & = 12\end{aligned} \right.

A)​ [84114169120]\left[ \begin{array} { c c c c c } 8 & - 4 & 1 & \vdots & 14 \\16 & - 9 & 12 & \vdots & 0\end{array} \right]
B)​ [84114169012]\left[ \begin{array} { c c c c c } 8 & - 4 & 1 & \vdots & 14 \\16 & - 9 & 0 & \vdots & 12\end{array} \right]
C)​ [84114160912]\left[ \begin{array} { c c c c c } 8 & 4 & 1 & \vdots & 14 \\16 & 0 & - 9 & \vdots & 12\end{array} \right]
D)​ [84014160912]\left[ \begin{array} { c c c c c } 8 & - 4 & 0 & \vdots & 14 \\16 & 0 & 9 & \vdots & 12\end{array} \right]
E)​ [841:141609:12]\left[ \begin{array} { c c c l } 8 & - 4 & 1 & :14 \\16 & 0 & - 9 & :12\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
9
Select the system of linear equations represented by the following augmented matrix.(Variables x,y,z,and w are used whenever applicable. )​ [13:834:5]\left[ \begin{array} { c c c l } 1 & 3 & :8 \\3 & -4 & :5\end{array} \right]

A)​ {x3y=83x4y=5\left\{ \begin{array} { r } x - 3 y = 8 \\3 x - 4 y = 5\end{array} \right.
B)​ {x+y=83x4y=5\left\{ \begin{array} { r } x + y = 8 \\3 x - 4 y = 5\end{array} \right.
C)​ {x+3y=84x+3y=5\left\{ \begin{array} { r } x + 3 y = 8 \\4 x + 3 y = 5\end{array} \right.
D)​ {x+3y=83x4y=5\left\{ \begin{array} { r } x + 3 y = 8 \\3 x - 4 y = 5\end{array} \right.
E)​ {x+3y=83x+4y=5\left\{ \begin{array} { r } x + 3 y = 8 \\3 x + 4 y = 5\end{array} \right.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
10
Select the order for the following matrix.​ [3510000554485]\left[ \begin{array} { c c c c } - 3 & 5 & 10 & 0 \\0 & 0 & 5 & 5 \\4 & 4 & 8 & 5\end{array} \right]

A)4 × 3
B)4 × 2
C)4 × 4
D)3 × 3
E)3 × 4
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
11
Select the order for the following matrix.​ [987053]\left[ \begin{array} { r r r } - 9 & 8 & 7 \\0 & - 5 & 3\end{array} \right]

A)2 × 3
B)3 × 1
C)3 × 2
D)3 × 3
E)2 × 2
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
12
Find the system of linear equations represented by the augmented matrix.Then use back substitution to solve.(Use variables x,y,z,and w if applicable. )​ [170011]\left[ \begin{array} { c c c c } 1 & 7 & \vdots & 0 \\0 & 1 & \vdots & - 1\end{array} \right]

A)​ {x+7y=0y=0\left\{ \begin{array} { r } x + 7 y = 0 \\y = 0\end{array} \right. ​​(7,0)
B)​ {x+7y=0x=1\left\{ \begin{aligned}x + 7 y & = 0 \\x & = - 1\end{aligned} \right. ​​(-1,7)
C)​ {x+7y=0y=1\left\{ \begin{aligned}x + 7 y & = 0 \\y & = - 1\end{aligned} \right. ​​(7,-1)
D)​ {x+7y=0y=1\left\{ \begin{array} { r } x + 7 y = 0 \\y = 1\end{array} \right. ​​(7,1)
E)​ {x+7y=0y=1\left\{ \begin{aligned}x + 7 y & = 0 \\y & = - 1\end{aligned} \right. ​​​(7,1)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
13
Identify the elementary row operation being performed to obtain the new row-equivalent matrix. ​
Original Matrix New Row-Equivalent Matrix [461419]\left[ \begin{array} { c c c } - 4 & 6 & 1 \\4 & - 1 & - 9\end{array} \right] [20053419]\left[ \begin{array} { c c c } 20 & 0 & - 53 \\4 & - 1 & - 9\end{array} \right]

A)Add 6 times Row 2 to Row 1.
B)Add 3 times Row 1 to Row 2.
C)Add 6 times Row 1 to Row 2.
D)Add 4 times Row 2 to Row 1.
E)Add 3 times Row 2 to Row 1.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
14
Determine whether the following matrix is in row-echelon form.If it is,determine if it is also in reduced row-echelon form. ​​ [101001030010]\left[ \begin{array} { l l l l } 1 & 0 & 1 & 0 \\0 & 1 & 0 & 3 \\0 & 0 & 1 & 0\end{array} \right]

A)Row-echelon form
B)Not in row-echelon form
C)Reduced row-echelon form
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
15
Select the system of linear equations represented by the following augmented matrix.​ [2041301265302]\left[\begin{array}{l}{\begin{array}{lllr}2 & 0 & 4 & \vdots-13\end{array}} \\\begin{array}{lllr}0 & 1&-2 & \vdots 6\end{array} \\\begin{array}{lllr}5 & 3 & 0 & \vdots 2\end{array} \\\end{array}\right]

A)​ {2x4z=13y2z=64x+y=3\left\{ \begin{array} { r r } 2 x - 4 z = & 13 \\y - 2 z = & - 6 \\4 x + y = & 3\end{array} \right.
B)​ {2x4z=13y+2z=64x+y=3\left\{\begin{aligned}2 x-4 z= & -13 \\y+2 z= & 6 \\4 x+y= & 3\end{aligned}\right.
C)​ {x+y2z=13x+y+2z=64x+y+z=3\left\{ \begin{array} { r r } x + y - 2 z = & - 13 \\x + y + 2 z = & 6 \\4 x + y + z = & 3\end{array} \right.
D) {x2z=13x2z=64x+y=3\left\{ \begin{aligned}x - 2 z = & - 13 \\x - 2 z = & 6 \\4 x + y = & 3\end{aligned} \right.
E)​ {2x+4z=13y2z=65x+3y=2\left\{ \begin{array} { r r } 2 x + 4 z = & - 13 \\y - 2 z = & 6 \\5 x + 3 y = & 2\end{array} \right.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
16
Find the system of linear equations represented by the augmented matrix.Then use back substitution to solve.(Use variables x,y,z and if applicable. )​ [116801160016]\left[\begin{array}{l}{\begin{array}{cccc}1 & -1 & 6 & \vdots8\end{array}} \\\begin{array}{llll}0 & 1 & -1 & \vdots6\end{array} \\\begin{array}{llll}0 & 0 & -1 & \vdots-6\end{array} \\\end{array}\right]

A)​ {xy+6z=8y+z=6z=6\left\{ \begin{aligned}x - y + 6 z & = 8 \\y + z & = 6 \\z & = - 6\end{aligned} \right. ​​(56,12,-6)
B)​ {xy+6z=8yz=6z=6\left\{ \begin{aligned}x - y + 6 z & = 8 \\y - z & = - 6 \\z & = 6\end{aligned} \right. ​ ​(44,0,-6)
C)​ {xy+6z=8y+z=6z=6\left\{ \begin{array} { r } x - y + 6 z = 8 \\y + z = 6 \\z = 6\end{array} \right. ​​(-40,12,6)
D)​ {xy+6z=8yz=6z=6\left\{ \begin{aligned}x - y + 6 z & = 8 \\y - z & = 6 \\z & = - 6\end{aligned} \right. ​ ​(44,0,-6)
E)​ {xy+6z=8y+z=6z=6\left\{ \begin{aligned}x - y + 6 z & = 8 \\y + z & = - 6 \\z & = 6\end{aligned} \right. ​​(-40,12,6)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
17
Select the augmented matrix for the system of linear equations.​ {6x5y=7x+5y=15\left\{ \begin{aligned}6 x - 5 y & = - 7 \\- x + 5 y & = 15\end{aligned} \right.

A)​ [5675115]\left[ \begin{array} { c c : c } 5 & - 6 & - 7 \\5 & - 1 & 15\end{array} \right]
B) [6571515]\left[\begin{array}{cc:c}6 & 5 & -7 \\-1 & 5 & 15\end{array}\right]
C) [6571515]\left[\begin{array}{cc:c}6 & 5 & 7 \\1 & 5 & 15\end{array}\right]
D) [6571515]\left[\begin{array}{cccc}6 & -5 & \vdots & -7 \\-1 & 5 & \vdots & 15\end{array}\right]
E) [5675115]\left[\begin{array}{cc:c}5 & 6 & 7 \\5 & -1 & 15\end{array}\right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
18
Perform the sequence of row operations on the following matrix. Add -3 times R1 to R2.​ [134315411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\3 & - 1 & - 5 \\4 & 1 & - 1\end{array} \right]

A)​ [1340417411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\0 & 4 & - 17 \\4 & 1 & - 1\end{array} \right]
B) [13401017411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\0 & - 10 & - 17 \\4 & 1 & - 1\end{array} \right]
C) [1340103411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\0 & - 10 & 3 \\4 & 1 & - 1\end{array} \right]
D) [13401017411]\left[ \begin{array} { c c c } - 1 & 3 & 4 \\0 & - 10 & - 17 \\4 & - 1 & - 1\end{array} \right]
E) [1340117411]\left[ \begin{array} { c c c } 1 & 3 & 4 \\0 & 1 & - 17 \\4 & 1 & - 1\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
19
Perform the sequence of row operations on the following matrix. Add R3 to R4.​ [71023441]\left[ \begin{array} { c c } 7 & 1 \\0 & 2 \\- 3 & 4 \\4 & 1\end{array} \right]

A)​ [71027541]\left[ \begin{array} { l l } 7 & 1 \\0 & 2 \\7 & 5 \\4 & 1\end{array} \right]
B)​ [710234117]\left[ \begin{array} { c c } 7 & 1 \\0 & 2 \\- 3 & 4 \\11 & 7\end{array} \right]
C)​ [71021541]\left[ \begin{array} { l l } 7 & 1 \\0 & 2 \\1 & 5 \\4 & 1\end{array} \right]
D) [710234711]\left[ \begin{array} { c c } 7 & 1 \\0 & 2 \\- 3 & 4 \\7 & 11\end{array} \right]
E)​ [71023415]\left[ \begin{array} { c c } 7 & 1 \\0 & 2 \\- 3 & 4 \\1 & 5\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
20
Fill in the blank(s)using elementary row operations to form a row-equivalent matrix.​ [165101220016]\left[ \begin{array} { c c c c } 1 & 6 & 5 & - 1 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right] ​​ [1601220016]\left[ \begin{array} { c c c c } 1 & 6 & \cdots & \cdots \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]

A)​ [1011301220016]\left[ \begin{array} { c c c c } 1 & 0 & - 1 & - 13 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
B)​ [16171301220016]\left[ \begin{array} { c c c c } 1 & 6 & - 17 & - 13 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
C)​ [1617701220016]\left[ \begin{array} { c c c c } 1 & 6 & 17 & - 7 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
D) [16171301220016]\left[ \begin{array} { c c c c } 1 & 6 & 17 & - 13 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
E)​ [101701220016]\left[ \begin{array} { c c c c } 1 & 0 & - 1 & - 7 \\0 & 1 & - 2 & 2 \\0 & 0 & 1 & 6\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
21
An augmented matrix that represents a system of linear equations (in variables x,y,z and w if applicable)has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix.​ [105016]\left[\begin{array}{lll}1 & 0 & \vdots 5\\0 & 1 & \vdots -6\\\end{array} \right]

A)(-6,7)
B)(-6,5)
C)(-5,6)
D)(5,-6)
E)(6,5)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
22
Determine whether the matrix is in row-echelon form.If it is,determine if it is also in reduced row-echelon form. [188401060019]\left[ \begin{array} { r r r r } 1 & 8 & - 8 & 4 \\0 & 1 & 0 & 6 \\0 & 0 & 1 & - 9\end{array} \right]

A)row-echelon form and reduced row-echelon form
B)row-echelon form
C)neither
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
23
Determine the order of the matrix.​ [438]\left[ \begin{array} { l l l } 4 & 3 & - 8\end{array} \right]

A)1 × 1
B)3
C)3 × 3
D)3 × 1
E)1 × 3
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
24
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x3z=73x+y2z=22x+2y+z=4\left\{ \begin{aligned}x - 3 z & = - 7 \\3 x + y - 2 z & = 2 \\2 x + 2 y + z & = 4\end{aligned} \right.

A)(-5,-5,4)
B)​(5,-5,-4)
C)​(-5,-5,-4)
D)​(5,5,4)
E)​(5,-5,4)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
25
Write the augmented matrix for the system of linear equations. {x3y2z=24y+4z=4x+4z=2\left\{ \begin{aligned}x - 3 y - 2 z & = - 2 \\4 y + 4 z & = 4 \\x + 4 z & = - 2\end{aligned} \right.

A) [132204441402]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\0 & 4 & 4 & \vdots & 4 \\1 & 4 & 0 & \vdots & - 2\end{array} \right]
B) [1322444041402]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\4 & 44 & 0 & \vdots & 4 \\1 & 4 & 0 & \vdots & - 2\end{array} \right]
C) [132214441142]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\1 & 4 & 4 & \vdots & 4 \\1 & 1 & 4 & \vdots & - 2\end{array} \right]
D) [1322444142]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\& 4 & 4 & \vdots & 4 \\1 & & 4 & \vdots & - 2\end{array} \right]
E) [132204441042]\left[ \begin{array} { c c c c c } 1 & - 3 & - 2 & \vdots & - 2 \\0 & 4 & 4 & \vdots & 4 \\1 & 0 & 4 & \vdots & - 2\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
26
The currents in an electrical network are given by the solution of the system​ {I1I2+I3=53I1+4I2=19I2+3I3=28\left\{ \begin{aligned}I _ { 1 } - I _ { 2 } + I _ { 3 } & = 5 \\3 I _ { 1 } + 4 I _ { 2 } & = 19 \\I _ { 2 } + 3 I _ { 3 } & = 28\end{aligned} \right. ​ where I1,I2 and I3 are measured in amperes.Solve the system of equations using matrices.

A)I1 = 5,I2 = 4,I3 = 8
B)I1 = 4,I2 = 4,I3 = 8 ​
C)I1 = 3,I2 = 4,I3 = 8 ​
D)I1 = 2,I2 = 4,I3 = 8 ​
E)I1 = 1,I2 = 4,I3 = 8
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
27
An augmented matrix that represents a system of linear equations (in variables x,y,z and w if applicable)has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix.​ [100801060010]\left[\begin{array}{l}{\begin{array}{cccc}1 & 0 & 0 & \vdots8\end{array}} \\\begin{array}{llll}0 & 1 & 0 & \vdots-6\end{array} \\\begin{array}{llll}0 & 0 & 1 & \vdots0\end{array} \\\end{array}\right]

A)​(0,8,-6)
B)(8,0,-6)
C)(8,-6,0)
D)(-8,-6,0)
E)(8,6,0)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
28
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x+yz=202xy+z=293x+2y+z=29\left\{ \begin{array} { r l c } - x + y - z & = - 20 \\2 x - y + z & = 29 \\3 x + 2 y + z & = 29\end{array} \right.

A)​(-9,-3,8)
B)​(-9,-3,-8)
C)(9,-3,8)
D)​(9,-3,-8)
E)​(9,3,8)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
29
Write the matrix in reduced row-echelon form. [5736662442424]\left[ \begin{array} { r r r r } 5 & - 7 & - 3 & 6 \\- 6 & - 6 & 2 & - 44 \\2 & - 4 & - 2 & - 4\end{array} \right]

A) [100601030015]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 6 \\0 & 1 & 0 & 3 \\0 & 0 & 1 & 5\end{array} \right]
B) [100101010011]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 1 \\0 & 1 & 0 & 1 \\0 & 0 & 1 & 1\end{array} \right]
C) [100701020015]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 7 \\0 & 1 & 0 & 2 \\0 & 0 & 1 & 5\end{array} \right]
D) [100001000010]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & 1 & 0\end{array} \right]
E) [100701050012]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 7 \\0 & 1 & 0 & 5 \\0 & 0 & 1 & 2\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
30
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {2x+6y=102x+3y=7\left\{ \begin{array} { l } 2 x + 6 y = 10 \\2 x + 3 y = 7\end{array} \right.

A)​​(10,1)
B)​(2,1)
C)​​(2,-6)
D)​(-2,1)
E)​​(2,-1)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
31
Fill in the blank using elementary row operations to form a row-equivalent matrix. [2121019]\left[ \begin{array} { r r r } 2 & 1 & - 2 \\- 10 & - 1 & 9\end{array} \right] [21201]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & \square & - 1\end{array} \right]

A) [212061]\left[ \begin{array} { c c c } 2 & 1 & - 2 \\0 & - 6 & - 1\end{array} \right]
B) [212041]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & 4 & - 1\end{array} \right]
C) [212041]\left[ \begin{array} { r r r } 2 & 1 & - 2 \\0 & - 4 & - 1\end{array} \right]
D) [212011]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & 1 & - 1\end{array} \right]
E) [212001]\left[ \begin{array} { l l l } 2 & 1 & - 2 \\0 & 0 & - 1\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
32
An augmented matrix that represents a system of linear equations (in variables x,y,z and w if applicable)has been reduced using Gauss-Jordan elimination.Find the solution represented by the augmented matrix.​ [100301090013]\left[\begin{array}{l}{\begin{array}{cccc}1 & 0 & 0 & \vdots-3\end{array}} \\\begin{array}{llll}0 & 1 & 0 & \vdots-9\end{array} \\\begin{array}{llll}0 & 0 & 1 & \vdots3\end{array} \\\end{array}\right]

A)​(-3,9,3)
B)(3,-9,3)
C)(-3,-9,3)
D)(-3,-9,-3)
E)(-3,3,-9)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
33
Use matrices to find the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {5x5y=52x3y=18\left\{ \begin{aligned}5 x - 5 y & = 5 \\- 2 x - 3 y & = 18\end{aligned} \right.

A)​(3,4)
B)(-3,4)
C)(5,18)
D)(-3,-4)
E)(3,-4)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
34
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. ​​ {3x+2yz+w=0xy+4zw=282x+y+2zw=3x+y+z+w=8\left\{ \begin{array} { r l r } 3 x + 2 y - z + w & = 0 \\x - y + 4 z - w & = 28 \\- 2 x + y + 2 z - w & = 3 \\x + y + z + w & = 8\end{array} \right.

A)​(-3,-2,6,1)
B)(-3,2,-6,-1)
C)(3,-2,6,1)
D)(3,-2,6,-1)
E)(3,-2,-6,1)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
35
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x4y+3z2w=103x2y+z4w=224x+3y2z+w=22x+y4z+3w=10\left\{ \begin{aligned}x - 4 y + 3 z - 2 w & = 10 \\3 x - 2 y + z - 4 w & = - 22 \\- 4 x + 3 y - 2 z + w & = - 2 \\- 2 x + y - 4 z + 3 w & = - 10\end{aligned} \right.

A)​(-2,-1,8,6)
B)(-2,0,8,6)
C)(-2,0,8,-6)
D)​(-2,-1,-8,-6)
E)(-2,0,-8,6)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
36
Determine the order of the matrix.​ [854781]\left[ \begin{array} { l l l } 8 & 5 & 4 \\7 & 8 & 1\end{array} \right]

A)3 × 3
B)2 × 2
C)3 × 1
D)2 × 3
E)3 × 2
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
37
Identify the elementary row operation being performed to obtain the new row-equivalent matrix. Original Matrix
New Row-Equivalent Matrix [185899]\left[ \begin{array} { r r r } - 1 & - 8 & 5 \\- 8 & 9 & 9\end{array} \right] [171023899]\left[ \begin{array} { r r r } - 17 & 10 & 23 \\- 8 & 9 & 9\end{array} \right]

A)Add 2 times R1 to R2.
B)Add -2 times R1 to R2.
C)Add 2 times R2 to R1.
D)Add -2 times R2 to R1.
E)Add 2 times R1 to R1.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
38
Use the matrix capabilities of a graphing utility to reduce the augmented matrix corresponding to the system of equations,and solve the system.​ {x+2y+2z+4w=203x+6y+5z+12w=53x+3y3z+2w=186xyz+w=30\left\{ \begin{aligned}x + 2 y + 2 z + 4 w & = 20 \\3 x + 6 y + 5 z + 12 w & = 53 \\x + 3 y - 3 z + 2 w & = - 18 \\6 x - y - z + w & = - 30\end{aligned} \right.

A)​(-4,1,7,-2)
B)(-4,-1,7,2)
C)(-4,1,-7,2)
D)(-4,-1,-7,-2)
E)(-4,1,7,2)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
39
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {x+2y=62x+y=9\left\{ \begin{array} { l } x + 2 y = 6 \\2 x + y = 9\end{array} \right.

A)​(1,4)
B)​(3,4)
C)(1,12)
D)(4,1)
E)(12,4)
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
40
Write the system of linear equations represented by the augmented matrix.(Use variables x,y,z,and w. ) [10032740080535800199]\left[\begin{array}{l}{\begin{array}{lllll}-1 & 0 & 0 &3&\vdots2\end{array}} \\\begin{array}{lllll}-7 & 4 & 0 &0& \vdots8\end{array} \\\begin{array}{lllll}0 & 5 & 3 &-5& \vdots-8\end{array} \\\begin{array}{lllll}0 & 0 & -1 &-9& \vdots9\end{array} \\\end{array}\right]

A) {x+3w=27x+4y=85y+3z5w=8y9z=9\left\{ \begin{array} { r l r } - x + 3 w & = 2 \\- 7 x + 4 y & = 8 \\5 y + 3 z - 5 w & = - 8 \\- y - 9 z & = 9\end{array} \right.
B) {x+3z=27x+4z=85y+3z5w=8z9w=9\left\{ \begin{array} { r l r } - x + 3 z & = 2 \\- 7 x + 4 z & = 8 \\5 y + 3 z - 5 w & = - 8 \\- z - 9 w & = 9\end{array} \right.
C) {x+3y=27x+4y=85x+3y5z=8x9y=9\left\{ \begin{array} { r l r } - x + 3 y & = & 2 \\- 7 x + 4 y & = & 8 \\5 x + 3 y - 5 z & = - 8 \\- x - 9 y & = 9\end{array} \right.
D) {x+3w=27x+4y=85y+3z5w=8z9w=9\left\{ \begin{aligned}- x + 3 w & = 2 \\- 7 x + 4 y & = 8 \\5 y + 3 z - 5 w & = - 8 \\- z - 9 w & = 9\end{aligned} \right.
E) {x+3z=27x+4y=85y+3z5w=8z9w=9\left\{ \begin{array} { r l r } - x + 3 z & = 2 \\- 7 x + 4 y & = 8 \\5 y + 3 z - 5 w & = - 8 \\- z - 9 w & = 9\end{array} \right.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
41
Determine whether the matrix is in row-echelon form.If it is,determine if it is also in reduced row-echelon form. [199601020011]\left[ \begin{array} { r r r r } 1 & 9 & - 9 & - 6 \\0 & 1 & 0 & - 2 \\0 & 0 & 1 & 1\end{array} \right]

A)row-echelon form
B)row-echelon form and reduced row-echelon form
C)neither
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
42
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.​ {4x+9y+z=176x6y8z=129x+8y+z=43\left\{ \begin{array} { c } 4 x + 9 y + z = - 17 \\6 x - 6 y - 8 z = 12 \\9 x + 8 y + z = - 43\end{array} \right.

A)x = 5,y = -1,z = -6
B)x = -5,y = -1,z = -6
C)x = -5,y = 1,z = -6
D)x = 1,y = 5,z = 6
E)no solution
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
43
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {4x9y9z=746x+8y2z=226xy+9z=4\left\{ \begin{aligned}4 x - 9 y - 9 z & = - 74 \\6 x + 8 y - 2 z & = - 22 \\6 x - y + 9 z & = 4\end{aligned} \right.

A)x = 5,y = -2,z = 4
B)x = 2,y = 5,z = -4
C)x = -5,y = -2,z = 4
D)no solution
E)x = -5,y = 2,z = 4
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
44
Use a system of equations to find the specified equation that passes through the points.Solve the system using matrices. Parabola: y = ax2 + bx + c  <strong>Use a system of equations to find the specified equation that passes through the points.Solve the system using matrices. Parabola: y = ax<sup>2</sup> + bx + c  </strong> A)​  y = 2 x ^ { 2 } - x + 6  B)​  y = - x ^ { 2 } + 6  C)​  y = - x ^ { 2 } + x + 6  D)​  y = + x ^ { 2 } + 6  E)​  y = - x ^ { 2 } - x + 6

A)​ y=2x2x+6y = 2 x ^ { 2 } - x + 6
B)​ y=x2+6y = - x ^ { 2 } + 6
C)​ y=x2+x+6y = - x ^ { 2 } + x + 6
D)​ y=+x2+6y = + x ^ { 2 } + 6
E)​ y=x2x+6y = - x ^ { 2 } - x + 6
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
45
Write the system of linear equations represented by the augmented matrix.(Use variables x,y,z,and w. ) [1004:53700:30481:60037:7]\left[\begin{array}{rrrrl}1 & 0 & 0 & 4 & :-5\\3 & -7 & 0 & 0 & :3\\0&-4&8&-1&:-6 \\0 & 0 & 3 & 7 &:7\end{array}\right]

A) {x+4y=53x7y=34x+8yz=63x+7y=7\left\{ \begin{array} { r l r } x + 4 y & = & - 5 \\3 x - 7 y & = & 3 \\- 4 x + 8 y - z & = & - 6 \\3 x + 7 y & = & 7\end{array} \right.
B) {x+4z=53x7y=34y+8zw=63zz+7w=7\left\{ \begin{array} { r l r } x + 4 z & = - 5 \\3 x - 7 y & = 3 \\- 4 y + 8 z - w & = - 6 \\3 z z + 7 w & = 7\end{array} \right.
C) {x+4z=53x7z=34y+8zw=63zz+7w=7\left\{ \begin{array} { r l r } x + 4 z & = - 5 \\3 x - 7 z & = 3 \\- 4 y + 8 z - w & = - 6 \\3 z z + 7 w & = 7\end{array} \right.
D) {x+4w=53x7y=34y+8zw=63y+7z=7\left\{ \begin{array} { r l r } x + 4 w & = - 5 \\3 x - 7 y & = 3 \\- 4 y + 8 z - w & = - 6 \\3 y + 7 z & = 7\end{array} \right.
E) {x+4w=53x7y=34y+8zw=63z+7w=7\left\{ \begin{aligned}x + 4 w & = - 5 \\3 x - 7 y & = 3 \\- 4 y + 8 z - w & = - 6 \\3 z + 7 w & = 7\end{aligned} \right.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
46
Perform the sequence of row operations on the matrix.What did the operations accomplish?​ [1174571335]\left[ \begin{array} { c c c } 1 & 1 & - 7 \\4 & 5 & - 7 \\1 & 3 & 35\end{array} \right] ​ Add -4 times R1 to R2,
Add -1 times R1 to R3,
Add -2 times R2 to R3,
Add -1 times R2 to R1.

A) [100010001]\left[ \begin{array} { l l l } 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
B) [10280121000]\left[ \begin{array} { r r r } 1 & 0 & - 28 \\0 & 1 & 21 \\0 & 0 & 0\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
C) [11280121000]\left[ \begin{array} { r r r } 1 & 1 & - 28 \\0 & 1 & 21 \\0 & 0 & 0\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
D) [11701210242]\left[ \begin{array} { c c c } 1 & 1 & - 7 \\0 & 1 & 21 \\0 & 2 & 42\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
E) [10280021000]\left[ \begin{array} { r r r } 1 & 0 & - 28 \\0 & 0 & 21 \\0 & 0 & 0\end{array} \right] The operations produce a row-equivalent matrix in reduced row-echelon form.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
47
Determine whether the two systems of linear equations yield the same solutions.If so,find the solutions using matrices. {xy6z=33y+3z=18z=4\left\{ \begin{aligned}x - y - 6 z & = - 33 \\y + 3 z & = 18 \\z & = 4\end{aligned} \right. {x7y3z=57y9z=30z=4\left\{ \begin{array} { r l r } x - 7 y - 3 z & = - 57 \\y - 9 z & = - 30 \\z & = 4\end{array} \right.

A)x = -3,y = 6,z = 4
B)The systems yield different solutions.
C)x = 3,y = 4,z = -3
D)x = 3,y = -6,z = 4
E)x = 6,y = 4,z = -3
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
48
Write the augmented matrix for the system of linear equations. {x+7y+7z=63y+3z=6x+7z=7\left\{ \begin{aligned}x + 7 y + 7 z & = - 6 \\3 y + 3 z & = 6 \\x + 7 z & = - 7\end{aligned} \right.

A) [177613361177]\left[ \begin{array} { r r r r r } 1 & 7 & 7 & \vdots & - 6 \\1 & 3 & 3 & \vdots & 6 \\1 & 1 & 7 & \vdots & - 7\end{array} \right]
B) [177613361077]\left[ \begin{array} { r r r r r } 1 & 7 & 7 & \vdots & - 6 \\1 & 3 & 3 & \vdots & 6 \\1 & 0 & 7 & \vdots & - 7\end{array} \right]
C) [1776336177]\left[ \begin{array} { r r r r r } 1 & 7 & 7 & \vdots & - 6 \\& 3 & 3 & \vdots & 6 \\1 & & 7 & \vdots & - 7\end{array} \right]
D) [1776333061707]\left[\begin{array}{rrrrr}1 & 7 & 7 & \vdots & -6 \\3 & 33 & 0 & \vdots & 6 \\1 & 7 & 0 & \vdots & -7\end{array}\right]
E) [177603361707]\left[ \begin{array} { r r r r r } 1 & 7 & 7 & \vdots & - 6 \\0 & 3 & 3 & \vdots & 6 \\1 & 7 & 0 & \vdots & - 7\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
49
Write the matrix in reduced row-echelon form. [451131113517]\left[ \begin{array} { r r r } 4 & 5 & 11 \\3 & 1 & - 11 \\3 & 5 & 17\end{array} \right]

A) [106000000]\left[ \begin{array} { r r r } 1 & 0 & - 6 \\0 & 0 & 0 \\0 & 0 & 0\end{array} \right]
B) [100010000]\left[ \begin{array} { l l l } 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 0\end{array} \right]
C) [104015001]\left[ \begin{array} { c c c } 1 & 0 & - 4 \\0 & 1 & 5 \\0 & 0 & 1\end{array} \right]
D) [107016000]\left[ \begin{array} { c c c } 1 & 0 & - 7 \\0 & 1 & - 6 \\0 & 0 & 0\end{array} \right]
E) [106017000]\left[ \begin{array} { r r r } 1 & 0 & - 6 \\0 & 1 & 7 \\0 & 0 & 0\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
50
Determine the order of the matrix. [677967]\left[ \begin{array} { r r r } 6 & - 7 & 7 \\9 & 6 & 7\end{array} \right]

A)2 × 3
B)3 × 3
C)3 × 1
D)3 × 2
E)2 × 2
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
51
An augmented matrix that represents a system of linear equations (in variables x,y,and z)has been reduced using Gauss-Jordan elimination.Write the solution represented by the augmented matrix. [100:2010:3001:4]\left[\begin{array}{llll}1&0&0&:2\\0 & 1 & 0 & :3 \\0 & 0 & 1 & :4\end{array}\right]

A)x = 0,y = 0,z = 0
B)x = 2x,y = 4y,z = 3z
C)x = 2,y = 3,z = 4
D)x = -2,y = -3,z = -4
E)x = 2,y = 0,z = 0
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
52
Identify the elementary row operation being performed to obtain the new row-equivalent matrix. Original Matrix
New Row-Equivalent Matrix [986853]\left[ \begin{array} { r r r } - 9 & - 8 & 6 \\- 8 & - 5 & - 3\end{array} \right] [7212853]\left[ \begin{array} { r r r } 7 & 2 & 12 \\- 8 & - 5 & - 3\end{array} \right]

A)Add -2 times R1 to R2.
B)Add 2 times R2 to R1.
C)Add 2 times R1 to R2.
D)Add -2 times R1 to R1.
E)Add -2 times R2 to R1.
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
53
Write the system of linear equations represented by the augmented matrix.Then use back-substitution to solve.(Use variables x,y,and z. ) [12534012140015]\left[\begin{array}{rrrrrr}1 & 2 & 5 & \vdots & 34 \\0 & 1 & 2 & \vdots & 14 \\0 & 0 & 1 & \vdots & 5\end{array}\right]

A)x = 35,y = -3,z = 1
B)x = 4,y = 1,z = 5
C)x = 1,y = -4,z = -5
D)x = 1,y = 4,z = 5
E)x = -4,y = 5,z = -1
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
54
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {7x6y=405x+7y=34\left\{ \begin{aligned}7 x - 6 y & = - 40 \\- 5 x + 7 y & = 34\end{aligned} \right.

A)x = 4,y = -2
B)x = -4,y = 2
C)x = 2,y = -4
D)x = 2,y = 4
E)no solution
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
55
Write the system of linear equations represented by the augmented matrix.Then use back-substitution to solve.(Use variables x,y,and z. ) [1933901200012]\left[ \begin{array} { r r r r r } 1 & 9 & - 3 &\vdots& - 39 \\0 & 1 & 2 & \vdots & 0 \\0 & 0 & 1 & \vdots & 2\end{array} \right]

A)x = 4,y = 2,z = -3
B)x = 3,y = -4,z = 2
C)x = 3,y = 4,z = -2
D)x = -18,y = -1,z = 4
E)x = -4,y = 3,z = 2
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
56
Fill in the blank using elementary row operations to form a row-equivalent matrix. [153214]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\- 2 & 1 & 4\end{array} \right] [153010]\left[\begin{array}{rrr}-1 & 5 & -3 \\0 & \square & 10\end{array}\right]

A) [1530910]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & - 9 & 10\end{array} \right]
B) [1530010]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & 0 & 10\end{array} \right]
C) [15301110]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & 11 & 10\end{array} \right]
D) [1530510]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & 5 & 10\end{array} \right]
E) [1530910]\left[ \begin{array} { r r r } - 1 & 5 & - 3 \\0 & 9 & 10\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
57
Use matrices to solve the system of equations (if possible).Use Gaussian elimination with back-substitution or Gauss-Jordan elimination. {2x+9y=359x+2y=30\left\{ \begin{aligned}2 x + 9 y & = - 35 \\- 9 x + 2 y & = 30\end{aligned} \right.

A)x = -3,y = -4
B)x = 4,y = 3
C)x = -4,y = -3
D)x = -3,y = 4
E)no solution
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
58
Write the matrix in reduced row-echelon form. [96333811477768]\left[ \begin{array} { r r r r } 9 & - 6 & - 3 & - 33 \\8 & - 1 & 1 & - 47 \\- 7 & - 7 & 6 & - 8\end{array} \right]

A) [100001000010]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & 1 & 0\end{array} \right]
B) [100501060011]\left[ \begin{array} { l l l r } 1 & 0 & 0 & - 5 \\0 & 1 & 0 & - 6 \\0 & 0 & 1 & 1\end{array} \right]
C) [100601020016]\left[ \begin{array} { r r r r } 1 & 0 & 0 & - 6 \\0 & 1 & 0 & 2 \\0 & 0 & 1 & - 6\end{array} \right]
D) [100501010016]\left[ \begin{array} { r r r r } 1 & 0 & 0 & - 5 \\0 & 1 & 0 & 1 \\0 & 0 & 1 & - 6\end{array} \right]
E) [100101010011]\left[ \begin{array} { l l l l } 1 & 0 & 0 & 1 \\0 & 1 & 0 & 1 \\0 & 0 & 1 & 1\end{array} \right]
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
59
Determine whether the two systems of linear equations yield the same solutions.If so,find the solutions using matrices. {x+2y4z=8y7z=4z=1\left\{ \begin{aligned}x + 2 y - 4 z & = - 8 \\y - 7 z & = 4 \\z & = - 1\end{aligned} \right. {xy5z=21y6z=3z=1\left\{ \begin{aligned}x - y - 5 z & = 21 \\y - 6 z & = 3 \\z & = - 1\end{aligned} \right.

A)x = 6,y = 3,z = -1
B)x = -6,y = -3,z = -1
C)x = 3,y = -1,z = -6
D)The systems yield different solutions.
E)x = -3,y = -1,z = -6
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
60
The currents in an electrical network are given by the solutions of the system {I1+I2I3=02I1+3I3=374I2+I3=25\left\{ \begin{array} { r l r } I _ { 1 } + I _ { 2 } - I _ { 3 } & = 0 \\2 I _ { 1 } + 3 I _ { 3 } & = 37 \\4 I _ { 2 } + I _ { 3 } & = 25\end{array} \right. where I1,I2,and I3 are measured in amperes.Solve the system of equations using matrices.

A)no solution
B)I1 = 3,I2 = 3,I3 = 7
C)I1 = 5,I2 = 4,I3 = 9
D)I1 = 3,I2 = 3,I3 = 6
E)I1 = 5,I2 = 9,I3 = 4
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
61
The currents in an electrical network are given by the solutions of the system {I1+I2I3=04I1+5I3=236I2+I3=9\left\{ \begin{aligned}I _ { 1 } + I _ { 2 } - I _ { 3 } & = 0 \\4 I _ { 1 } + 5 I _ { 3 } & = 23 \\6 I _ { 2 } + I _ { 3 } & = 9\end{aligned} \right. where I1,I2,and I3 are measured in amperes.Solve the system of equations using matrices.

A)I1 = 2,I2 = 3,I3 = 1
B)I1 = 2,I2 = 1,I3 = 3
C)I1 = 4,I2 = 4,I3 = 9
D)I1 = 4,I2 = 4,I3 = 8
E)no solution
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
62
Solve the system using Gauss-Jordan elimination.​ {x+y+2z+t=62x+2y+z+t=622x+y+z+t=49x+y+z+2t=62\left\{ \begin{aligned}x + y + 2 z + t & = 62 \\x + 2 y + z + t & = 62 \\2 x + y + z + t & = 49 \\x + y + z + 2 t & = 62\end{aligned} \right.

A) (2,15,15,15)( 2 , - 15,15 , - 15 )
B) (2,15,15,15)( - 2,15,15,15 )
C) (2,15,15,15)( 2 , - 15,15,15 )
D) (2,15,15,15)( 2,15,15,15 )
E) (2,15,15,15)( 2,15 , - 15,15 )
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
63
Solve the system by Gauss - Jordan elimination.​ {13x+34y23z=4x+12y+13z=3016x18yz=30\left\{ \begin{aligned}\frac { 1 } { 3 } x + \frac { 3 } { 4 } y - \frac { 2 } { 3 } z & = - 4 \\x + \frac { 1 } { 2 } y + \frac { 1 } { 3 } z & = 30 \\\frac { 1 } { 6 } x - \frac { 1 } { 8 } y - z & = - 30\end{aligned} \right.

A) (12,16,30)( - 12 , - 16 , - 30 )
B) (12,16,30)( - 12,16 , - 30 )
C) (12,16,30)( 12,16,30 )
D) (0,16,30)( 0,16 , - 30 )
E) (12,16,30)( 12 , - 16,30 )
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
64
Solve the system using Gauss-Jordan elimination.​ {w+x=9w+y=0x+z=0\left\{ \begin{array} { l } w + x = 9 \\w + y = 0 \\x + z = 0\end{array} \right.

A) w=9+z,x=z,y=9z,zw = - 9 + z , x = - z , y = - 9 - z , z
B) w=9+z,x=z,y=9z,zw = 9 + z , x = - z , y = - 9 - z , z
C) w=9+z,x=z,y=9z,zw = 9 + z , x = - z , y = 9 - z , z
D) w=9+z,x=z,y=9+z,zw = 9 + z , x = - z , y = 9 + z , z
E) w=9z,x=z,y=9z,zw = 9 - z , x = - z , y = - 9 - z , z
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
65
Solve the system using Gaussian elimination.​ {x+y=2x+z=4y+z=4\left\{ \begin{array} { l } x + y = - 2 \\x + z = - 4 \\y + z = - 4\end{array} \right.

A) (1,1,3)( 1,1,3 )
B) (1,1,3)( - 1 , - 1 , - 3 )
C) (1,1,3)( 1,1 , - 3 )
D) (1,1,3)( 1 , - 1 , - 3 )
E) (1,1,3)( - 1,1 , - 3 )
Unlock Deck
Unlock for access to all 65 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 65 flashcards in this deck.