Deck 12: Polynomial Functions of Higher Degree

Full screen (f)
exit full mode
Question
Determine the number of turning points of the graph of the function.​ f(x)=2x4+4x2+4f ( x ) = 2 x ^ { 4 } + 4 x ^ { 2 } + 4

A)Number of turning points: 3
B)Number of turning points: 1
C)Number of turning points: 5
D)Number of turning points: 2
E)Number of turning points: 4
Use Space or
up arrow
down arrow
to flip the card.
Question
Find all the real zeros of the polynomial function and determine the multiplicity of each zero and the number of turning points of the graph of the function.​ h(t)=t214t+49h ( t ) = t ^ { 2 } - 14 t + 49

A)All Real Zeros: 0, 77 ;Even multiplicity;number of turning points: 2
B)All Real Zeros: 77 ;Even multiplicity;number of turning points: 1
C)All Real Zeros: 0, 4949 ;Odd multiplicity;number of turning points: 2
D)All Real Zeros: 0,1, 77 ;Even multiplicity;number of turning points: 3
E)All Real Zeros: 77 ;Odd multiplicity;number of turning points: 1
Question
Select from the following which is the polynomial function that has the given zeros.​ 0,7,30 , - 7 , - 3

A) f(x)=x3+10x2+21xf ( x ) = - x ^ { 3 } + 10 x ^ { 2 } + 21 x
B) f(x)=x310x2+21xf ( x ) = x ^ { 3 } - 10 x ^ { 2 } + 21 x
C) f(x)=x3+10x2+21xf ( x ) = x ^ { 3 } + 10 x ^ { 2 } + 21 x
D) f(x)=x310x221xf ( x ) = x ^ { 3 } - 10 x ^ { 2 } - 21 x
E) f(x)=x3+10x221xf ( x ) = x ^ { 3 } + 10 x ^ { 2 } - 21 x
Question
Select the graph of y=x4y = x ^ { 4 } and the transformation f(x)=(12x)42f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2 . ​

A)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select from the following which is the polynomial function that has the given zeros.​ 5,75 , - 7

A) f(x)=x22x+35f ( x ) = x ^ { 2 } - 2 x + 35
B) f(x)=x2+2x+35f ( x ) = x ^ { 2 } + 2 x + 35
C) f(x)=x22x35f ( x ) = - x ^ { 2 } - 2 x - 35
D) f(x)=x2+2x35f ( x ) = - x ^ { 2 } + 2 x - 35
E) f(x)=x2+2x35f ( x ) = x ^ { 2 } + 2 x - 35
Question
Select the graph of y=x3y = x ^ { 3 } and the transformation f(x)=(x3)3f ( x ) = ( x - 3 ) ^ { 3 } . ​

A)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the correct graph of the function.​ f(x)=13x2+13x83f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }

A)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the graph of y=x6y = x ^ { 6 } and the transformation f(x)=(x+3)6f ( x ) = ( x + 3 ) ^ { 6 } . ​

A)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​ f(x)=(4x43x3+16x)f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right) , g(x)=4x4g ( x ) = - 4 x ^ { 4 }

A)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.​ f(x)=12x3+3xf ( x ) = \frac { 1 } { 2 } x ^ { 3 } + 3 x

A)Rises to the left,falls to the right
B)Rises to the right,rises to the left
C)Falls to the left,rises to the right
D)Falls to the right
E)Falls to the left,falls to the right
Question
Select the graph of y=x5y = x ^ { 5 } and the transformation f(x)=112x5f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 } . ​

A)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.​ f(x)=2x23x+5f ( x ) = 2 x ^ { 2 } - 3 x + 5

A)Falls to the left,rises to the right
B)Falls to the left,falls to the right
C)Rises to the left,rises to the right
D)Rises to the left,falls to the right
E)Falls to the left
Question
Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​ f(x)=x34x+1f ( x ) = x ^ { 3 } - 4 x + 1 , g(x)=x3g ( x ) = x ^ { 3 }

A)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Select the correct graph of the function.​ y=2x324x2+36xy = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x

A)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Find all the real zeros of the polynomial function.​ f(x)=x29f ( x ) = x ^ { 2 } - 9

A) 9- 9
B) 33
C) 3- 3
D) 99
E) ±3\pm 3
Question
Select from the following which is the polynomial function that has the given zeros.​ 0,50,5

A) f(x)=x25xf ( x ) = x ^ { 2 } - 5 x
B) f(x)=x3+x25xf ( x ) = x ^ { 3 } + x ^ { 2 } - 5 x
C) f(x)=x5f ( x ) = x - 5
D) f(x)=x+5f ( x ) = x + 5
E) f(x)=x2+5xf ( x ) = x ^ { 2 } + 5 x
Question
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.​ f(t)=25x+3x25x3f ( t ) = 2 - 5 x + 3 x ^ { 2 } - 5 x ^ { 3 }

A)Falls to the left,falls to the right
B)Rises to the left,rises to the right
C)Rises to the left,falls to the right
D)Falls to the left,rises to the right
E)Falls to the left
Question
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.​ f(t)=35(t24t+5)f ( t ) = - \frac { 3 } { 5 } \left( t ^ { 2 } - 4 t + 5 \right)

A)Rises to the left,rises to the right
B)Falls to the left,rises to the right
C)Falls to the left,falls to the right
D)Rises to the left,falls to the right
E)Rises to the left
Question
Select the correct graph of the function.​ y=x55x3+3xy = x ^ { 5 } - 5 x ^ { 3 } + 3 x

A)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Find all the real zeros of the polynomial function.​ f(x)=x516x3+64xf ( x ) = x ^ { 5 } - 16 x ^ { 3 } + 64 x

A) 0,±80 , \pm \sqrt { 8 }
B) 0,80 , \sqrt { 8 }
C) 0,80,8
D) 0,80 , - 8
E) 0,80 , - \sqrt { 8 }
Question
Select from the following which is the polynomial function that has the given zeros.​ 1+5,151 + \sqrt { 5 } , 1 - \sqrt { 5 }

A) f(x)=x22x4f ( x ) = - x ^ { 2 } - 2 x - 4
B) f(x)=x22x+4f ( x ) = - x ^ { 2 } - 2 x + 4
C) f(x)=x22x4f ( x ) = x ^ { 2 } - 2 x - 4
D) f(x)=x22x+4f ( x ) = x ^ { 2 } - 2 x + 4
E) f(x)=x2+2x4f ( x ) = x ^ { 2 } + 2 x - 4
Question
Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​ f(x)=18x44x2f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }

A)​Zeros: 0,420 , - 4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​ <div style=padding-top: 35px>
B)​Zeros: 0,±420 , \pm 4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​ <div style=padding-top: 35px>
C)​Zeros: 0,420 , - 4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​ <div style=padding-top: 35px>
D)​Zeros: 0,±420 , \pm 4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​ <div style=padding-top: 35px>
E)​Zeros: 0,420,4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​ <div style=padding-top: 35px>
Question
Select from the following which is the polynomial of degree n that has the given zero(s). ​
Zero
Degree x=3x = 3 n=3n = 3

A) f(x)=x39x2+27x27f ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 27 x - 27
B) f(x)=x3+9x2+27x27f ( x ) = x ^ { 3 } + 9 x ^ { 2 } + 27 x - 27
C) f(x)=x3+9x2+27x+27f ( x ) = x ^ { 3 } + 9 x ^ { 2 } + 27 x + 27
D) f(x)=x39x2+27x+27f ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 27 x + 27
E) f(x)=x39x227x27f ( x ) = x ^ { 3 } - 9 x ^ { 2 } - 27 x - 27
Question
Select from the following which is the polynomial function that has the given zeros.​ 4,2,0,2,4- 4 , - 2,0,2,4

A) f(x)=x520x3+64f ( x ) = x ^ { 5 } - 20 x ^ { 3 } + 64
B) f(x)=x5+20x3+64xf ( x ) = x ^ { 5 } + 20 x ^ { 3 } + 64 x
C) f(x)=x520x3+64xf ( x ) = x ^ { 5 } - 20 x ^ { 3 } + 64 x
D) f(x)=x520x3+64xf ( x ) = - x ^ { 5 } - 20 x ^ { 3 } + 64 x
E) f(x)=x520x364xf ( x ) = x ^ { 5 } - 20 x ^ { 3 } - 64 x
Question
Select from the following which is the polynomial of degree n that has the given zero(s). ​
Zeros
Degree x=0,5,5x = 0 , \sqrt { 5 } , - \sqrt { 5 } n=3n = 3

A) f(x)=x3+5xf ( x ) = x ^ { 3 } + \sqrt { 5 } x
B) f(x)=x3+5xf ( x ) = x ^ { 3 } + 5 x
C) f(x)=x35xf ( x ) = - x ^ { 3 } - 5 x
D) f(x)=x35xf ( x ) = x ^ { 3 } - \sqrt { 5 } x
E) f(x)=x35xf ( x ) = x ^ { 3 } - 5 x
Question
Select the graph of the function and determine the zeros of the polynomial.​ g(t)=14(t2)2(t+2)2g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }

A)​ 2- 2  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​ <div style=padding-top: 35px>
B)​ 22  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​ <div style=padding-top: 35px>
C)​ ±2\pm 2  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​ <div style=padding-top: 35px>
D)​ 22  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​ <div style=padding-top: 35px>
E)​ 2- 2  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​ <div style=padding-top: 35px>
Question
Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​ g(x)=15(x+1)2(x3)(2x7)g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )

A)​ Zeros: 1,3,±72- 1,3 , \pm \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​ <div style=padding-top: 35px>

B)​ Zeros: 1,3,72- 1,3 , - \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​ <div style=padding-top: 35px>

C)​ Zeros: 1,±3,72- 1 , \pm 3 , \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​ <div style=padding-top: 35px>

D)​ Zeros: 1,3,72- 1 , - 3 , \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​ <div style=padding-top: 35px>

E)​ Zeros: 1,3,72- 1,3 , \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​ <div style=padding-top: 35px>
Question
Select from the following which is the polynomial of degree n that has the given zero(s). ​
Zero
Degree x=0,3x = 0 , - 3 n=5n = 5

A) f(x)=x5+12x4+54x3+108x2+81xf ( x ) = x ^ { 5 } + 12 x ^ { 4 } + 54 x ^ { 3 } + 108 x ^ { 2 } + 81 x
B) f(x)=x512x4+54x3+108x2+81xf ( x ) = x ^ { 5 } - 12 x ^ { 4 } + 54 x ^ { 3 } + 108 x ^ { 2 } + 81 x
C) f(x)=x5+12x4+54x3+108x281xf ( x ) = x ^ { 5 } + 12 x ^ { 4 } + 54 x ^ { 3 } + 108 x ^ { 2 } - 81 x
D) f(x)=x5+12x454x3+108x2+81xf ( x ) = x ^ { 5 } + 12 x ^ { 4 } - 54 x ^ { 3 } + 108 x ^ { 2 } + 81 x
E) f(x)=x5+12x4+54x3108x2+81xf ( x ) = x ^ { 5 } + 12 x ^ { 4 } + 54 x ^ { 3 } - 108 x ^ { 2 } + 81 x
Question
An open box is to be made from a square piece of material,38 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure)​  <strong>An open box is to be made from a square piece of material,38 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure)​   ​ where  a = 38 - 2 x  . Determine the domain of the following function,V(x)represents the volume of the box .​  V ( x ) = x ( 38 - 2 x ) ^ { 2 }  ​</strong> A)Domain:  0 < x \leq 19  B)Domain:  0 \leq x \leq 38  C)Domain:  0 < x < 38  D)Domain:  0 \leq x \leq 19  E)Domain:  0 < x < 19  <div style=padding-top: 35px>  ​ where a=382xa = 38 - 2 x .
Determine the domain of the following function,V(x)represents the volume of the box .​ V(x)=x(382x)2V ( x ) = x ( 38 - 2 x ) ^ { 2 }

A)Domain: 0<x190 < x \leq 19
B)Domain: 0x380 \leq x \leq 38
C)Domain: 0<x<380 < x < 38
D)Domain: 0x190 \leq x \leq 19
E)Domain: 0<x<190 < x < 19
Question
Select from the following which is the polynomial of degree n that has the given zero(s). ​
Zero
Degree x=7x = - 7 n=2n = 2

A) f(x)=x2+14x+49f ( x ) = x ^ { 2 } + 14 x + 49
B) f(x)=x214x49f ( x ) = x ^ { 2 } - 14 x - 49
C) f(x)=x2+14x+49f ( x ) = - x ^ { 2 } + 14 x + 49
D) f(x)=x214x+49f ( x ) = x ^ { 2 } - 14 x + 49
E) f(x)=x2+14x49f ( x ) = x ^ { 2 } + 14 x - 49
Question
Select the graph of the function and determine the zeros of the polynomial.​ f(x)=x325xf ( x ) = x ^ { 3 } - 25 x

A)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​ <div style=padding-top: 35px>
B)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​ <div style=padding-top: 35px>
C)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​ <div style=padding-top: 35px>
D)​ 5,55 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​ <div style=padding-top: 35px>
E)​ 5,55 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​ <div style=padding-top: 35px>
Question
Select the graph of the function and determine the zeros of the polynomial.​ f(t)=16(t22t+20)f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)

A)​ No zeros
 <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​ <div style=padding-top: 35px>

B)​ No zeros
 <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​ <div style=padding-top: 35px>

C)​ 0,10,100,10 , - 10  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​ <div style=padding-top: 35px>
D)​ No zeros  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​ <div style=padding-top: 35px>

E)​ 10,1010 , - 10  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​ <div style=padding-top: 35px>
Question
Match the equation with its graph.​ 120(x5x45x3x26x)\frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right)

A)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​ f(x)=x34xf ( x ) = x ^ { 3 } - 4 x

A)​Zeros: 0,20 , - 2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​ <div style=padding-top: 35px>
B)​Zeros: 0,20 , - 2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​ <div style=padding-top: 35px>
C)​Zeros: 0,20,2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​ <div style=padding-top: 35px>
D)​Zeros: 0,±20 , \pm 2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​ <div style=padding-top: 35px>
E)​Zeros: 0,±20 , \pm 2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​ <div style=padding-top: 35px>
Question
Select the graph of the function and determine the zeros of the polynomial.​ f(x)=x2(x5)f ( x ) = x ^ { 2 } ( x - 5 )

A)​ 0,5,50,5 , - 5 <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​ <div style=padding-top: 35px>

B)​ 0,50,5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​ <div style=padding-top: 35px>
C)​ 0,50 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​ <div style=padding-top: 35px>
D)​ 0,50,5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​ <div style=padding-top: 35px>
E)​ 0,50 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​ <div style=padding-top: 35px>
Question
Describe the right-hand and the left-hand behavior of the graph of q(x)=5x4+12x3+13q ( x ) = - 5 x ^ { 4 } + 12 x ^ { 3 } + 13 .

A)Because the degree is even and the leading coefficient is negative,the graph falls to the left and rises to the right.
B)Because the degree is even and the leading coefficient is negative,the graph rises to the left and falls to the right.
C)Because the degree is even and the leading coefficient is negative,the graph falls to the left and falls to the right.
D)Because the degree is odd and the leading coefficient is negative,the graph rises to the left and rises to the right.
E)Because the degree is even and the leading coefficient is negative,the graph rises to the left and rises to the right.
Question
A roofing contractor is fabricating gutters from 1010 -inch aluminum sheeting.The contractor plans to use an aluminum siding folding press to create the gutter by creasing equal lengths for the sidewalls (see figure).  <strong>A roofing contractor is fabricating gutters from  10  -inch aluminum sheeting.The contractor plans to use an aluminum siding folding press to create the gutter by creasing equal lengths for the sidewalls (see figure).   ​ where  a = 10 - 2 x  Let x represent the height of the sidewall of the gutter.Write a function A that represents the Cross-sectional area of the gutter. ​</strong> A)  A = - 2 x ^ { 2 } + 10 x  B)  A = 10 x ^ { 2 } - 2 x  C)  A = - 10 x - 2 x ^ { 2 }  D)  A = 2 x ^ { 2 } - 10 x  E)  A = 2 x ^ { 2 } + 10 x  <div style=padding-top: 35px>  ​ where a=102xa = 10 - 2 x Let x represent the height of the sidewall of the gutter.Write a function A that represents the
Cross-sectional area of the gutter.

A) A=2x2+10xA = - 2 x ^ { 2 } + 10 x
B) A=10x22xA = 10 x ^ { 2 } - 2 x
C) A=10x2x2A = - 10 x - 2 x ^ { 2 }
D) A=2x210xA = 2 x ^ { 2 } - 10 x
E) A=2x2+10xA = 2 x ^ { 2 } + 10 x
Question
Sketch the graph of the function by finding the zeros of the polynomial,​ f(x)=2x310x2+12xf ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x

A)​ ​0,2,3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​ <div style=padding-top: 35px>

B)​ ​0,2,-3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​ <div style=padding-top: 35px>

C)​ ​0,-2,3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​ <div style=padding-top: 35px>

D)​ ​0,2,3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​ <div style=padding-top: 35px>

E)​ ​0,-2,-3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​ <div style=padding-top: 35px>
Question
Select the graph of the function and determine the zeros of the polynomial.​ f(x)=x35x2f ( x ) = x ^ { 3 } - 5 x ^ { 2 }

A)​ 0,50,5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​ <div style=padding-top: 35px>
B)​ 0,50 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​ <div style=padding-top: 35px>
C)​ 0,50,5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​ <div style=padding-top: 35px>
D)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​ <div style=padding-top: 35px>
E)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​ <div style=padding-top: 35px>
Question
The growth of a red oak tree is approximated by the function ​​ G=0.003t3+0.137t2+0.458t0.839G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839
Where G is the height of the tree (in feet)and t (2t34)( 2 \leq t \leq 34 ) is its age (in years).
Select the correct graph of the function.

A)​ ​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
B)​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
C)​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
D)​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
E)​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​   <div style=padding-top: 35px>
Question
Find a polynomial with the given zeros.​ 1,1,71,1,7

A) 9x2+15x79 x ^ { 2 } + 15 x - 7
B) x3+9x215x+7x ^ { 3 } + 9 x ^ { 2 } - 15 x + 7
C) 15x39x2+15x715 x ^ { 3 } - 9 x ^ { 2 } + 15 x - 7
D) x39x2+15x7x ^ { 3 } - 9 x ^ { 2 } + 15 x - 7
E)none of these
Question
Using a graphing utility,graph f(x)=x34xf ( x ) = x ^ { 3 } - 4 x and approximate the zeros and their multiplicity.

A) x=0, multiplicity 2;x=2, multiplicity 1x = 0 , \text { multiplicity } 2 ; x = - 2 \text {, multiplicity } 1
B) x=0, multiplicity 1;x=2, multiplicity 1;x=2, multiplicity 1x = 0 \text {, multiplicity } 1 ; x = 2 \text {, multiplicity } 1 ; x = - 2 \text {, multiplicity } 1
C) x=0, multiplicity 3x = 0 , \text { multiplicity } 3
D) x=0, multiplicity 1;x=2, multiplicity 2x = 0 , \text { multiplicity } 1 ; x = 2 , \text { multiplicity } 2
E) x=2, multiplicity 2;x=2, multiplicity 1x = 2 , \text { multiplicity } 2 ; x = - 2 \text {, multiplicity } 1
Question
An open box is to be made from a square piece of cardboard,22 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by V(x)=x(222x)2V ( x ) = x ( 22 - 2 x ) ^ { 2 } ,determine the domain of V(x)V ( x ) .  <strong>An open box is to be made from a square piece of cardboard,22 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by  V ( x ) = x ( 22 - 2 x ) ^ { 2 }  ,determine the domain of  V ( x )  .    </strong> A)  D = \{ x \mid 0 < x < 22 \}  B)  D = \{ x \mid 0 < x < 11 \}  C)  D = \{ x \mid x > 0 \}  D)  D = \{ x \mid 44 < x < 88 \}  E)  D = \{ x \mid 11 < x < 22 \}  <div style=padding-top: 35px>   <strong>An open box is to be made from a square piece of cardboard,22 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by  V ( x ) = x ( 22 - 2 x ) ^ { 2 }  ,determine the domain of  V ( x )  .    </strong> A)  D = \{ x \mid 0 < x < 22 \}  B)  D = \{ x \mid 0 < x < 11 \}  C)  D = \{ x \mid x > 0 \}  D)  D = \{ x \mid 44 < x < 88 \}  E)  D = \{ x \mid 11 < x < 22 \}  <div style=padding-top: 35px>

A) D={x0<x<22}D = \{ x \mid 0 < x < 22 \}
B) D={x0<x<11}D = \{ x \mid 0 < x < 11 \}
C) D={xx>0}D = \{ x \mid x > 0 \}
D) D={x44<x<88}D = \{ x \mid 44 < x < 88 \}
E) D={x11<x<22}D = \{ x \mid 11 < x < 22 \}
Question
Find a polynomial with the given zeros.​ 7,17,1

A) x28x+7x ^ { 2 } - 8 x + 7
B) x28x+8x ^ { 2 } - 8 x + 8
C) x28x7x ^ { 2 } - 8 x - 7
D) 8x2x+78 x ^ { 2 } - x + 7
E)none of these
Question
Graph the polynomial function.​ y=x3+3y = - x ^ { 3 } + 3

A)  <strong>Graph the polynomial function.​  y = - x ^ { 3 } + 3  ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the polynomial function.​  y = - x ^ { 3 } + 3  ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the polynomial function.​  y = - x ^ { 3 } + 3  ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the polynomial function.​  y = - x ^ { 3 } + 3  ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Well whether the function y=x5+9x3y = x ^ { 5 } + 9 x ^ { 3 } is even or odd.If it is neither,so indicate. ​

A)even
B)odd
C)neither
Question
Find all real zeros of the polynomial f(x)=x461x2+900f ( x ) = x ^ { 4 } - 61 x ^ { 2 } + 900 and determine the multiplicity of each.

A) x=5, multiplicity 2;x=6, multiplicity 2x = - 5 , \text { multiplicity } 2 ; x = - 6 , \text { multiplicity } 2
B) x=25, multiplicity 2;x=36, multiplicity 2x = 25 , \text { multiplicity } 2 ; x = 36 \text {, multiplicity } 2
C) x=5, multiplicity 2;x=6, multiplicity 2x = 5 , \text { multiplicity } 2 ; x = 6 , \text { multiplicity } 2
D) x=25, multiplicity 2;x=6, multiplicity 2x = 25 , \text { multiplicity } 2 ; x = 6 , \text { multiplicity } 2
E) x=5, multiplicity 1;x=5, multiplicity 1;x=6, multiplicity 1;x=6, multiplicity 1x = 5 \text {, multiplicity } 1 ; x = - 5 \text {, multiplicity } 1 ; x = 6 \text {, multiplicity } 1 ; x = - 6 \text {, multiplicity } 1
Question
Find all real zeros of the polynomial f(x)=x3+3x236x108f ( x ) = x ^ { 3 } + 3 x ^ { 2 } - 36 x - 108 and determine the multiplicity of each.

A) x=6, multiplicity 2;x=3, multiplicity 1x = 6 , \text { multiplicity } 2 ; x = - 3 \text {, multiplicity } 1
B) x=6, multiplicity 1;x=6, multiplicity 1;x=3, multiplicity 1x = 6 \text {, multiplicity } 1 ; x = - 6 \text {, multiplicity } 1 ; x = - 3 \text {, multiplicity } 1
C) x=3, multiplicity 2;x=6, multiplicity 1x = - 3 \text {, multiplicity } 2 ; x = - 6 \text {, multiplicity } 1
D) x=6, multiplicity 1;x=3, multiplicity 1;x=3, multiplicity 1x = - 6 \text {, multiplicity } 1 ; x = 3 \text {, multiplicity } 1 ; x = - 3 \text {, multiplicity } 1
E) x=3, multiplicity 3x = - 3 \text {, multiplicity } 3
Question
An open box is to be made from a square piece of cardboard,33 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.  <strong>An open box is to be made from a square piece of cardboard,33 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.    </strong> A)  V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 } - 33 x  B)  V ( x ) = - 2 x ^ { 3 } + 33 x ^ { 2 }  C)  V ( x ) = 4 x ^ { 3 } - 132 x ^ { 2 } + 1089 x  D)  V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 }  E)  V ( x ) = 4 x ^ { 3 } - 66 x ^ { 2 } + 33 x  <div style=padding-top: 35px>   <strong>An open box is to be made from a square piece of cardboard,33 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.    </strong> A)  V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 } - 33 x  B)  V ( x ) = - 2 x ^ { 3 } + 33 x ^ { 2 }  C)  V ( x ) = 4 x ^ { 3 } - 132 x ^ { 2 } + 1089 x  D)  V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 }  E)  V ( x ) = 4 x ^ { 3 } - 66 x ^ { 2 } + 33 x  <div style=padding-top: 35px>

A) V(x)=4x3+66x233xV ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 } - 33 x
B) V(x)=2x3+33x2V ( x ) = - 2 x ^ { 3 } + 33 x ^ { 2 }
C) V(x)=4x3132x2+1089xV ( x ) = 4 x ^ { 3 } - 132 x ^ { 2 } + 1089 x
D) V(x)=4x3+66x2V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 }
E) V(x)=4x366x2+33xV ( x ) = 4 x ^ { 3 } - 66 x ^ { 2 } + 33 x
Question
Using a graphing utility,graph f(x)=x514x4+49x3f ( x ) = x ^ { 5 } - 14 x ^ { 4 } + 49 x ^ { 3 } and approximate the zeros and their multiplicity.

A) x=0, multiplicity 2;x=7, multiplicity 3x = 0 , \text { multiplicity } 2 ; x = 7 , \text { multiplicity } 3
B) x=0, multiplicity 1;x=7, multiplicity 1;x=7, multiplicity 1;x= ## b##=m, multiplicity 1x = 0 , \text { multiplicity } 1 ; x = 7 , \text { multiplicity } 1 ; x = - 7 , \text { multiplicity } 1 ; x = \text { \#\# } \mathrm { b \#\#} = \mathrm { m } , \text { multiplicity } 1
C) x=0, multiplicity 3;x=7, multiplicity 2x = 0 , \text { multiplicity } 3 ; x = 7 , \text { multiplicity } 2
D) x=0, multiplicity 3;x=7, multiplicity 2x = 0 , \text { multiplicity } 3 ; x = - 7 , \text { multiplicity } 2
E) x=0, multiplicity 2;x=7, multiplicity 2;x=7, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = 7 \text {, multiplicity } 2 ; x = - 7 \text {, multiplicity } 1
Question
Find all real zeros of the polynomial f(x)=x4+7x3+6x2f ( x ) = x ^ { 4 } + 7 x ^ { 3 } + 6 x ^ { 2 } and determine the multiplicity of each.

A) x=0, multiplicity 2;x=1, multiplicity 1;x=6, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = - 1 \text {, multiplicity } 1 ; x = - 6 \text {, multiplicity } 1
B) x=1, multiplicity 2;x=6, multiplicity 2x = 1 , \text { multiplicity } 2 ; x = 6 , \text { multiplicity } 2
C) x=0, multiplicity 2;x=1, multiplicity 1;x=6, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = 1 \text {, multiplicity } 1 ; x = 6 \text {, multiplicity } 1
D) x=1, multiplicity 2;x=6, multiplicity 2x = - 1 , \text { multiplicity } 2 ; x = - 6 , \text { multiplicity } 2
E) x=0, multiplicity 1;x=1, multiplicity 1;x=1, multiplicity 1;x=6, multiplicity 1x = 0 , \text { multiplicity } 1 ; x = 1 , \text { multiplicity } 1 ; x = - 1 , \text { multiplicity } 1 ; x = 6 \text {, multiplicity } 1
Question
Find all real zeros of the polynomial f(x)=x3+5x24x20f ( x ) = x ^ { 3 } + 5 x ^ { 2 } - 4 x - 20 and determine the multiplicity of each.

A) x=5, multiplicity 2;x=2, multiplicity 1x = - 5 , \text { multiplicity } 2 ; x = - 2 \text {, multiplicity } 1
B) x=5, multiplicity 3x = - 5 , \text { multiplicity } 3
C) x=2, multiplicity 1;x=2, multiplicity 1;x=5, multiplicity 1x = 2 \text {, multiplicity } 1 ; x = - 2 \text {, multiplicity } 1 ; x = - 5 \text {, multiplicity } 1
D) x=2, multiplicity 1;x=5, multiplicity 1;x=5, multiplicity 1x = - 2 \text {, multiplicity } 1 ; x = 5 \text {, multiplicity } 1 ; x = - 5 \text {, multiplicity } 1
E) x=2, multiplicity 2;x=5, multiplicity 1x = 2 , \text { multiplicity } 2 ; x = - 5 , \text { multiplicity } 1
Question
Graph the polynomial function.​ y=x3+5x2y = x ^ { 3 } + 5 x ^ { 2 }

A)  <strong>Graph the polynomial function.​  y = x ^ { 3 } + 5 x ^ { 2 }  ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the polynomial function.​  y = x ^ { 3 } + 5 x ^ { 2 }  ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the polynomial function.​  y = x ^ { 3 } + 5 x ^ { 2 }  ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the polynomial function.​  y = x ^ { 3 } + 5 x ^ { 2 }  ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find a polynomial with the given zeros.​ 0,0,0,3,30,0,0 , \sqrt { 3 } , - \sqrt { 3 }

A) x53x3x ^ { 5 } - 3 x ^ { 3 }
B) x56x3x ^ { 5 } - 6 x ^ { 3 }
C) x5x3+3x ^ { 5 } - x ^ { 3 } + 3
D) x2+3x+6x ^ { 2 } + 3 x + 6
E)none of these
Question
Find a polynomial with the given zeros.​ 1,5,7,7- 1,5 , - \sqrt { 7 } , \sqrt { 7 }

A) x54x412x3+28x2+35x2x ^ { 5 } - 4 x ^ { 4 } - 12 x ^ { 3 } + 28 x ^ { 2 } + 35 x - 2
B) x412x2+35x ^ { 4 } - 12 x ^ { 2 } + 35
C) x412x34x228x+35x ^ { 4 } - 12 x ^ { 3 } - 4 x ^ { 2 } - 28 x + 35
D) x44x312x2+28x+35x ^ { 4 } - 4 x ^ { 3 } - 12 x ^ { 2 } + 28 x + 35
E)none of these
Question
The graph of the function g(x)is a translation of the graph of f (x)= x 3.Graph the function g(x)= (x - 1)3. ​

A)​ <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 1)<sup>3</sup>. ​</strong> A)​   B)​   C)​   D)​   <div style=padding-top: 35px>
B)​ <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 1)<sup>3</sup>. ​</strong> A)​   B)​   C)​   D)​   <div style=padding-top: 35px>
C)​ <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 1)<sup>3</sup>. ​</strong> A)​   B)​   C)​   D)​   <div style=padding-top: 35px>
D)​ <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 1)<sup>3</sup>. ​</strong> A)​   B)​   C)​   D)​   <div style=padding-top: 35px>
Question
The graph of the function g(x)is a translation of the graph of f (x)= x 3.Graph the function g(x)= (x - 3)3 - 1. ​

A) <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 3)<sup>3</sup> - 1. ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 3)<sup>3</sup> - 1. ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 3)<sup>3</sup> - 1. ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 3)<sup>3</sup> - 1. ​</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Describe the right-hand and the left-hand behavior of the graph of s(x)=3x5+12x3+3s ( x ) = 3 x ^ { 5 } + 12 x ^ { 3 } + 3 .

A)Because the degree is odd and the leading and the second coefficients are positive,the graph falls to the left and rises to the right.
B)Because the degree is odd,the leading and the second coefficient are positive,the graph rises to the left and rises to the right.
C)Because the degree is odd,and the leading coefficient is positive,the graph falls to the left and falls to the right.
D)Because the degree is odd,and the leading coefficient is positive,the graph rises to the left and falls to the right.
E)Because the degree is even and the leading coefficient is positive,the graph rises to the left and rises to the right.
Question
Find all real zeros of the polynomial f(x)=x4+12x3+27x2f ( x ) = x ^ { 4 } + 12 x ^ { 3 } + 27 x ^ { 2 } and determine the multiplicity of each.

A) x=0, multiplicity 1;x=9, multiplicity 1;x=9, multiplicity 1;x=3, multiplicity 1x = 0 \text {, multiplicity } 1 ; x = 9 , \text { multiplicity } 1 ; x = - 9 , \text { multiplicity } 1 ; x = 3 \text {, multiplicity } 1
B) x=0, multiplicity 2;x=9, multiplicity 1;x=3, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = 9 \text {, multiplicity } 1 ; x = 3 \text {, multiplicity } 1
C) x=0, multiplicity 2;x=9, multiplicity 1;x=3, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = - 9 \text {, multiplicity } 1 ; x = - 3 \text {, multiplicity } 1
D) x=9, multiplicity 2;x=3, multiplicity 2x = 9 , \text { multiplicity } 2 ; x = 3 , \text { multiplicity } 2
Question
Describe the right-hand and the left-hand behavior of the graph of q(x)=712(x3x2+2x+1)q ( x ) = - \frac { 7 } { 12 } \left( x ^ { 3 } - x ^ { 2 } + 2 x + 1 \right) .

A)Because the degree is odd and the leading coefficient is negative,the graph rises to the left and falls to the right.
B)Because the degree is odd and the leading coefficient is negative,the graph falls to the left and rises to the right.
C)Because the degree is odd and the leading coefficient is positive,the graph falls to the left and falls to the right.
D)Because the degree is odd and the leading coefficient is positive,the graph rises to the left and rises to the right.
E)Because the degree is even and the leading coefficient is negative,the graph rises to the left and falls to the right.
Question
An open box is to be made from a square piece of cardboard,24 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by V(x)=x(242x)2V ( x ) = x ( 24 - 2 x ) ^ { 2 } ,determine the domain of V(x)V ( x ) .  <strong>An open box is to be made from a square piece of cardboard,24 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by  V ( x ) = x ( 24 - 2 x ) ^ { 2 }  ,determine the domain of  V ( x )  .    </strong> A)  D = \{ x \mid x > 0 \}  B)  D = \{ x \mid 0 < x < 12 \}  C)  D = \{ x \mid 48 < x < 96 \}  D)  D = \{ x \mid 0 < x < 24 \}  E)  D = \{ x \mid 12 < x < 24 \}  <div style=padding-top: 35px>   <strong>An open box is to be made from a square piece of cardboard,24 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by  V ( x ) = x ( 24 - 2 x ) ^ { 2 }  ,determine the domain of  V ( x )  .    </strong> A)  D = \{ x \mid x > 0 \}  B)  D = \{ x \mid 0 < x < 12 \}  C)  D = \{ x \mid 48 < x < 96 \}  D)  D = \{ x \mid 0 < x < 24 \}  E)  D = \{ x \mid 12 < x < 24 \}  <div style=padding-top: 35px>

A) D={xx>0}D = \{ x \mid x > 0 \}
B) D={x0<x<12}D = \{ x \mid 0 < x < 12 \}
C) D={x48<x<96}D = \{ x \mid 48 < x < 96 \}
D) D={x0<x<24}D = \{ x \mid 0 < x < 24 \}
E) D={x12<x<24}D = \{ x \mid 12 < x < 24 \}
Question
An open box is to be made from a square piece of cardboard,28 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.  <strong>An open box is to be made from a square piece of cardboard,28 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.    </strong> A)  V ( x ) = - 2 x ^ { 3 } + 28 x ^ { 2 }  B)  V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 }  C)  V ( x ) = 4 x ^ { 3 } - 56 x ^ { 2 } + 28 x  D)  V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 } - 28 x  E)  V ( x ) = 4 x ^ { 3 } - 112 x ^ { 2 } + 784 x  <div style=padding-top: 35px>   <strong>An open box is to be made from a square piece of cardboard,28 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.    </strong> A)  V ( x ) = - 2 x ^ { 3 } + 28 x ^ { 2 }  B)  V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 }  C)  V ( x ) = 4 x ^ { 3 } - 56 x ^ { 2 } + 28 x  D)  V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 } - 28 x  E)  V ( x ) = 4 x ^ { 3 } - 112 x ^ { 2 } + 784 x  <div style=padding-top: 35px>

A) V(x)=2x3+28x2V ( x ) = - 2 x ^ { 3 } + 28 x ^ { 2 }
B) V(x)=4x3+56x2V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 }
C) V(x)=4x356x2+28xV ( x ) = 4 x ^ { 3 } - 56 x ^ { 2 } + 28 x
D) V(x)=4x3+56x228xV ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 } - 28 x
E) V(x)=4x3112x2+784xV ( x ) = 4 x ^ { 3 } - 112 x ^ { 2 } + 784 x
Question
An open box is to be made from a square piece of cardboard, 66 inches 66 \text { inches } on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).After determining the function V,in terms of x,that represents the volume of the box,use a graphing utility to estimate the dimensions that will maximize its volume.  <strong>An open box is to be made from a square piece of cardboard,  66 \text { inches }  on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).After determining the function V,in terms of x,that represents the volume of the box,use a graphing utility to estimate the dimensions that will maximize its volume.    </strong> A)  22 ^ { \prime \prime } \times 22 ^ { \prime \prime } \times 11 ^ { \prime \prime }  B)  44 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 11 ^ { \prime \prime }  C)  44 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 22 ^ { \prime \prime }  D)  33 ^ { \prime \prime } \times 33 ^ { \prime \prime } \times 22 ^ { \prime \prime }  E)  11 ^ { \prime \prime } \times 11 ^ { \prime \prime } \times 5.5 ^ { \prime \prime }  <div style=padding-top: 35px>   <strong>An open box is to be made from a square piece of cardboard,  66 \text { inches }  on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).After determining the function V,in terms of x,that represents the volume of the box,use a graphing utility to estimate the dimensions that will maximize its volume.    </strong> A)  22 ^ { \prime \prime } \times 22 ^ { \prime \prime } \times 11 ^ { \prime \prime }  B)  44 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 11 ^ { \prime \prime }  C)  44 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 22 ^ { \prime \prime }  D)  33 ^ { \prime \prime } \times 33 ^ { \prime \prime } \times 22 ^ { \prime \prime }  E)  11 ^ { \prime \prime } \times 11 ^ { \prime \prime } \times 5.5 ^ { \prime \prime }  <div style=padding-top: 35px>

A) 22×22×1122 ^ { \prime \prime } \times 22 ^ { \prime \prime } \times 11 ^ { \prime \prime }
B) 44×44×1144 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 11 ^ { \prime \prime }
C) 44×44×2244 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 22 ^ { \prime \prime }
D) 33×33×2233 ^ { \prime \prime } \times 33 ^ { \prime \prime } \times 22 ^ { \prime \prime }
E) 11×11×5.511 ^ { \prime \prime } \times 11 ^ { \prime \prime } \times 5.5 ^ { \prime \prime }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/63
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Polynomial Functions of Higher Degree
1
Determine the number of turning points of the graph of the function.​ f(x)=2x4+4x2+4f ( x ) = 2 x ^ { 4 } + 4 x ^ { 2 } + 4

A)Number of turning points: 3
B)Number of turning points: 1
C)Number of turning points: 5
D)Number of turning points: 2
E)Number of turning points: 4
Number of turning points: 1
2
Find all the real zeros of the polynomial function and determine the multiplicity of each zero and the number of turning points of the graph of the function.​ h(t)=t214t+49h ( t ) = t ^ { 2 } - 14 t + 49

A)All Real Zeros: 0, 77 ;Even multiplicity;number of turning points: 2
B)All Real Zeros: 77 ;Even multiplicity;number of turning points: 1
C)All Real Zeros: 0, 4949 ;Odd multiplicity;number of turning points: 2
D)All Real Zeros: 0,1, 77 ;Even multiplicity;number of turning points: 3
E)All Real Zeros: 77 ;Odd multiplicity;number of turning points: 1
All Real Zeros: 77 ;Even multiplicity;number of turning points: 1
3
Select from the following which is the polynomial function that has the given zeros.​ 0,7,30 , - 7 , - 3

A) f(x)=x3+10x2+21xf ( x ) = - x ^ { 3 } + 10 x ^ { 2 } + 21 x
B) f(x)=x310x2+21xf ( x ) = x ^ { 3 } - 10 x ^ { 2 } + 21 x
C) f(x)=x3+10x2+21xf ( x ) = x ^ { 3 } + 10 x ^ { 2 } + 21 x
D) f(x)=x310x221xf ( x ) = x ^ { 3 } - 10 x ^ { 2 } - 21 x
E) f(x)=x3+10x221xf ( x ) = x ^ { 3 } + 10 x ^ { 2 } - 21 x
f(x)=x3+10x2+21xf ( x ) = x ^ { 3 } + 10 x ^ { 2 } + 21 x
4
Select the graph of y=x4y = x ^ { 4 } and the transformation f(x)=(12x)42f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2 . ​

A)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of  y = x ^ { 4 }  and the transformation  f ( x ) = \left( \frac { 1 } { 2 } x \right) ^ { 4 } - 2  . ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
5
Select from the following which is the polynomial function that has the given zeros.​ 5,75 , - 7

A) f(x)=x22x+35f ( x ) = x ^ { 2 } - 2 x + 35
B) f(x)=x2+2x+35f ( x ) = x ^ { 2 } + 2 x + 35
C) f(x)=x22x35f ( x ) = - x ^ { 2 } - 2 x - 35
D) f(x)=x2+2x35f ( x ) = - x ^ { 2 } + 2 x - 35
E) f(x)=x2+2x35f ( x ) = x ^ { 2 } + 2 x - 35
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
6
Select the graph of y=x3y = x ^ { 3 } and the transformation f(x)=(x3)3f ( x ) = ( x - 3 ) ^ { 3 } . ​

A)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of  y = x ^ { 3 }  and the transformation  f ( x ) = ( x - 3 ) ^ { 3 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
7
Select the correct graph of the function.​ f(x)=13x2+13x83f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }

A)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the correct graph of the function.​  f ( x ) = \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x - \frac { 8 } { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
8
Select the graph of y=x6y = x ^ { 6 } and the transformation f(x)=(x+3)6f ( x ) = ( x + 3 ) ^ { 6 } . ​

A)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of  y = x ^ { 6 }  and the transformation  f ( x ) = ( x + 3 ) ^ { 6 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
9
Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​ f(x)=(4x43x3+16x)f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right) , g(x)=4x4g ( x ) = - 4 x ^ { 4 }

A)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the correct graph of the functions f and g which shows the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = - \left( 4 x ^ { 4 } - 3 x ^ { 3 } + 16 x \right)  ,  g ( x ) = - 4 x ^ { 4 }  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
10
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.​ f(x)=12x3+3xf ( x ) = \frac { 1 } { 2 } x ^ { 3 } + 3 x

A)Rises to the left,falls to the right
B)Rises to the right,rises to the left
C)Falls to the left,rises to the right
D)Falls to the right
E)Falls to the left,falls to the right
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
11
Select the graph of y=x5y = x ^ { 5 } and the transformation f(x)=112x5f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 } . ​

A)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the graph of  y = x ^ { 5 }  and the transformation  f ( x ) = 1 - \frac { 1 } { 2 } x ^ { 5 }  . ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
12
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.​ f(x)=2x23x+5f ( x ) = 2 x ^ { 2 } - 3 x + 5

A)Falls to the left,rises to the right
B)Falls to the left,falls to the right
C)Rises to the left,rises to the right
D)Rises to the left,falls to the right
E)Falls to the left
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
13
Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​ f(x)=x34x+1f ( x ) = x ^ { 3 } - 4 x + 1 , g(x)=x3g ( x ) = x ^ { 3 }

A)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the correct graph of the functions f and g in the same viewing window.Zoom out sufficiently far to show that the right-hand and left-hand behaviors of f and g appear identical.​  f ( x ) = x ^ { 3 } - 4 x + 1  ,  g ( x ) = x ^ { 3 }  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
14
Select the correct graph of the function.​ y=2x324x2+36xy = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x

A)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the correct graph of the function.​  y = 2 x ^ { 3 } - 24 x ^ { 2 } + 36 x  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
15
Find all the real zeros of the polynomial function.​ f(x)=x29f ( x ) = x ^ { 2 } - 9

A) 9- 9
B) 33
C) 3- 3
D) 99
E) ±3\pm 3
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
16
Select from the following which is the polynomial function that has the given zeros.​ 0,50,5

A) f(x)=x25xf ( x ) = x ^ { 2 } - 5 x
B) f(x)=x3+x25xf ( x ) = x ^ { 3 } + x ^ { 2 } - 5 x
C) f(x)=x5f ( x ) = x - 5
D) f(x)=x+5f ( x ) = x + 5
E) f(x)=x2+5xf ( x ) = x ^ { 2 } + 5 x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
17
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.​ f(t)=25x+3x25x3f ( t ) = 2 - 5 x + 3 x ^ { 2 } - 5 x ^ { 3 }

A)Falls to the left,falls to the right
B)Rises to the left,rises to the right
C)Rises to the left,falls to the right
D)Falls to the left,rises to the right
E)Falls to the left
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
18
Select the correct description of right-hand and left-hand behavior of the graph of the polynomial function.​ f(t)=35(t24t+5)f ( t ) = - \frac { 3 } { 5 } \left( t ^ { 2 } - 4 t + 5 \right)

A)Rises to the left,rises to the right
B)Falls to the left,rises to the right
C)Falls to the left,falls to the right
D)Rises to the left,falls to the right
E)Rises to the left
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
19
Select the correct graph of the function.​ y=x55x3+3xy = x ^ { 5 } - 5 x ^ { 3 } + 3 x

A)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​
B)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​
C)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​
D)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​
E)​  <strong>Select the correct graph of the function.​  y = x ^ { 5 } - 5 x ^ { 3 } + 3 x  ​</strong> A)​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
20
Find all the real zeros of the polynomial function.​ f(x)=x516x3+64xf ( x ) = x ^ { 5 } - 16 x ^ { 3 } + 64 x

A) 0,±80 , \pm \sqrt { 8 }
B) 0,80 , \sqrt { 8 }
C) 0,80,8
D) 0,80 , - 8
E) 0,80 , - \sqrt { 8 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
21
Select from the following which is the polynomial function that has the given zeros.​ 1+5,151 + \sqrt { 5 } , 1 - \sqrt { 5 }

A) f(x)=x22x4f ( x ) = - x ^ { 2 } - 2 x - 4
B) f(x)=x22x+4f ( x ) = - x ^ { 2 } - 2 x + 4
C) f(x)=x22x4f ( x ) = x ^ { 2 } - 2 x - 4
D) f(x)=x22x+4f ( x ) = x ^ { 2 } - 2 x + 4
E) f(x)=x2+2x4f ( x ) = x ^ { 2 } + 2 x - 4
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
22
Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​ f(x)=18x44x2f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }

A)​Zeros: 0,420 , - 4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​
B)​Zeros: 0,±420 , \pm 4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​
C)​Zeros: 0,420 , - 4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​
D)​Zeros: 0,±420 , \pm 4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​
E)​Zeros: 0,420,4 \sqrt { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = \frac { 1 } { 8 } x ^ { 4 } - 4 x ^ { 2 }  ​</strong> A)​Zeros:  0 , - 4 \sqrt { 2 }    ​ B)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ C)​Zeros:  0 , - 4 \sqrt { 2 }    ​ D)​Zeros:  0 , \pm 4 \sqrt { 2 }    ​ E)​Zeros:  0,4 \sqrt { 2 }    ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
23
Select from the following which is the polynomial of degree n that has the given zero(s). ​
Zero
Degree x=3x = 3 n=3n = 3

A) f(x)=x39x2+27x27f ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 27 x - 27
B) f(x)=x3+9x2+27x27f ( x ) = x ^ { 3 } + 9 x ^ { 2 } + 27 x - 27
C) f(x)=x3+9x2+27x+27f ( x ) = x ^ { 3 } + 9 x ^ { 2 } + 27 x + 27
D) f(x)=x39x2+27x+27f ( x ) = x ^ { 3 } - 9 x ^ { 2 } + 27 x + 27
E) f(x)=x39x227x27f ( x ) = x ^ { 3 } - 9 x ^ { 2 } - 27 x - 27
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
24
Select from the following which is the polynomial function that has the given zeros.​ 4,2,0,2,4- 4 , - 2,0,2,4

A) f(x)=x520x3+64f ( x ) = x ^ { 5 } - 20 x ^ { 3 } + 64
B) f(x)=x5+20x3+64xf ( x ) = x ^ { 5 } + 20 x ^ { 3 } + 64 x
C) f(x)=x520x3+64xf ( x ) = x ^ { 5 } - 20 x ^ { 3 } + 64 x
D) f(x)=x520x3+64xf ( x ) = - x ^ { 5 } - 20 x ^ { 3 } + 64 x
E) f(x)=x520x364xf ( x ) = x ^ { 5 } - 20 x ^ { 3 } - 64 x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
25
Select from the following which is the polynomial of degree n that has the given zero(s). ​
Zeros
Degree x=0,5,5x = 0 , \sqrt { 5 } , - \sqrt { 5 } n=3n = 3

A) f(x)=x3+5xf ( x ) = x ^ { 3 } + \sqrt { 5 } x
B) f(x)=x3+5xf ( x ) = x ^ { 3 } + 5 x
C) f(x)=x35xf ( x ) = - x ^ { 3 } - 5 x
D) f(x)=x35xf ( x ) = x ^ { 3 } - \sqrt { 5 } x
E) f(x)=x35xf ( x ) = x ^ { 3 } - 5 x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
26
Select the graph of the function and determine the zeros of the polynomial.​ g(t)=14(t2)2(t+2)2g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }

A)​ 2- 2  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​
B)​ 22  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​
C)​ ±2\pm 2  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​
D)​ 22  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​
E)​ 2- 2  <strong>Select the graph of the function and determine the zeros of the polynomial.​  g ( t ) = - \frac { 1 } { 4 } ( t - 2 ) ^ { 2 } ( t + 2 ) ^ { 2 }  ​</strong> A)​  - 2    ​ B)​  2    ​ C)​  \pm 2    ​ D)​  2    ​ E)​  - 2    ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
27
Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​ g(x)=15(x+1)2(x3)(2x7)g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )

A)​ Zeros: 1,3,±72- 1,3 , \pm \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​

B)​ Zeros: 1,3,72- 1,3 , - \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​

C)​ Zeros: 1,±3,72- 1 , \pm 3 , \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​

D)​ Zeros: 1,3,72- 1 , - 3 , \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​

E)​ Zeros: 1,3,72- 1,3 , \frac { 7 } { 2 }  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  g ( x ) = \frac { 1 } { 5 } ( x + 1 ) ^ { 2 } ( x - 3 ) ( 2 x - 7 )  ​</strong> A)​ Zeros:  - 1,3 , \pm \frac { 7 } { 2 }    ​ B)​ Zeros:  - 1,3 , - \frac { 7 } { 2 }    ​ C)​ Zeros:  - 1 , \pm 3 , \frac { 7 } { 2 }    ​ D)​ Zeros:  - 1 , - 3 , \frac { 7 } { 2 }    ​ E)​ Zeros:  - 1,3 , \frac { 7 } { 2 }    ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
28
Select from the following which is the polynomial of degree n that has the given zero(s). ​
Zero
Degree x=0,3x = 0 , - 3 n=5n = 5

A) f(x)=x5+12x4+54x3+108x2+81xf ( x ) = x ^ { 5 } + 12 x ^ { 4 } + 54 x ^ { 3 } + 108 x ^ { 2 } + 81 x
B) f(x)=x512x4+54x3+108x2+81xf ( x ) = x ^ { 5 } - 12 x ^ { 4 } + 54 x ^ { 3 } + 108 x ^ { 2 } + 81 x
C) f(x)=x5+12x4+54x3+108x281xf ( x ) = x ^ { 5 } + 12 x ^ { 4 } + 54 x ^ { 3 } + 108 x ^ { 2 } - 81 x
D) f(x)=x5+12x454x3+108x2+81xf ( x ) = x ^ { 5 } + 12 x ^ { 4 } - 54 x ^ { 3 } + 108 x ^ { 2 } + 81 x
E) f(x)=x5+12x4+54x3108x2+81xf ( x ) = x ^ { 5 } + 12 x ^ { 4 } + 54 x ^ { 3 } - 108 x ^ { 2 } + 81 x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
29
An open box is to be made from a square piece of material,38 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure)​  <strong>An open box is to be made from a square piece of material,38 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure)​   ​ where  a = 38 - 2 x  . Determine the domain of the following function,V(x)represents the volume of the box .​  V ( x ) = x ( 38 - 2 x ) ^ { 2 }  ​</strong> A)Domain:  0 < x \leq 19  B)Domain:  0 \leq x \leq 38  C)Domain:  0 < x < 38  D)Domain:  0 \leq x \leq 19  E)Domain:  0 < x < 19   ​ where a=382xa = 38 - 2 x .
Determine the domain of the following function,V(x)represents the volume of the box .​ V(x)=x(382x)2V ( x ) = x ( 38 - 2 x ) ^ { 2 }

A)Domain: 0<x190 < x \leq 19
B)Domain: 0x380 \leq x \leq 38
C)Domain: 0<x<380 < x < 38
D)Domain: 0x190 \leq x \leq 19
E)Domain: 0<x<190 < x < 19
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
30
Select from the following which is the polynomial of degree n that has the given zero(s). ​
Zero
Degree x=7x = - 7 n=2n = 2

A) f(x)=x2+14x+49f ( x ) = x ^ { 2 } + 14 x + 49
B) f(x)=x214x49f ( x ) = x ^ { 2 } - 14 x - 49
C) f(x)=x2+14x+49f ( x ) = - x ^ { 2 } + 14 x + 49
D) f(x)=x214x+49f ( x ) = x ^ { 2 } - 14 x + 49
E) f(x)=x2+14x49f ( x ) = x ^ { 2 } + 14 x - 49
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
31
Select the graph of the function and determine the zeros of the polynomial.​ f(x)=x325xf ( x ) = x ^ { 3 } - 25 x

A)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​
B)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​
C)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​
D)​ 5,55 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​
E)​ 5,55 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 25 x  ​</strong> A)​  0,5 , - 5    ​ B)​  0,5 , - 5    ​ C)​  0,5 , - 5    ​ D)​  5 , - 5    ​ E)​  5 , - 5    ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
32
Select the graph of the function and determine the zeros of the polynomial.​ f(t)=16(t22t+20)f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)

A)​ No zeros
 <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​

B)​ No zeros
 <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​

C)​ 0,10,100,10 , - 10  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​
D)​ No zeros  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​

E)​ 10,1010 , - 10  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( t ) = \frac { 1 } { 6 } \left( t ^ { 2 } - 2 t + 20 \right)  ​</strong> A)​ No zeros ​   ​ B)​ No zeros ​   ​ C)​  0,10 , - 10    ​ D)​ No zeros   ​ E)​  10 , - 10    ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
33
Match the equation with its graph.​ 120(x5x45x3x26x)\frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right)

A)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)
B)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)
C)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)
D)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)
E)  <strong>Match the equation with its graph.​  \frac { 1 } { 20 } \left( x ^ { 5 } - x ^ { 4 } - 5 x ^ { 3 } - x ^ { 2 } - 6 x \right) </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
34
Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​ f(x)=x34xf ( x ) = x ^ { 3 } - 4 x

A)​Zeros: 0,20 , - 2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​
B)​Zeros: 0,20 , - 2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​
C)​Zeros: 0,20,2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​
D)​Zeros: 0,±20 , \pm 2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​
E)​Zeros: 0,±20 , \pm 2  <strong>Select the graph of the function and use the zero or root feature to approximate the real zeros of the function.​  f ( x ) = x ^ { 3 } - 4 x  ​</strong> A)​Zeros:  0 , - 2    ​ B)​Zeros:  0 , - 2    ​ C)​Zeros:  0,2    ​ D)​Zeros:  0 , \pm 2    ​ E)​Zeros:  0 , \pm 2    ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
35
Select the graph of the function and determine the zeros of the polynomial.​ f(x)=x2(x5)f ( x ) = x ^ { 2 } ( x - 5 )

A)​ 0,5,50,5 , - 5 <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​

B)​ 0,50,5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​
C)​ 0,50 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​
D)​ 0,50,5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​
E)​ 0,50 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 2 } ( x - 5 )  ​</strong> A)​  0,5 , - 5  ​   ​ B)​  0,5    ​ C)​  0 , - 5    ​ D)​  0,5    ​ E)​  0 , - 5    ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
36
Describe the right-hand and the left-hand behavior of the graph of q(x)=5x4+12x3+13q ( x ) = - 5 x ^ { 4 } + 12 x ^ { 3 } + 13 .

A)Because the degree is even and the leading coefficient is negative,the graph falls to the left and rises to the right.
B)Because the degree is even and the leading coefficient is negative,the graph rises to the left and falls to the right.
C)Because the degree is even and the leading coefficient is negative,the graph falls to the left and falls to the right.
D)Because the degree is odd and the leading coefficient is negative,the graph rises to the left and rises to the right.
E)Because the degree is even and the leading coefficient is negative,the graph rises to the left and rises to the right.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
37
A roofing contractor is fabricating gutters from 1010 -inch aluminum sheeting.The contractor plans to use an aluminum siding folding press to create the gutter by creasing equal lengths for the sidewalls (see figure).  <strong>A roofing contractor is fabricating gutters from  10  -inch aluminum sheeting.The contractor plans to use an aluminum siding folding press to create the gutter by creasing equal lengths for the sidewalls (see figure).   ​ where  a = 10 - 2 x  Let x represent the height of the sidewall of the gutter.Write a function A that represents the Cross-sectional area of the gutter. ​</strong> A)  A = - 2 x ^ { 2 } + 10 x  B)  A = 10 x ^ { 2 } - 2 x  C)  A = - 10 x - 2 x ^ { 2 }  D)  A = 2 x ^ { 2 } - 10 x  E)  A = 2 x ^ { 2 } + 10 x   ​ where a=102xa = 10 - 2 x Let x represent the height of the sidewall of the gutter.Write a function A that represents the
Cross-sectional area of the gutter.

A) A=2x2+10xA = - 2 x ^ { 2 } + 10 x
B) A=10x22xA = 10 x ^ { 2 } - 2 x
C) A=10x2x2A = - 10 x - 2 x ^ { 2 }
D) A=2x210xA = 2 x ^ { 2 } - 10 x
E) A=2x2+10xA = 2 x ^ { 2 } + 10 x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
38
Sketch the graph of the function by finding the zeros of the polynomial,​ f(x)=2x310x2+12xf ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x

A)​ ​0,2,3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​

B)​ ​0,2,-3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​

C)​ ​0,-2,3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​

D)​ ​0,2,3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​

E)​ ​0,-2,-3  <strong>Sketch the graph of the function by finding the zeros of the polynomial,​  f ( x ) = 2 x ^ { 3 } - 10 x ^ { 2 } + 12 x  ​</strong> A)​ ​0,2,3   ​ B)​ ​0,2,-3   ​ C)​ ​0,-2,3   ​ D)​ ​0,2,3   ​ E)​ ​0,-2,-3   ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
39
Select the graph of the function and determine the zeros of the polynomial.​ f(x)=x35x2f ( x ) = x ^ { 3 } - 5 x ^ { 2 }

A)​ 0,50,5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​
B)​ 0,50 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​
C)​ 0,50,5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​
D)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​
E)​ 0,5,50,5 , - 5  <strong>Select the graph of the function and determine the zeros of the polynomial.​  f ( x ) = x ^ { 3 } - 5 x ^ { 2 }  ​</strong> A)​  0,5    ​ B)​  0 , - 5    ​ C)​  0,5    ​ D)​  0,5 , - 5    ​ E)​  0,5 , - 5    ​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
40
The growth of a red oak tree is approximated by the function ​​ G=0.003t3+0.137t2+0.458t0.839G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839
Where G is the height of the tree (in feet)and t (2t34)( 2 \leq t \leq 34 ) is its age (in years).
Select the correct graph of the function.

A)​ ​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​
B)​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​
C)​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​
D)​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​
E)​  <strong>The growth of a red oak tree is approximated by the function ​​  G = - 0.003 t ^ { 3 } + 0.137 t ^ { 2 } + 0.458 t - 0.839  ​ Where G is the height of the tree (in feet)and t  ( 2 \leq t \leq 34 )  is its age (in years). Select the correct graph of the function. ​</strong> A)​ ​   B)​   C)​   D)​   E)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
41
Find a polynomial with the given zeros.​ 1,1,71,1,7

A) 9x2+15x79 x ^ { 2 } + 15 x - 7
B) x3+9x215x+7x ^ { 3 } + 9 x ^ { 2 } - 15 x + 7
C) 15x39x2+15x715 x ^ { 3 } - 9 x ^ { 2 } + 15 x - 7
D) x39x2+15x7x ^ { 3 } - 9 x ^ { 2 } + 15 x - 7
E)none of these
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
42
Using a graphing utility,graph f(x)=x34xf ( x ) = x ^ { 3 } - 4 x and approximate the zeros and their multiplicity.

A) x=0, multiplicity 2;x=2, multiplicity 1x = 0 , \text { multiplicity } 2 ; x = - 2 \text {, multiplicity } 1
B) x=0, multiplicity 1;x=2, multiplicity 1;x=2, multiplicity 1x = 0 \text {, multiplicity } 1 ; x = 2 \text {, multiplicity } 1 ; x = - 2 \text {, multiplicity } 1
C) x=0, multiplicity 3x = 0 , \text { multiplicity } 3
D) x=0, multiplicity 1;x=2, multiplicity 2x = 0 , \text { multiplicity } 1 ; x = 2 , \text { multiplicity } 2
E) x=2, multiplicity 2;x=2, multiplicity 1x = 2 , \text { multiplicity } 2 ; x = - 2 \text {, multiplicity } 1
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
43
An open box is to be made from a square piece of cardboard,22 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by V(x)=x(222x)2V ( x ) = x ( 22 - 2 x ) ^ { 2 } ,determine the domain of V(x)V ( x ) .  <strong>An open box is to be made from a square piece of cardboard,22 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by  V ( x ) = x ( 22 - 2 x ) ^ { 2 }  ,determine the domain of  V ( x )  .    </strong> A)  D = \{ x \mid 0 < x < 22 \}  B)  D = \{ x \mid 0 < x < 11 \}  C)  D = \{ x \mid x > 0 \}  D)  D = \{ x \mid 44 < x < 88 \}  E)  D = \{ x \mid 11 < x < 22 \}    <strong>An open box is to be made from a square piece of cardboard,22 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by  V ( x ) = x ( 22 - 2 x ) ^ { 2 }  ,determine the domain of  V ( x )  .    </strong> A)  D = \{ x \mid 0 < x < 22 \}  B)  D = \{ x \mid 0 < x < 11 \}  C)  D = \{ x \mid x > 0 \}  D)  D = \{ x \mid 44 < x < 88 \}  E)  D = \{ x \mid 11 < x < 22 \}

A) D={x0<x<22}D = \{ x \mid 0 < x < 22 \}
B) D={x0<x<11}D = \{ x \mid 0 < x < 11 \}
C) D={xx>0}D = \{ x \mid x > 0 \}
D) D={x44<x<88}D = \{ x \mid 44 < x < 88 \}
E) D={x11<x<22}D = \{ x \mid 11 < x < 22 \}
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
44
Find a polynomial with the given zeros.​ 7,17,1

A) x28x+7x ^ { 2 } - 8 x + 7
B) x28x+8x ^ { 2 } - 8 x + 8
C) x28x7x ^ { 2 } - 8 x - 7
D) 8x2x+78 x ^ { 2 } - x + 7
E)none of these
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
45
Graph the polynomial function.​ y=x3+3y = - x ^ { 3 } + 3

A)  <strong>Graph the polynomial function.​  y = - x ^ { 3 } + 3  ​</strong> A)   B)   C)   D)
B)  <strong>Graph the polynomial function.​  y = - x ^ { 3 } + 3  ​</strong> A)   B)   C)   D)
C)  <strong>Graph the polynomial function.​  y = - x ^ { 3 } + 3  ​</strong> A)   B)   C)   D)
D)  <strong>Graph the polynomial function.​  y = - x ^ { 3 } + 3  ​</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
46
Well whether the function y=x5+9x3y = x ^ { 5 } + 9 x ^ { 3 } is even or odd.If it is neither,so indicate. ​

A)even
B)odd
C)neither
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
47
Find all real zeros of the polynomial f(x)=x461x2+900f ( x ) = x ^ { 4 } - 61 x ^ { 2 } + 900 and determine the multiplicity of each.

A) x=5, multiplicity 2;x=6, multiplicity 2x = - 5 , \text { multiplicity } 2 ; x = - 6 , \text { multiplicity } 2
B) x=25, multiplicity 2;x=36, multiplicity 2x = 25 , \text { multiplicity } 2 ; x = 36 \text {, multiplicity } 2
C) x=5, multiplicity 2;x=6, multiplicity 2x = 5 , \text { multiplicity } 2 ; x = 6 , \text { multiplicity } 2
D) x=25, multiplicity 2;x=6, multiplicity 2x = 25 , \text { multiplicity } 2 ; x = 6 , \text { multiplicity } 2
E) x=5, multiplicity 1;x=5, multiplicity 1;x=6, multiplicity 1;x=6, multiplicity 1x = 5 \text {, multiplicity } 1 ; x = - 5 \text {, multiplicity } 1 ; x = 6 \text {, multiplicity } 1 ; x = - 6 \text {, multiplicity } 1
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
48
Find all real zeros of the polynomial f(x)=x3+3x236x108f ( x ) = x ^ { 3 } + 3 x ^ { 2 } - 36 x - 108 and determine the multiplicity of each.

A) x=6, multiplicity 2;x=3, multiplicity 1x = 6 , \text { multiplicity } 2 ; x = - 3 \text {, multiplicity } 1
B) x=6, multiplicity 1;x=6, multiplicity 1;x=3, multiplicity 1x = 6 \text {, multiplicity } 1 ; x = - 6 \text {, multiplicity } 1 ; x = - 3 \text {, multiplicity } 1
C) x=3, multiplicity 2;x=6, multiplicity 1x = - 3 \text {, multiplicity } 2 ; x = - 6 \text {, multiplicity } 1
D) x=6, multiplicity 1;x=3, multiplicity 1;x=3, multiplicity 1x = - 6 \text {, multiplicity } 1 ; x = 3 \text {, multiplicity } 1 ; x = - 3 \text {, multiplicity } 1
E) x=3, multiplicity 3x = - 3 \text {, multiplicity } 3
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
49
An open box is to be made from a square piece of cardboard,33 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.  <strong>An open box is to be made from a square piece of cardboard,33 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.    </strong> A)  V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 } - 33 x  B)  V ( x ) = - 2 x ^ { 3 } + 33 x ^ { 2 }  C)  V ( x ) = 4 x ^ { 3 } - 132 x ^ { 2 } + 1089 x  D)  V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 }  E)  V ( x ) = 4 x ^ { 3 } - 66 x ^ { 2 } + 33 x    <strong>An open box is to be made from a square piece of cardboard,33 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.    </strong> A)  V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 } - 33 x  B)  V ( x ) = - 2 x ^ { 3 } + 33 x ^ { 2 }  C)  V ( x ) = 4 x ^ { 3 } - 132 x ^ { 2 } + 1089 x  D)  V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 }  E)  V ( x ) = 4 x ^ { 3 } - 66 x ^ { 2 } + 33 x

A) V(x)=4x3+66x233xV ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 } - 33 x
B) V(x)=2x3+33x2V ( x ) = - 2 x ^ { 3 } + 33 x ^ { 2 }
C) V(x)=4x3132x2+1089xV ( x ) = 4 x ^ { 3 } - 132 x ^ { 2 } + 1089 x
D) V(x)=4x3+66x2V ( x ) = - 4 x ^ { 3 } + 66 x ^ { 2 }
E) V(x)=4x366x2+33xV ( x ) = 4 x ^ { 3 } - 66 x ^ { 2 } + 33 x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
50
Using a graphing utility,graph f(x)=x514x4+49x3f ( x ) = x ^ { 5 } - 14 x ^ { 4 } + 49 x ^ { 3 } and approximate the zeros and their multiplicity.

A) x=0, multiplicity 2;x=7, multiplicity 3x = 0 , \text { multiplicity } 2 ; x = 7 , \text { multiplicity } 3
B) x=0, multiplicity 1;x=7, multiplicity 1;x=7, multiplicity 1;x= ## b##=m, multiplicity 1x = 0 , \text { multiplicity } 1 ; x = 7 , \text { multiplicity } 1 ; x = - 7 , \text { multiplicity } 1 ; x = \text { \#\# } \mathrm { b \#\#} = \mathrm { m } , \text { multiplicity } 1
C) x=0, multiplicity 3;x=7, multiplicity 2x = 0 , \text { multiplicity } 3 ; x = 7 , \text { multiplicity } 2
D) x=0, multiplicity 3;x=7, multiplicity 2x = 0 , \text { multiplicity } 3 ; x = - 7 , \text { multiplicity } 2
E) x=0, multiplicity 2;x=7, multiplicity 2;x=7, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = 7 \text {, multiplicity } 2 ; x = - 7 \text {, multiplicity } 1
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
51
Find all real zeros of the polynomial f(x)=x4+7x3+6x2f ( x ) = x ^ { 4 } + 7 x ^ { 3 } + 6 x ^ { 2 } and determine the multiplicity of each.

A) x=0, multiplicity 2;x=1, multiplicity 1;x=6, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = - 1 \text {, multiplicity } 1 ; x = - 6 \text {, multiplicity } 1
B) x=1, multiplicity 2;x=6, multiplicity 2x = 1 , \text { multiplicity } 2 ; x = 6 , \text { multiplicity } 2
C) x=0, multiplicity 2;x=1, multiplicity 1;x=6, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = 1 \text {, multiplicity } 1 ; x = 6 \text {, multiplicity } 1
D) x=1, multiplicity 2;x=6, multiplicity 2x = - 1 , \text { multiplicity } 2 ; x = - 6 , \text { multiplicity } 2
E) x=0, multiplicity 1;x=1, multiplicity 1;x=1, multiplicity 1;x=6, multiplicity 1x = 0 , \text { multiplicity } 1 ; x = 1 , \text { multiplicity } 1 ; x = - 1 , \text { multiplicity } 1 ; x = 6 \text {, multiplicity } 1
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
52
Find all real zeros of the polynomial f(x)=x3+5x24x20f ( x ) = x ^ { 3 } + 5 x ^ { 2 } - 4 x - 20 and determine the multiplicity of each.

A) x=5, multiplicity 2;x=2, multiplicity 1x = - 5 , \text { multiplicity } 2 ; x = - 2 \text {, multiplicity } 1
B) x=5, multiplicity 3x = - 5 , \text { multiplicity } 3
C) x=2, multiplicity 1;x=2, multiplicity 1;x=5, multiplicity 1x = 2 \text {, multiplicity } 1 ; x = - 2 \text {, multiplicity } 1 ; x = - 5 \text {, multiplicity } 1
D) x=2, multiplicity 1;x=5, multiplicity 1;x=5, multiplicity 1x = - 2 \text {, multiplicity } 1 ; x = 5 \text {, multiplicity } 1 ; x = - 5 \text {, multiplicity } 1
E) x=2, multiplicity 2;x=5, multiplicity 1x = 2 , \text { multiplicity } 2 ; x = - 5 , \text { multiplicity } 1
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
53
Graph the polynomial function.​ y=x3+5x2y = x ^ { 3 } + 5 x ^ { 2 }

A)  <strong>Graph the polynomial function.​  y = x ^ { 3 } + 5 x ^ { 2 }  ​</strong> A)   B)   C)   D)
B)  <strong>Graph the polynomial function.​  y = x ^ { 3 } + 5 x ^ { 2 }  ​</strong> A)   B)   C)   D)
C)  <strong>Graph the polynomial function.​  y = x ^ { 3 } + 5 x ^ { 2 }  ​</strong> A)   B)   C)   D)
D)  <strong>Graph the polynomial function.​  y = x ^ { 3 } + 5 x ^ { 2 }  ​</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
54
Find a polynomial with the given zeros.​ 0,0,0,3,30,0,0 , \sqrt { 3 } , - \sqrt { 3 }

A) x53x3x ^ { 5 } - 3 x ^ { 3 }
B) x56x3x ^ { 5 } - 6 x ^ { 3 }
C) x5x3+3x ^ { 5 } - x ^ { 3 } + 3
D) x2+3x+6x ^ { 2 } + 3 x + 6
E)none of these
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
55
Find a polynomial with the given zeros.​ 1,5,7,7- 1,5 , - \sqrt { 7 } , \sqrt { 7 }

A) x54x412x3+28x2+35x2x ^ { 5 } - 4 x ^ { 4 } - 12 x ^ { 3 } + 28 x ^ { 2 } + 35 x - 2
B) x412x2+35x ^ { 4 } - 12 x ^ { 2 } + 35
C) x412x34x228x+35x ^ { 4 } - 12 x ^ { 3 } - 4 x ^ { 2 } - 28 x + 35
D) x44x312x2+28x+35x ^ { 4 } - 4 x ^ { 3 } - 12 x ^ { 2 } + 28 x + 35
E)none of these
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
56
The graph of the function g(x)is a translation of the graph of f (x)= x 3.Graph the function g(x)= (x - 1)3. ​

A)​ <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 1)<sup>3</sup>. ​</strong> A)​   B)​   C)​   D)​
B)​ <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 1)<sup>3</sup>. ​</strong> A)​   B)​   C)​   D)​
C)​ <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 1)<sup>3</sup>. ​</strong> A)​   B)​   C)​   D)​
D)​ <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 1)<sup>3</sup>. ​</strong> A)​   B)​   C)​   D)​
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
57
The graph of the function g(x)is a translation of the graph of f (x)= x 3.Graph the function g(x)= (x - 3)3 - 1. ​

A) <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 3)<sup>3</sup> - 1. ​</strong> A)   B)   C)   D)
B) <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 3)<sup>3</sup> - 1. ​</strong> A)   B)   C)   D)
C) <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 3)<sup>3</sup> - 1. ​</strong> A)   B)   C)   D)
D) <strong>The graph of the function g(x)is a translation of the graph of f (x)= x <sup>3</sup>.Graph the function g(x)= (x - 3)<sup>3</sup> - 1. ​</strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
58
Describe the right-hand and the left-hand behavior of the graph of s(x)=3x5+12x3+3s ( x ) = 3 x ^ { 5 } + 12 x ^ { 3 } + 3 .

A)Because the degree is odd and the leading and the second coefficients are positive,the graph falls to the left and rises to the right.
B)Because the degree is odd,the leading and the second coefficient are positive,the graph rises to the left and rises to the right.
C)Because the degree is odd,and the leading coefficient is positive,the graph falls to the left and falls to the right.
D)Because the degree is odd,and the leading coefficient is positive,the graph rises to the left and falls to the right.
E)Because the degree is even and the leading coefficient is positive,the graph rises to the left and rises to the right.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
59
Find all real zeros of the polynomial f(x)=x4+12x3+27x2f ( x ) = x ^ { 4 } + 12 x ^ { 3 } + 27 x ^ { 2 } and determine the multiplicity of each.

A) x=0, multiplicity 1;x=9, multiplicity 1;x=9, multiplicity 1;x=3, multiplicity 1x = 0 \text {, multiplicity } 1 ; x = 9 , \text { multiplicity } 1 ; x = - 9 , \text { multiplicity } 1 ; x = 3 \text {, multiplicity } 1
B) x=0, multiplicity 2;x=9, multiplicity 1;x=3, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = 9 \text {, multiplicity } 1 ; x = 3 \text {, multiplicity } 1
C) x=0, multiplicity 2;x=9, multiplicity 1;x=3, multiplicity 1x = 0 \text {, multiplicity } 2 ; x = - 9 \text {, multiplicity } 1 ; x = - 3 \text {, multiplicity } 1
D) x=9, multiplicity 2;x=3, multiplicity 2x = 9 , \text { multiplicity } 2 ; x = 3 , \text { multiplicity } 2
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
60
Describe the right-hand and the left-hand behavior of the graph of q(x)=712(x3x2+2x+1)q ( x ) = - \frac { 7 } { 12 } \left( x ^ { 3 } - x ^ { 2 } + 2 x + 1 \right) .

A)Because the degree is odd and the leading coefficient is negative,the graph rises to the left and falls to the right.
B)Because the degree is odd and the leading coefficient is negative,the graph falls to the left and rises to the right.
C)Because the degree is odd and the leading coefficient is positive,the graph falls to the left and falls to the right.
D)Because the degree is odd and the leading coefficient is positive,the graph rises to the left and rises to the right.
E)Because the degree is even and the leading coefficient is negative,the graph rises to the left and falls to the right.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
61
An open box is to be made from a square piece of cardboard,24 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by V(x)=x(242x)2V ( x ) = x ( 24 - 2 x ) ^ { 2 } ,determine the domain of V(x)V ( x ) .  <strong>An open box is to be made from a square piece of cardboard,24 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by  V ( x ) = x ( 24 - 2 x ) ^ { 2 }  ,determine the domain of  V ( x )  .    </strong> A)  D = \{ x \mid x > 0 \}  B)  D = \{ x \mid 0 < x < 12 \}  C)  D = \{ x \mid 48 < x < 96 \}  D)  D = \{ x \mid 0 < x < 24 \}  E)  D = \{ x \mid 12 < x < 24 \}    <strong>An open box is to be made from a square piece of cardboard,24 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).If the volume of the box is represented by  V ( x ) = x ( 24 - 2 x ) ^ { 2 }  ,determine the domain of  V ( x )  .    </strong> A)  D = \{ x \mid x > 0 \}  B)  D = \{ x \mid 0 < x < 12 \}  C)  D = \{ x \mid 48 < x < 96 \}  D)  D = \{ x \mid 0 < x < 24 \}  E)  D = \{ x \mid 12 < x < 24 \}

A) D={xx>0}D = \{ x \mid x > 0 \}
B) D={x0<x<12}D = \{ x \mid 0 < x < 12 \}
C) D={x48<x<96}D = \{ x \mid 48 < x < 96 \}
D) D={x0<x<24}D = \{ x \mid 0 < x < 24 \}
E) D={x12<x<24}D = \{ x \mid 12 < x < 24 \}
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
62
An open box is to be made from a square piece of cardboard,28 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.  <strong>An open box is to be made from a square piece of cardboard,28 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.    </strong> A)  V ( x ) = - 2 x ^ { 3 } + 28 x ^ { 2 }  B)  V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 }  C)  V ( x ) = 4 x ^ { 3 } - 56 x ^ { 2 } + 28 x  D)  V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 } - 28 x  E)  V ( x ) = 4 x ^ { 3 } - 112 x ^ { 2 } + 784 x    <strong>An open box is to be made from a square piece of cardboard,28 inches on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).Determine the function,V,in terms of x,that represents the volume of the box.    </strong> A)  V ( x ) = - 2 x ^ { 3 } + 28 x ^ { 2 }  B)  V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 }  C)  V ( x ) = 4 x ^ { 3 } - 56 x ^ { 2 } + 28 x  D)  V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 } - 28 x  E)  V ( x ) = 4 x ^ { 3 } - 112 x ^ { 2 } + 784 x

A) V(x)=2x3+28x2V ( x ) = - 2 x ^ { 3 } + 28 x ^ { 2 }
B) V(x)=4x3+56x2V ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 }
C) V(x)=4x356x2+28xV ( x ) = 4 x ^ { 3 } - 56 x ^ { 2 } + 28 x
D) V(x)=4x3+56x228xV ( x ) = - 4 x ^ { 3 } + 56 x ^ { 2 } - 28 x
E) V(x)=4x3112x2+784xV ( x ) = 4 x ^ { 3 } - 112 x ^ { 2 } + 784 x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
63
An open box is to be made from a square piece of cardboard, 66 inches 66 \text { inches } on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).After determining the function V,in terms of x,that represents the volume of the box,use a graphing utility to estimate the dimensions that will maximize its volume.  <strong>An open box is to be made from a square piece of cardboard,  66 \text { inches }  on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).After determining the function V,in terms of x,that represents the volume of the box,use a graphing utility to estimate the dimensions that will maximize its volume.    </strong> A)  22 ^ { \prime \prime } \times 22 ^ { \prime \prime } \times 11 ^ { \prime \prime }  B)  44 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 11 ^ { \prime \prime }  C)  44 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 22 ^ { \prime \prime }  D)  33 ^ { \prime \prime } \times 33 ^ { \prime \prime } \times 22 ^ { \prime \prime }  E)  11 ^ { \prime \prime } \times 11 ^ { \prime \prime } \times 5.5 ^ { \prime \prime }    <strong>An open box is to be made from a square piece of cardboard,  66 \text { inches }  on a side,by cutting equal squares with sides of length x from the corners and turning up the sides (see figure below).After determining the function V,in terms of x,that represents the volume of the box,use a graphing utility to estimate the dimensions that will maximize its volume.    </strong> A)  22 ^ { \prime \prime } \times 22 ^ { \prime \prime } \times 11 ^ { \prime \prime }  B)  44 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 11 ^ { \prime \prime }  C)  44 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 22 ^ { \prime \prime }  D)  33 ^ { \prime \prime } \times 33 ^ { \prime \prime } \times 22 ^ { \prime \prime }  E)  11 ^ { \prime \prime } \times 11 ^ { \prime \prime } \times 5.5 ^ { \prime \prime }

A) 22×22×1122 ^ { \prime \prime } \times 22 ^ { \prime \prime } \times 11 ^ { \prime \prime }
B) 44×44×1144 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 11 ^ { \prime \prime }
C) 44×44×2244 ^ { \prime \prime } \times 44 ^ { \prime \prime } \times 22 ^ { \prime \prime }
D) 33×33×2233 ^ { \prime \prime } \times 33 ^ { \prime \prime } \times 22 ^ { \prime \prime }
E) 11×11×5.511 ^ { \prime \prime } \times 11 ^ { \prime \prime } \times 5.5 ^ { \prime \prime }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 63 flashcards in this deck.