Deck 24: Trigonometric Functions The Unit Circle

Full screen (f)
exit full mode
Question
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=25π3t = \frac { 25 \pi } { 3 }

A) t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=12cos(25π3)=32tan(25π3)=3\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = - \frac { 1 } { 2 } \\\cos \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 } \\\tan \left( \frac { 25 \pi } { 3 } \right) = - \sqrt { 3 }\end{array}
B) t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=32cos(25π3)=12tan(25π3)=3\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 } \\\cos \left( \frac { 25 \pi } { 3 } \right) = \frac { 1 } { 2 } \\\tan \left( \frac { 25 \pi } { 3 } \right) = \sqrt { 3 }\end{array}
C) t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( - \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=12cos(25π3)=32tan(25π3)=33\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = - \frac { 1 } { 2 } \\\\\cos \left( \frac { 25 \pi } { 3 } \right) = - \frac { \sqrt { 3 } } { 2 } \\\\\tan \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 3 }\end{array}
D) t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=12cos(25π3)=32tan(25π3)=33\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = - \frac { 1 } { 2 } \\\\\cos \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 } \\\\\tan \left( \frac { 25 \pi } { 3 } \right) = - \frac { \sqrt { 3 } } { 3 }\end{array}
E)Not possible
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the point (x,y)on the unit circle that corresponds to the real number t.​ t=10π3t = \frac { 10 \pi } { 3 }

A) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
B) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32)\left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
C) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
D) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32)\left( - \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
E) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32)\left( - \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) .
Question
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=3π2t = \frac { 3 \pi } { 2 }

A) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(3π2)=0cos(3π2)=1tan(3π2)=0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
B) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) .​ sin(3π2)=1cos(3π2)=0tan(3π2) is undefined.\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0\\\\\tan \left( \frac { 3 \pi } { 2 } \right)~ is~ undefined.\end{array}
C) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,0)( x , y ) = ( 0,0 ) .​ sin(3π2)=0cos(3π2)=0tan(3π2)=0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
D) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) .​ sin(3π2)=1cos(3π2)=0tan(3π2)=0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
E)Not possible
Question
Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​  <strong>Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​   ​ a =  \frac { 15 } { 17 }  ,b =  \frac { 8 } { 17 }  ​</strong> A)sin t =  \frac { 8 } { 17 }  cos t =  \frac { 8 } { 15 }  Tan t =  \frac { 15 } { 17 }  B)​sin t =  \frac { 15 } { 17 }  cos t =  \frac { 8 } { 17 }  Tan t =  \frac { 8 } { 15 }  C)​sin t =  \frac { 17 } { 15 }  cos t =  \frac { 17 } { 8 }  Tan t =  \frac { 15 } { 8 }  D)sin t =  \frac { 8 } { 15 }  cos t =  \frac { 15 } { 17 }  Tan t =  \frac { 8 } { 17 }  E)​sin t =  \frac { 8 } { 17 }  cos t =  \frac { 15 } { 17 }  Tan t =  \frac { 8 } { 15 }  <div style=padding-top: 35px>  ​ a = 1517\frac { 15 } { 17 } ,b = 817\frac { 8 } { 17 }

A)sin t = 817\frac { 8 } { 17 } cos t = 815\frac { 8 } { 15 }
Tan t = 1517\frac { 15 } { 17 }
B)​sin t = 1517\frac { 15 } { 17 } cos t = 817\frac { 8 } { 17 }
Tan t = 815\frac { 8 } { 15 }
C)​sin t = 1715\frac { 17 } { 15 } cos t = 178\frac { 17 } { 8 }
Tan t = 158\frac { 15 } { 8 }
D)sin t = 815\frac { 8 } { 15 } cos t = 1517\frac { 15 } { 17 }
Tan t = 817\frac { 8 } { 17 }
E)​sin t = 817\frac { 8 } { 17 } cos t = 1517\frac { 15 } { 17 }
Tan t = 815\frac { 8 } { 15 }
Question
Find the point (x,y)on the unit circle that corresponds to the real number t.(Round your answer to one decimal place. )​ t=π2t = \frac { \pi } { 2 }

A) t=π2t = \frac { \pi } { 2 } corresponds to the point (0.0,1.0)( 0.0 , - 1.0 ) .
B) t=π2t = \frac { \pi } { 2 } corresponds to the point (0.0,1.0)( - 0.0 , - 1.0 ) .
C) t=π2t = \frac { \pi } { 2 } corresponds to the point (0.0,1.0)( 0.0,1.0 ) .
D) t=π2t = \frac { \pi } { 2 } corresponds to the point (1.0,0.0)( 1.0 , - 0.0 ) .
E) t=π2t = \frac { \pi } { 2 } corresponds to the point (1.0,0.0)( 1.0,0.0 ) .
Question
Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​  <strong>Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​   ​  a = \frac { 5 } { 13 } , b = \frac { 12 } { 13 }  ​</strong> A)​  \begin{array} { l } \sin t = - \frac { 12 } { 13 } \\\\ \cos t = \frac { 5 } { 13 } \\\\ \tan t = \frac { 12 } { 5 } \end{array}  ​ B)​  \begin{array} { l } \sin t = \frac { 13 } { 5 } \\\\ \cos t = \frac { 13 } { 12 } \\\\ \tan t = \frac { 5 } { 12 } \end{array}  ​ C)  \begin{array} { l } \sin t = \frac { 12 } { 13 } \\\\ \cos t = \frac { 12 } { 5 } \\\\ \tan t = \frac { 5 } { 13 } \end{array}  ​ D)​  \begin{array} { l } \sin t = \frac { 12 } { 5 } \\\\ \cos t = \frac { 5 } { 13 } \\\\ \tan t = \frac { 12 } { 13 } \end{array}  ​ E)​  \begin{array} { l } \sin t = - \frac { 12 } { 13 } \\ \cos t = \frac { 5 } { 13 } \\ \tan t = - \frac { 12 } { 5 } \end{array}  ​ <div style=padding-top: 35px>  a=513,b=1213a = \frac { 5 } { 13 } , b = \frac { 12 } { 13 }

A)​ sint=1213cost=513tant=125\begin{array} { l } \sin t = - \frac { 12 } { 13 } \\\\\cos t = \frac { 5 } { 13 } \\\\\tan t = \frac { 12 } { 5 }\end{array}
B)​ sint=135cost=1312tant=512\begin{array} { l } \sin t = \frac { 13 } { 5 } \\\\\cos t = \frac { 13 } { 12 } \\\\\tan t = \frac { 5 } { 12 }\end{array}
C) sint=1213cost=125tant=513\begin{array} { l } \sin t = \frac { 12 } { 13 } \\\\\cos t = \frac { 12 } { 5 } \\\\\tan t = \frac { 5 } { 13 }\end{array}
D)​ sint=125cost=513tant=1213\begin{array} { l } \sin t = \frac { 12 } { 5 } \\\\\cos t = \frac { 5 } { 13 } \\\\\tan t = \frac { 12 } { 13 }\end{array}
E)​ sint=1213cost=513tant=125\begin{array} { l } \sin t = - \frac { 12 } { 13 } \\\cos t = \frac { 5 } { 13 } \\\tan t = - \frac { 12 } { 5 }\end{array}
Question
Evaluate (if possible)the sine,cosec,and tangent of the real number.​ t=8πt = - 8 \pi

A) t=8πt = - 8 \pi corresponds to the point (x,y)=(1,0)( x , y ) = ( 1,0 ) . sin(8π)=0csc(8π) is undefined tan(8π)=0\begin{array} { l } \sin ( - 8 \pi ) = 0 \\\csc ( - 8 \pi ) \text { is undefined } \\\tan ( - 8 \pi ) = 0\end{array}
B) t=8πt = - 8 \pi corresponds to the point (x,y)=(0,1)( x , y ) = ( 0,1 ) . sin(8π)=0csc(8π)=0tan(8π) is undefined \begin{array} { l } \sin ( - 8 \pi ) = 0 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
C) t=8πt = - 8 \pi corresponds to the point (x,y)=(1,0)( x , y ) = ( 1,0 ) . sin(8π)=1csc(8π)=0tan(8π) is undefined \begin{array} { l } \sin ( - 8 \pi ) = 1 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
D) t=8πt = - 8 \pi corresponds to the point (x,y)=(0,1)( x , y ) = ( 0,1 ) . sin(8π)=1csc(8π)=0tan(8π) is undefined \begin{array} { l } \sin ( - 8 \pi ) = 1 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
E)Not possible
Question
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=π2t = - \frac { \pi } { 2 }

A) t=π2t = - \frac { \pi } { 2 } corresponds to the point (x,y)=(0,0)( x , y ) = ( 0,0 ) . sin(π2)=0cos(π2)=0tan(π2)=0\begin{array} { l } \sin \left( - \frac { \pi } { 2 } \right) = 0 \\\cos \left( - \frac { \pi } { 2 } \right) = 0 \\\tan \left( - \frac { \pi } { 2 } \right) = 0\end{array}
B) t=π2t = - \frac { \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(π2)=1cos(π2)=0tan(π2)=0\begin{array} { l } \sin \left( - \frac { \pi } { 2 } \right) = - 1 \\\cos \left( - \frac { \pi } { 2 } \right) = 0 \\\tan \left( - \frac { \pi } { 2 } \right) = 0\end{array}
C) t=π2t = - \frac { \pi } { 2 } corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) . sin(π2)=1cos(π2)=0tan(π2) is undefined \begin{array} { l } \sin \left( - \frac { \pi } { 2 } \right) = - 1 \\\cos \left( - \frac { \pi } { 2 } \right) = 0 \\\tan \left( - \frac { \pi } { 2 } \right) \text { is undefined }\end{array}
D) t=π2t = - \frac { \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(π2)=0cos(π2)=1tan(π2)=0\begin{array} { l } \sin \left( - \frac { \pi } { 2 } \right) = 0 \\\cos \left( - \frac { \pi } { 2 } \right) = - 1 \\\tan \left( - \frac { \pi } { 2 } \right) = 0\end{array}
E)Not possible
Question
Find the point (x,y)on the unit circle that corresponds to the real number t.​ t=5π6t = \frac { 5 \pi } { 6 }

A) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (12,32)\left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
B) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
C) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
D) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12)\left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
E) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12)\left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
Question
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=7πt = - 7 \pi

A) t=7πt = - 7 \pi corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) . sin(7π)=1cos(7π)=0tan(7π) is undefined.\begin{array} { l } \sin ( - 7 \pi ) = - 1 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi ) ~is~ undefined.\end{array}
B) t=7πt = - 7 \pi corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(7π)=1cos(7π)=0tan(7π) is undefined.\begin{array} { l } \sin ( - 7 \pi ) = - 1 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi) ~is~ undefined.\end{array}
C) t=7πt = - 7 \pi corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) . sin(7π)=0cos(7π)=0tan(7π) is undefined.\begin{array} { l } \sin ( - 7 \pi ) = 0 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi ) ~is~ undefined.\end{array}
D) t=7πt = - 7 \pi corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(7π)=0cos(7π)=1tan(7π)=0\begin{array} { l } \sin ( - 7 \pi ) = 0 \\\cos ( - 7 \pi ) = - 1 \\\tan ( - 7 \pi ) = 0\end{array}
E)Not possible
Question
Evaluate the trigonometric function using its period as an aid. ​
Cos 8π

A)cos 8π = -8
B)cos 8π = 0
C)cos 8π = 8
D)cos 8π = ∞
E)cos 8π = 1
Question
Evaluate the trigonometric function using its period as an aid.​ sin3π4\sin \frac { 3 \pi } { 4 }

A) sin3π4=\sin \frac { 3 \pi } { 4 } = \infty
B) sin3π4=2\sin \frac { 3 \pi } { 4 } = - \sqrt { 2 }
C) sin3π4=22\sin \frac { 3 \pi } { 4 } = - \frac { \sqrt { 2 } } { 2 }
D) sin3π4=2\sin \frac { 3 \pi } { 4 } = \sqrt { 2 }
E) sin3π4=22\sin \frac { 3 \pi } { 4 } = \frac { \sqrt { 2 } } { 2 }
Question
Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​  <strong>Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​   ​  a = \frac { 12 } { 13 } , b = \frac { 5 } { 13 }  ​</strong> A)​  \begin{array} { l } \sin t = - \frac { 5 } { 13 } \\\\ \cos t = - \frac { 12 } { 13 } \\\\ \tan t = - \frac { 5 } { 12 } \end{array}  ​ B)​  \begin{array} { l } \sin t = \frac { 5 } { 13 } \\\\ \cos t = \frac { 12 } { 13 } \\\\ \tan t = \frac { 5 } { 12 } \end{array}  ​ C)  \begin{array} { l } \sin t = \frac { 5 } { 13 } \\\\\ \cos t = - \frac { 12 } { 13 } \\\\ \tan t = - \frac { 5 } { 12 } \end{array}  ​ D)​  \begin{array} { l } \sin t = \frac { 5 } { 12 } \\\\ \cos t = \frac { 5 } { 13 } \\\\ \tan t = \frac { 12 } { 13 } \end{array}  ​ E)​  \begin{array} { l } \sin t = \frac { 5 } { 13 } \\ \cos t = - \frac { 12 } { 13 } \\ \tan t = \frac { 5 } { 12 } \end{array}  ​ <div style=padding-top: 35px>  a=1213,b=513a = \frac { 12 } { 13 } , b = \frac { 5 } { 13 }

A)​ sint=513cost=1213tant=512\begin{array} { l } \sin t = - \frac { 5 } { 13 } \\\\\cos t = - \frac { 12 } { 13 } \\\\\tan t = - \frac { 5 } { 12 }\end{array}
B)​ sint=513cost=1213tant=512\begin{array} { l } \sin t = \frac { 5 } { 13 } \\\\\cos t = \frac { 12 } { 13 } \\\\\tan t = \frac { 5 } { 12 }\end{array}
C) sint=513cost=1213tant=512\begin{array} { l } \sin t = \frac { 5 } { 13 } \\\\\\cos t = - \frac { 12 } { 13 } \\\\\tan t = - \frac { 5 } { 12 }\end{array}
D)​ sint=512cost=513tant=1213\begin{array} { l } \sin t = \frac { 5 } { 12 } \\\\\cos t = \frac { 5 } { 13 } \\\\\tan t = \frac { 12 } { 13 }\end{array}
E)​ sint=513cost=1213tant=512\begin{array} { l } \sin t = \frac { 5 } { 13 } \\\cos t = - \frac { 12 } { 13 } \\\tan t = \frac { 5 } { 12 }\end{array}
Question
Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​  <strong>Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​   ​  a = \frac { 4 } { 5 } , b = \frac { 3 } { 5 }  ​</strong> A)​  \begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\ \cos t = - \frac { 4 } { 5 } \\\\ \tan t = - \frac { 3 } { 4 } \end{array}  ​ B)​  \begin{array} { l } \sin t = \frac { 3 } { 5 } \\ \cos t = - \frac { 3 } { 4 } \\ \tan t = \frac { 4 } { 5 } \end{array}  ​ C)  \begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\ \cos t = - \frac { 3 } { 4 } \\\\ \tan t = \frac { 4 } { 5 } \end{array}  ​ D)​  \begin{array} { l } \sin t = \frac { 3 } { 4 } \\\\ \cos t = \frac { 3 } { 5 } \\\\ \tan t = \frac { 4 } { 5 } \end{array}  ​ E)​  \begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\ \cos t = - \frac { 4 } { 5 } \\\\ \tan t = \frac { 3 } { 4 } \end{array}  ​ <div style=padding-top: 35px>  a=45,b=35a = \frac { 4 } { 5 } , b = \frac { 3 } { 5 }

A)​ sint=35cost=45tant=34\begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\\cos t = - \frac { 4 } { 5 } \\\\\tan t = - \frac { 3 } { 4 }\end{array}
B)​ sint=35cost=34tant=45\begin{array} { l } \sin t = \frac { 3 } { 5 } \\\cos t = - \frac { 3 } { 4 } \\\tan t = \frac { 4 } { 5 }\end{array}
C) sint=35cost=34tant=45\begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\\cos t = - \frac { 3 } { 4 } \\\\\tan t = \frac { 4 } { 5 }\end{array}
D)​ sint=34cost=35tant=45\begin{array} { l } \sin t = \frac { 3 } { 4 } \\\\\cos t = \frac { 3 } { 5 } \\\\\tan t = \frac { 4 } { 5 }\end{array}
E)​ sint=35cost=45tant=34\begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\\cos t = - \frac { 4 } { 5 } \\\\\tan t = \frac { 3 } { 4 }\end{array}
Question
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=3π2t = - \frac { 3 \pi } { 2 }

A) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,0)( x , y ) = ( 0,0 ) . sin(3π2)=0cos(3π2)=0tan(3π2)=0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
B) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( 1,0 ) . sin(3π2)=1cos(3π2)=0tan(3π2)=0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
C) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,1)( x , y ) = ( 0,1 ) . sin(3π2)=1cos(3π2)=0tan(3π2) is undefined.\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0\\\\\tan \left( - \frac { 3 \pi } { 2 } \right)~ is~ undefined.\end{array}
D) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( 1,0 ) .​ sin(3π2)=0cos(3π2)=1tan(3π2)=0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
E)Not possible
Question
Evaluate the trigonometric function using its period as an aid.​ sin4π\sin 4 \pi

A) sin4π=4\sin 4 \pi = 4
B) sin4π=1\sin 4 \pi = - 1
C) sin4π=4\sin 4 \pi = - 4
D) sin4π=0\sin 4 \pi = 0
E) sin4π=\sin 4 \pi = \infty
Question
Find the point (x,y)on the unit circle that corresponds to the real number t.​ t=19π3t = \frac { 19 \pi } { 3 }

A) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12)\left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
B) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12)\left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
C) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (12,32)\left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
D) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (12,32)\left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) .
E) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
Question
Evaluate the trigonometric function using its period as an aid.​ cos5π3\cos \frac { 5 \pi } { 3 }

A) cos5π3=\cos \frac { 5 \pi } { 3 } = \infty
B) cos5π3=12\cos \frac { 5 \pi } { 3 } = - \frac { 1 } { 2 }
C) cos5π3=2\cos \frac { 5 \pi } { 3 } = 2
D) cos5π3=2\cos \frac { 5 \pi } { 3 } = - 2
E) cos5π3=12\cos \frac { 5 \pi } { 3 } = \frac { 1 } { 2 }
Question
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=9π4t = \frac { 9 \pi } { 4 }

A) t=9π4t = \frac { 9 \pi } { 4 } corresponds to the point (x,y)=(22,22)( x , y ) = \left( \frac { \sqrt { 2 } } { 2 } , - \frac { \sqrt { 2 } } { 2 } \right) . sin(9π4)=22cos(9π4)=22tan(9π4)=1\begin{array} { l } \sin \left( \frac { 9 \pi } { 4 } \right) = - \frac { \sqrt { 2 } } { 2 } \\\cos \left( \frac { 9 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } \\\tan \left( \frac { 9 \pi } { 4 } \right) = - 1\end{array}
B) t=9π4t = \frac { 9 \pi } { 4 } corresponds to the point (x,y)=(22,22)( x , y ) = \left( \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right) . sin(9π4)=22cos(9π4)=22tan(9π4)=1\begin{array} { l } \sin \left( \frac { 9 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } \\\cos \left( \frac { 9 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } \\\tan \left( \frac { 9 \pi } { 4 } \right) = 1\end{array}
C) t=9π4t = \frac { 9 \pi } { 4 } corresponds to the point (x,y)=(22,22)( x , y ) = \left( - \frac { \sqrt { 2 } } { 2 } , - \frac { \sqrt { 2 } } { 2 } \right) . sin(9π4)=22cos(9π4)=22tan(9π4)=1\begin{array} { l } \sin \left( \frac { 9 \pi } { 4 } \right) = - \frac { \sqrt { 2 } } { 2 } \\\cos \left( \frac { 9 \pi } { 4 } \right) = - \frac { \sqrt { 2 } } { 2 } \\\tan \left( \frac { 9 \pi } { 4 } \right) = 1\end{array}
D) t=9π4t = \frac { 9 \pi } { 4 } corresponds to the point (x,y)=(22,22)( x , y ) = \left( - \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right) .​ sin(9π4)=22cos(9π4)=22tan(9π4)=1\begin{array} { l } \sin \left( \frac { 9 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } \\\cos \left( \frac { 9 \pi } { 4 } \right) = - \frac { \sqrt { 2 } } { 2 } \\\tan \left( \frac { 9 \pi } { 4 } \right) = - 1\end{array}
E)Not possible
Question
Find the point (x,y)on the unit circle that corresponds to the real number t.​ t=3πt = 3 \pi

A) t=3πt = 3 \pi corresponds to the point (1,0)( - 1,0 ) .
B) t=3πt = 3 \pi corresponds to the point (0,1)( 0 , - 1 ) .
C) t=3πt = 3 \pi corresponds to the point (0,3)( 0,3 ) .
D) t=3πt = 3 \pi corresponds to the point (3,0)( 3,0 ) .
E) t=3πt = 3 \pi corresponds to the point (1,1)( - 1 , - 1 ) .
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​ sinπ6\sin \frac { \pi } { 6 }

A) sinπ6\sin \frac { \pi } { 6 } \approx - 0.5000
B) sinπ6\sin \frac { \pi } { 6 } \approx 0.6000
C) sinπ6\sin \frac { \pi } { 6 } \approx 0.4000
D) sinπ6\sin \frac { \pi } { 6 } \approx 0.7000
E) sinπ6\sin \frac { \pi } { 6 } \approx 0.5000
Question
Use the value of the trigonometric function to find csc(t)\csc ( - t ) .​ sint=16\sin t = \frac { 1 } { 6 }

A) csc(t)=16\csc ( - t ) = \frac { 1 } { 6 }
B) csc(t)=6\csc ( - t ) = 6
C) csc(t)=16\csc ( - t ) = - \frac { 1 } { 6 }
D) csc(t)=6\csc ( - t ) = - 6
E) csc(t)=\csc ( - t ) = \infty
Question
Use the value of the trigonometric function to find sec(t)\sec ( - t ) .​ cos(t)=16\cos ( - t ) = - \frac { 1 } { 6 }

A) sec(t)=\sec ( - t ) = \infty
B) sec(t)=16\sec ( - t ) = - \frac { 1 } { 6 }
C) sec(t)=6\sec ( - t ) = - 6
D) sec(t)=16\sec ( - t ) = \frac { 1 } { 6 }
E) sec(t)=6\sec ( - t ) = 6
Question
Use the value of the trigonometric function to find cos(πt)\cos ( \pi - t ) .​ cost=56\cos t = \frac { 5 } { 6 }

A) cos(πt)=56\cos ( \pi - t ) = \frac { 5 } { 6 }
B) cos(πt)=56\cos ( \pi - t ) = - \frac { 5 } { 6 }
C) cos(πt)=65\cos ( \pi - t ) = \frac { 6 } { 5 }
D) cos(πt)=\cos ( \pi - t ) = \infty
E) cos(πt)=65\cos ( \pi - t ) = - \frac { 6 } { 5 }
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​ cotπ7\cot \frac { \pi } { 7 }

A) cotπ72.0765\cot \frac { \pi } { 7 } \approx 2.0765
B) cotπ71.9765\cot \frac { \pi } { 7 } \approx 1.9765
C) cotπ72.2765\cot \frac { \pi } { 7 } \approx 2.2765
D) cotπ72.0765\cot \frac { \pi } { 7 } \approx - 2.0765
E) cotπ72.1765\cot \frac { \pi } { 7 } \approx 2.1765
Question
Use the value of the trigonometric function to find sint\sin t .​ sin(t)=310\sin ( - t ) = \frac { 3 } { 10 }

A) sint=103\sin t = \frac { 10 } { 3 }
B) sint=310\sin t = \frac { 3 } { 10 }
C) sint=\sin t = \infty
D) sint=310\sin t = - \frac { 3 } { 10 }
E) sint=103\sin t = - \frac { 10 } { 3 }
Question
Use the value of the trigonometric function to find sin(πt)\sin ( \pi - t ) .​ sint=67\sin t = \frac { 6 } { 7 }

A) sin(πt)=67\sin ( \pi - t ) = \frac { 6 } { 7 }
B) sin(πt)=67\sin ( \pi - t ) = - \frac { 6 } { 7 }
C) sin(πt)=76\sin ( \pi - t ) = - \frac { 7 } { 6 }
D) sin(πt)=\sin ( \pi - t ) = \infty
E) sin(πt)=76\sin ( \pi - t ) = \frac { 7 } { 6 }
Question
Evaluate the trigonometric function using its period as an aid.​ cos23π4\cos \frac { 23 \pi } { 4 }

A) cos23π4=22\cos \frac { 23 \pi } { 4 } = - \frac { \sqrt { 2 } } { 2 }
B) cos23π4=2\cos \frac { 23 \pi } { 4 } = - \sqrt { 2 }
C) cos23π4=2\cos \frac { 23 \pi } { 4 } = \sqrt { 2 }
D) cos23π4=22\cos \frac { 23 \pi } { 4 } = \frac { \sqrt { 2 } } { 2 }
E) cos23π4=\cos \frac { 23 \pi } { 4 } = \infty
Question
Find the value of given trigonometric function.Round your answer to four decimal places..​ csc2π3\csc \frac { 2 \pi } { 3 }

A) csc2π31.1547\csc \frac { 2 \pi } { 3 } \approx 1.1547
B) csc2π31.2547\csc \frac { 2 \pi } { 3 } \approx 1.2547
C) csc2π31.1547\csc \frac { 2 \pi } { 3 } \approx - 1.1547
D) csc2π31.0547\csc \frac { 2 \pi } { 3 } \approx 1.0547
E) csc2π31.3547\csc \frac { 2 \pi } { 3 } \approx 1.3547
Question
Use the value of the trigonometric function to find cos(t)\cos ( - t ) .​ cost=38\cos t = - \frac { 3 } { 8 }

A) cos(t)=83\cos ( - t ) = \frac { 8 } { 3 }
B) cos(t)=38\cos ( - t ) = \frac { 3 } { 8 }
C) cos(t)=38\cos ( - t ) = - \frac { 3 } { 8 }
D) cos(t)=83\cos ( - t ) = - \frac { 8 } { 3 }
E) cos(t)=\cos ( - t ) = \infty
Question
Use the value of the trigonometric function to find sec(t)\sec ( - t ) .​ cost=34\cos t = - \frac { 3 } { 4 }

A) sec(t)=43\sec ( - t ) = \frac { 4 } { 3 }
B) sec(t)=34\sec ( - t ) = - \frac { 3 } { 4 }
C) sec(t)=43\sec ( - t ) = - \frac { 4 } { 3 }
D) sec(t)=\sec ( - t ) = \infty
E) sec(t)=34\sec ( - t ) = \frac { 3 } { 4 }
Question
Use the value of the trigonometric function to find the sin(t)\sin ( - t ) .​ sint=16\sin t = \frac { 1 } { 6 }

A) sin(t)=16\sin ( - t ) = - \frac { 1 } { 6 }
B) sin(t)=6\sin ( - t ) = - 6
C) sin(t)=6\sin ( - t ) = 6
D) sin(t)=\sin ( - t ) = \infty
E) sin(t)=16\sin ( - t ) = \frac { 1 } { 6 }
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​ cos(2.5)\cos ( - 2.5 )

A) cos(2.5)0.7011\cos ( - 2.5 ) \approx - 0.7011
B) cos(2.5)0.8011\cos ( - 2.5 ) \approx 0.8011
C) cos(2.5)0.8011\cos ( - 2.5 ) \approx - 0.8011
D) cos(2.5)0.9011\cos ( - 2.5 ) \approx - 0.9011
E) cos(2.5)0.6011\cos ( - 2.5 ) \approx - 0.6011
Question
Use the value of the trigonometric function to find sin(t+π)\sin ( t + \pi ) .​ sint=78\sin t = \frac { 7 } { 8 }

A) sin(t+π)=87\sin ( t + \pi ) = - \frac { 8 } { 7 }
B) sin(t+π)=87\sin ( t + \pi ) = \frac { 8 } { 7 }
C) sin(t+π)=78\sin ( t + \pi ) = \frac { 7 } { 8 }
D) sin(t+π)=\sin ( t + \pi ) = \infty
E) sin(t+π)=78\sin ( t + \pi ) = - \frac { 7 } { 8 }
Question
Use the value of the trigonometric function to find cos t\cos~ t .​ cos(t)=14\cos ( - t ) = - \frac { 1 } { 4 }

A) cost=14\cos t = \frac { 1 } { 4 }
B) cost=4\cos t = - 4
C) cost=\cos t = \infty
D) cost=4\cos t = 4
E) cost=14\cos t = - \frac { 1 } { 4 }
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​ cos(1.6)\cos ( - 1.6 )

A) cos(1.6)0.1708\cos ( - 1.6 ) \approx 0.1708
B) cos(1.6)0.0708\cos ( - 1.6 ) \approx 0.0708
C) cos(1.6)0.0292\cos ( - 1.6 ) \approx 0.0292
D) cos(1.6)0.0292\cos ( - 1.6 ) \approx - 0.0292
E) cos(1.6)0.1292\cos ( - 1.6 ) \approx - 0.1292
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​ tanπ8\tan \frac { \pi } { 8 }

A) tanπ8\tan \frac { \pi } { 8 } \approx 0.3142
B) tanπ8\tan \frac { \pi } { 8 } \approx 0.6142
C) tanπ8\tan \frac { \pi } { 8 } \approx - 0.4142
D) tanπ8\tan \frac { \pi } { 8 } \approx 0.4142
E) tanπ8\tan \frac { \pi } { 8 } \approx 0.5142
Question
Use the value of the trigonometric function to find csct\csc t .​ sin(t)=34\sin ( - t ) = \frac { 3 } { 4 }

A) csct=34\csc t = \frac { 3 } { 4 }
B) csct=34\csc t = - \frac { 3 } { 4 }
C) csct=\csc t = \infty
D) csct=43\csc t = \frac { 4 } { 3 }
E) csct=43\csc t = - \frac { 4 } { 3 }
Question
Use the value of the trigonometric function to find cos(t+π)\cos ( t + \pi ) .​ cost=78\cos t = \frac { 7 } { 8 }

A) cos(t+π)=78\cos ( t + \pi ) = \frac { 7 } { 8 }
B) cos(t+π)=87\cos ( t + \pi ) = - \frac { 8 } { 7 }
C) cos(t+π)=\cos ( t + \pi ) = \infty
D) cos(t+π)=87\cos ( t + \pi ) = \frac { 8 } { 7 }
E) cos(t+π)=78\cos ( t + \pi ) = - \frac { 7 } { 8 }
Question
Evaluate the trigonometric function using its period as an aid.​ sin(11π6)\sin \left( \frac { 11 \pi } { 6 } \right)

A) sin(11π6)=12\sin \left( \frac { 11 \pi } { 6 } \right) = - \frac { 1 } { 2 }
B) sin(11π6)=22\sin \left( \frac { 11 \pi } { 6 } \right) = \frac { \sqrt { 2 } } { 2 }
C) sin(11π6)=\sin \left( \frac { 11 \pi } { 6 } \right) = \infty
D) sin(11π6)=12\sin \left( \frac { 11 \pi } { 6 } \right) = \frac { 1 } { 2 }
E) sin(11π6)=22\sin \left( \frac { 11 \pi } { 6 } \right) = - \frac { \sqrt { 2 } } { 2 }
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​ cot(0.9)\cot ( - 0.9 )

A) cot(0.9)0.6936\cot ( - 0.9 ) \approx - 0.6936
B) cot(0.9)0.7936\cot ( - 0.9 ) \approx - 0.7936
C) cot(0.9)0.5936\cot ( - 0.9 ) \approx - 0.5936
D) cot(0.9)0.8936\cot ( - 0.9 ) \approx - 0.8936
E) cot(0.9)0.7936\cot ( - 0.9 ) \approx 0.7936
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​ csc 0.5\csc~ 0.5

A) csc0.52.2858\csc 0.5 \approx 2.2858
B) csc0.52.0858\csc 0.5 \approx - 2.0858
C) csc0.52.0858\csc 0.5 \approx 2.0858
D) csc0.51.9858\csc 0.5 \approx 1.9858
E) csc 0.52.1858\csc~ 0.5 \approx 2.1858
Question
The displacement from equilibrium of an oscillating weight suspended by a spring and subject to the damping effect of friction is given by y(t)=14etcos6ty ( t ) = \frac { 1 } { 4 } e ^ { - t } \cos 6 t ,where y is the displacement (in feet)and t is the time (in seconds).Complete the following table.(Round your answer to four decimal places. ) ​
t11815375y\begin{array} { | c | c | c | c | c | c | } \hline\\ t & 1 & \frac { 1 } { 8 } & \frac { 1 } { 5 } & \frac { 3 } { 7 } & 5 \\\\\hline y & & & & & \\\hline\end{array}

A) t11815375y0.08830.16140.07420.06290.2003\begin{array}{|l|l|l|l|l|l|}\hline \\t&1 & \frac{1}{8} & \frac{1}{5} & \frac{3}{7} & 5\\\\\hline y & 0.0883 & 0.1614 & 0.0742 & 0.0629 & 0.2003\\\hline\end{array}
B) t11815375y0.08830.16140.27420.13710.0003\begin{array} { | c | c | c | c | c | c | } \hline \\t & 1 & \frac { 1 } { 8 } & \frac { 1 } { 5 } & \frac { 3 } { 7 } & 5 \\\\\hline y & 0.0883 & 0.1614 & 0.2742 & - 0.1371 & 0.0003 \\\hline\end{array}
C) t11815375y0.18830.36140.07420.13710.0883\begin{array} { | c | c | c | c | c | c | } \hline \\t & 1 & \frac { 1 } { 8 } & \frac { 1 } { 5 } & \frac { 3 } { 7 } & 5 \\\\\hline y & 0.1883 & 0.3614 & 0.0742 & - 0.1371 & 0.0883 \\\hline\end{array}
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​ sec(22.3)\sec ( - 22.3 )

A) sec(22.3)0.8497\sec ( - 22.3 ) \approx - 0.8497
B) sec(22.3)1.0497\sec ( - 22.3 ) \approx 1.0497
C) sec(22.3)0.9497\sec ( - 22.3 ) \approx - 0.9497
D) sec(22.3)1.1497\sec ( - 22.3 ) \approx - 1.1497
E) sec(22.3)1.0497\sec ( - 22.3 ) \approx - 1.0497
Question
The displacement from equilibrium of an oscillating weight suspended by a spring is given by y(t)=14cos(6t)y ( t ) = \frac { 1 } { 4 } \cos ( 6 t ) ,where y is the displacement (in feet)and t is the time (in seconds).Find the displacements when t=5t = 5 .(Round your answers to two decimal places. )

A) y(5)0.04y ( 5 ) \approx 0.04 foot
B) y(5)0.14y ( 5 ) \approx 0.14 foot
C) y(5)0.44y ( 5 ) \approx 0.44 foot
D) y(5)0.34y ( 5 ) \approx 0.34 foot
E) y(5)0.24y ( 5 ) \approx 0.24 foot
Question
Find the point (x,y)( x , y ) on the unit circle that corresponds to the real number 5π6\frac { 5 \pi } { 6 } .Use your results to evaluate cost\cos t .

A) cost=32\cos t = \frac { \sqrt { 3 } } { 2 }
B) cost=32\cos t = - \frac { \sqrt { 3 } } { 2 }
C) cost=12\cos t = - \frac { 1 } { 2 }
D) cost=1\cos t = - 1
E) cost=1\cos t = 1
Question
The displacement from equilibrium of an oscillating weight suspended by a spring is given by y(t)=14cos6ty ( t ) = \frac { 1 } { 4 } \cos 6 t ,where y is the displacement (in feet)and t is the time (in seconds).Find the displacements when t=12t = \frac { 1 } { 2 } .

A) y(12)0.15y \left( \frac { 1 } { 2 } \right) \approx - 0.15 foot
B) y(12)0.15y \left( \frac { 1 } { 2 } \right) \approx 0.15 foot
C) y(12)0.05y \left( \frac { 1 } { 2 } \right) \approx - 0.05 foot
D) y(12)0.05y \left( \frac { 1 } { 2 } \right) \approx 0.05 foot
E) y(12)0.25y \left( \frac { 1 } { 2 } \right) \approx - 0.25 foot
Question
Find the value of given trigonometric function.Round your answer to four decimal places.​  sec 1.6\text { sec } 1.6

A) sec1.634.1471\sec 1.6 \approx - 34.1471
B) sec1.634.0471\sec 1.6 \approx - 34.0471
C) sec1.634.2471\sec 1.6 \approx - 34.2471
D) sec1.634.3471\sec 1.6 \approx - 34.3471
E) sec1.634.2471\sec 1.6 \approx 34.2471
Question
Find the point (x,y)( x , y ) on the unit circle that corresponds to the real number t=5π4t = \frac { 5 \pi } { 4 } .Use your results to evaluate tant\tan t .

A) tant=22\tan t = \frac { \sqrt { 2 } } { 2 }
B) tant=0\tan t = 0
C) tant=22\tan t = - \frac { \sqrt { 2 } } { 2 }
D) tant=1\tan t = 1
E) tant= undefined \tan t = \text { undefined }
Question
The displacement from equilibrium of an oscillating weight suspended by a spring is given by y(t)=3cos10ty ( t ) = 3 \cos 10 t ,where y is the displacement in centimeters and t is the time in seconds.Find the displacement when t=0.65t = 0.65 ,rounding answer to four decimal places.

A)-3.7018 cm
B)-6.4350 cm
C)23.8825 cm
D)2.9298 cm
E)-1.6362 cm
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 24: Trigonometric Functions The Unit Circle
1
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=25π3t = \frac { 25 \pi } { 3 }

A) t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=12cos(25π3)=32tan(25π3)=3\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = - \frac { 1 } { 2 } \\\cos \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 } \\\tan \left( \frac { 25 \pi } { 3 } \right) = - \sqrt { 3 }\end{array}
B) t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=32cos(25π3)=12tan(25π3)=3\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 } \\\cos \left( \frac { 25 \pi } { 3 } \right) = \frac { 1 } { 2 } \\\tan \left( \frac { 25 \pi } { 3 } \right) = \sqrt { 3 }\end{array}
C) t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( - \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=12cos(25π3)=32tan(25π3)=33\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = - \frac { 1 } { 2 } \\\\\cos \left( \frac { 25 \pi } { 3 } \right) = - \frac { \sqrt { 3 } } { 2 } \\\\\tan \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 3 }\end{array}
D) t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=12cos(25π3)=32tan(25π3)=33\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = - \frac { 1 } { 2 } \\\\\cos \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 } \\\\\tan \left( \frac { 25 \pi } { 3 } \right) = - \frac { \sqrt { 3 } } { 3 }\end{array}
E)Not possible
t=25π3t = \frac { 25 \pi } { 3 } corresponds to the point (x,y)=(12,32)( x , y ) = \left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) . sin(25π3)=32cos(25π3)=12tan(25π3)=3\begin{array} { l } \sin \left( \frac { 25 \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 } \\\cos \left( \frac { 25 \pi } { 3 } \right) = \frac { 1 } { 2 } \\\tan \left( \frac { 25 \pi } { 3 } \right) = \sqrt { 3 }\end{array}
2
Find the point (x,y)on the unit circle that corresponds to the real number t.​ t=10π3t = \frac { 10 \pi } { 3 }

A) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
B) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32)\left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
C) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
D) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32)\left( - \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
E) t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32)\left( - \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) .
t=10π3t = \frac { 10 \pi } { 3 } corresponds to the point (12,32)\left( - \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
3
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=3π2t = \frac { 3 \pi } { 2 }

A) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(3π2)=0cos(3π2)=1tan(3π2)=0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
B) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) .​ sin(3π2)=1cos(3π2)=0tan(3π2) is undefined.\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0\\\\\tan \left( \frac { 3 \pi } { 2 } \right)~ is~ undefined.\end{array}
C) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,0)( x , y ) = ( 0,0 ) .​ sin(3π2)=0cos(3π2)=0tan(3π2)=0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
D) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) .​ sin(3π2)=1cos(3π2)=0tan(3π2)=0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
E)Not possible
t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) .​ sin(3π2)=1cos(3π2)=0tan(3π2) is undefined.\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0\\\\\tan \left( \frac { 3 \pi } { 2 } \right)~ is~ undefined.\end{array}
4
Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​  <strong>Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​   ​ a =  \frac { 15 } { 17 }  ,b =  \frac { 8 } { 17 }  ​</strong> A)sin t =  \frac { 8 } { 17 }  cos t =  \frac { 8 } { 15 }  Tan t =  \frac { 15 } { 17 }  B)​sin t =  \frac { 15 } { 17 }  cos t =  \frac { 8 } { 17 }  Tan t =  \frac { 8 } { 15 }  C)​sin t =  \frac { 17 } { 15 }  cos t =  \frac { 17 } { 8 }  Tan t =  \frac { 15 } { 8 }  D)sin t =  \frac { 8 } { 15 }  cos t =  \frac { 15 } { 17 }  Tan t =  \frac { 8 } { 17 }  E)​sin t =  \frac { 8 } { 17 }  cos t =  \frac { 15 } { 17 }  Tan t =  \frac { 8 } { 15 }   ​ a = 1517\frac { 15 } { 17 } ,b = 817\frac { 8 } { 17 }

A)sin t = 817\frac { 8 } { 17 } cos t = 815\frac { 8 } { 15 }
Tan t = 1517\frac { 15 } { 17 }
B)​sin t = 1517\frac { 15 } { 17 } cos t = 817\frac { 8 } { 17 }
Tan t = 815\frac { 8 } { 15 }
C)​sin t = 1715\frac { 17 } { 15 } cos t = 178\frac { 17 } { 8 }
Tan t = 158\frac { 15 } { 8 }
D)sin t = 815\frac { 8 } { 15 } cos t = 1517\frac { 15 } { 17 }
Tan t = 817\frac { 8 } { 17 }
E)​sin t = 817\frac { 8 } { 17 } cos t = 1517\frac { 15 } { 17 }
Tan t = 815\frac { 8 } { 15 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
5
Find the point (x,y)on the unit circle that corresponds to the real number t.(Round your answer to one decimal place. )​ t=π2t = \frac { \pi } { 2 }

A) t=π2t = \frac { \pi } { 2 } corresponds to the point (0.0,1.0)( 0.0 , - 1.0 ) .
B) t=π2t = \frac { \pi } { 2 } corresponds to the point (0.0,1.0)( - 0.0 , - 1.0 ) .
C) t=π2t = \frac { \pi } { 2 } corresponds to the point (0.0,1.0)( 0.0,1.0 ) .
D) t=π2t = \frac { \pi } { 2 } corresponds to the point (1.0,0.0)( 1.0 , - 0.0 ) .
E) t=π2t = \frac { \pi } { 2 } corresponds to the point (1.0,0.0)( 1.0,0.0 ) .
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
6
Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​  <strong>Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​   ​  a = \frac { 5 } { 13 } , b = \frac { 12 } { 13 }  ​</strong> A)​  \begin{array} { l } \sin t = - \frac { 12 } { 13 } \\\\ \cos t = \frac { 5 } { 13 } \\\\ \tan t = \frac { 12 } { 5 } \end{array}  ​ B)​  \begin{array} { l } \sin t = \frac { 13 } { 5 } \\\\ \cos t = \frac { 13 } { 12 } \\\\ \tan t = \frac { 5 } { 12 } \end{array}  ​ C)  \begin{array} { l } \sin t = \frac { 12 } { 13 } \\\\ \cos t = \frac { 12 } { 5 } \\\\ \tan t = \frac { 5 } { 13 } \end{array}  ​ D)​  \begin{array} { l } \sin t = \frac { 12 } { 5 } \\\\ \cos t = \frac { 5 } { 13 } \\\\ \tan t = \frac { 12 } { 13 } \end{array}  ​ E)​  \begin{array} { l } \sin t = - \frac { 12 } { 13 } \\ \cos t = \frac { 5 } { 13 } \\ \tan t = - \frac { 12 } { 5 } \end{array}  ​  a=513,b=1213a = \frac { 5 } { 13 } , b = \frac { 12 } { 13 }

A)​ sint=1213cost=513tant=125\begin{array} { l } \sin t = - \frac { 12 } { 13 } \\\\\cos t = \frac { 5 } { 13 } \\\\\tan t = \frac { 12 } { 5 }\end{array}
B)​ sint=135cost=1312tant=512\begin{array} { l } \sin t = \frac { 13 } { 5 } \\\\\cos t = \frac { 13 } { 12 } \\\\\tan t = \frac { 5 } { 12 }\end{array}
C) sint=1213cost=125tant=513\begin{array} { l } \sin t = \frac { 12 } { 13 } \\\\\cos t = \frac { 12 } { 5 } \\\\\tan t = \frac { 5 } { 13 }\end{array}
D)​ sint=125cost=513tant=1213\begin{array} { l } \sin t = \frac { 12 } { 5 } \\\\\cos t = \frac { 5 } { 13 } \\\\\tan t = \frac { 12 } { 13 }\end{array}
E)​ sint=1213cost=513tant=125\begin{array} { l } \sin t = - \frac { 12 } { 13 } \\\cos t = \frac { 5 } { 13 } \\\tan t = - \frac { 12 } { 5 }\end{array}
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate (if possible)the sine,cosec,and tangent of the real number.​ t=8πt = - 8 \pi

A) t=8πt = - 8 \pi corresponds to the point (x,y)=(1,0)( x , y ) = ( 1,0 ) . sin(8π)=0csc(8π) is undefined tan(8π)=0\begin{array} { l } \sin ( - 8 \pi ) = 0 \\\csc ( - 8 \pi ) \text { is undefined } \\\tan ( - 8 \pi ) = 0\end{array}
B) t=8πt = - 8 \pi corresponds to the point (x,y)=(0,1)( x , y ) = ( 0,1 ) . sin(8π)=0csc(8π)=0tan(8π) is undefined \begin{array} { l } \sin ( - 8 \pi ) = 0 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
C) t=8πt = - 8 \pi corresponds to the point (x,y)=(1,0)( x , y ) = ( 1,0 ) . sin(8π)=1csc(8π)=0tan(8π) is undefined \begin{array} { l } \sin ( - 8 \pi ) = 1 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
D) t=8πt = - 8 \pi corresponds to the point (x,y)=(0,1)( x , y ) = ( 0,1 ) . sin(8π)=1csc(8π)=0tan(8π) is undefined \begin{array} { l } \sin ( - 8 \pi ) = 1 \\\csc ( - 8 \pi ) = 0 \\\tan ( - 8 \pi ) \text { is undefined }\end{array}
E)Not possible
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=π2t = - \frac { \pi } { 2 }

A) t=π2t = - \frac { \pi } { 2 } corresponds to the point (x,y)=(0,0)( x , y ) = ( 0,0 ) . sin(π2)=0cos(π2)=0tan(π2)=0\begin{array} { l } \sin \left( - \frac { \pi } { 2 } \right) = 0 \\\cos \left( - \frac { \pi } { 2 } \right) = 0 \\\tan \left( - \frac { \pi } { 2 } \right) = 0\end{array}
B) t=π2t = - \frac { \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(π2)=1cos(π2)=0tan(π2)=0\begin{array} { l } \sin \left( - \frac { \pi } { 2 } \right) = - 1 \\\cos \left( - \frac { \pi } { 2 } \right) = 0 \\\tan \left( - \frac { \pi } { 2 } \right) = 0\end{array}
C) t=π2t = - \frac { \pi } { 2 } corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) . sin(π2)=1cos(π2)=0tan(π2) is undefined \begin{array} { l } \sin \left( - \frac { \pi } { 2 } \right) = - 1 \\\cos \left( - \frac { \pi } { 2 } \right) = 0 \\\tan \left( - \frac { \pi } { 2 } \right) \text { is undefined }\end{array}
D) t=π2t = - \frac { \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(π2)=0cos(π2)=1tan(π2)=0\begin{array} { l } \sin \left( - \frac { \pi } { 2 } \right) = 0 \\\cos \left( - \frac { \pi } { 2 } \right) = - 1 \\\tan \left( - \frac { \pi } { 2 } \right) = 0\end{array}
E)Not possible
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
9
Find the point (x,y)on the unit circle that corresponds to the real number t.​ t=5π6t = \frac { 5 \pi } { 6 }

A) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (12,32)\left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
B) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
C) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
D) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12)\left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
E) t=5π6t = \frac { 5 \pi } { 6 } corresponds to the point (32,12)\left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=7πt = - 7 \pi

A) t=7πt = - 7 \pi corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) . sin(7π)=1cos(7π)=0tan(7π) is undefined.\begin{array} { l } \sin ( - 7 \pi ) = - 1 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi ) ~is~ undefined.\end{array}
B) t=7πt = - 7 \pi corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(7π)=1cos(7π)=0tan(7π) is undefined.\begin{array} { l } \sin ( - 7 \pi ) = - 1 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi) ~is~ undefined.\end{array}
C) t=7πt = - 7 \pi corresponds to the point (x,y)=(0,1)( x , y ) = ( 0 , - 1 ) . sin(7π)=0cos(7π)=0tan(7π) is undefined.\begin{array} { l } \sin ( - 7 \pi ) = 0 \\\cos ( - 7 \pi ) = 0\\\tan ( - 7 \pi ) ~is~ undefined.\end{array}
D) t=7πt = - 7 \pi corresponds to the point (x,y)=(1,0)( x , y ) = ( - 1,0 ) . sin(7π)=0cos(7π)=1tan(7π)=0\begin{array} { l } \sin ( - 7 \pi ) = 0 \\\cos ( - 7 \pi ) = - 1 \\\tan ( - 7 \pi ) = 0\end{array}
E)Not possible
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
11
Evaluate the trigonometric function using its period as an aid. ​
Cos 8π

A)cos 8π = -8
B)cos 8π = 0
C)cos 8π = 8
D)cos 8π = ∞
E)cos 8π = 1
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate the trigonometric function using its period as an aid.​ sin3π4\sin \frac { 3 \pi } { 4 }

A) sin3π4=\sin \frac { 3 \pi } { 4 } = \infty
B) sin3π4=2\sin \frac { 3 \pi } { 4 } = - \sqrt { 2 }
C) sin3π4=22\sin \frac { 3 \pi } { 4 } = - \frac { \sqrt { 2 } } { 2 }
D) sin3π4=2\sin \frac { 3 \pi } { 4 } = \sqrt { 2 }
E) sin3π4=22\sin \frac { 3 \pi } { 4 } = \frac { \sqrt { 2 } } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
13
Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​  <strong>Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​   ​  a = \frac { 12 } { 13 } , b = \frac { 5 } { 13 }  ​</strong> A)​  \begin{array} { l } \sin t = - \frac { 5 } { 13 } \\\\ \cos t = - \frac { 12 } { 13 } \\\\ \tan t = - \frac { 5 } { 12 } \end{array}  ​ B)​  \begin{array} { l } \sin t = \frac { 5 } { 13 } \\\\ \cos t = \frac { 12 } { 13 } \\\\ \tan t = \frac { 5 } { 12 } \end{array}  ​ C)  \begin{array} { l } \sin t = \frac { 5 } { 13 } \\\\\ \cos t = - \frac { 12 } { 13 } \\\\ \tan t = - \frac { 5 } { 12 } \end{array}  ​ D)​  \begin{array} { l } \sin t = \frac { 5 } { 12 } \\\\ \cos t = \frac { 5 } { 13 } \\\\ \tan t = \frac { 12 } { 13 } \end{array}  ​ E)​  \begin{array} { l } \sin t = \frac { 5 } { 13 } \\ \cos t = - \frac { 12 } { 13 } \\ \tan t = \frac { 5 } { 12 } \end{array}  ​  a=1213,b=513a = \frac { 12 } { 13 } , b = \frac { 5 } { 13 }

A)​ sint=513cost=1213tant=512\begin{array} { l } \sin t = - \frac { 5 } { 13 } \\\\\cos t = - \frac { 12 } { 13 } \\\\\tan t = - \frac { 5 } { 12 }\end{array}
B)​ sint=513cost=1213tant=512\begin{array} { l } \sin t = \frac { 5 } { 13 } \\\\\cos t = \frac { 12 } { 13 } \\\\\tan t = \frac { 5 } { 12 }\end{array}
C) sint=513cost=1213tant=512\begin{array} { l } \sin t = \frac { 5 } { 13 } \\\\\\cos t = - \frac { 12 } { 13 } \\\\\tan t = - \frac { 5 } { 12 }\end{array}
D)​ sint=512cost=513tant=1213\begin{array} { l } \sin t = \frac { 5 } { 12 } \\\\\cos t = \frac { 5 } { 13 } \\\\\tan t = \frac { 12 } { 13 }\end{array}
E)​ sint=513cost=1213tant=512\begin{array} { l } \sin t = \frac { 5 } { 13 } \\\cos t = - \frac { 12 } { 13 } \\\tan t = \frac { 5 } { 12 }\end{array}
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
14
Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​  <strong>Find the exact values of the three trigonometric functions sine,cosine,tangent of the real number t.​   ​  a = \frac { 4 } { 5 } , b = \frac { 3 } { 5 }  ​</strong> A)​  \begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\ \cos t = - \frac { 4 } { 5 } \\\\ \tan t = - \frac { 3 } { 4 } \end{array}  ​ B)​  \begin{array} { l } \sin t = \frac { 3 } { 5 } \\ \cos t = - \frac { 3 } { 4 } \\ \tan t = \frac { 4 } { 5 } \end{array}  ​ C)  \begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\ \cos t = - \frac { 3 } { 4 } \\\\ \tan t = \frac { 4 } { 5 } \end{array}  ​ D)​  \begin{array} { l } \sin t = \frac { 3 } { 4 } \\\\ \cos t = \frac { 3 } { 5 } \\\\ \tan t = \frac { 4 } { 5 } \end{array}  ​ E)​  \begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\ \cos t = - \frac { 4 } { 5 } \\\\ \tan t = \frac { 3 } { 4 } \end{array}  ​  a=45,b=35a = \frac { 4 } { 5 } , b = \frac { 3 } { 5 }

A)​ sint=35cost=45tant=34\begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\\cos t = - \frac { 4 } { 5 } \\\\\tan t = - \frac { 3 } { 4 }\end{array}
B)​ sint=35cost=34tant=45\begin{array} { l } \sin t = \frac { 3 } { 5 } \\\cos t = - \frac { 3 } { 4 } \\\tan t = \frac { 4 } { 5 }\end{array}
C) sint=35cost=34tant=45\begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\\cos t = - \frac { 3 } { 4 } \\\\\tan t = \frac { 4 } { 5 }\end{array}
D)​ sint=34cost=35tant=45\begin{array} { l } \sin t = \frac { 3 } { 4 } \\\\\cos t = \frac { 3 } { 5 } \\\\\tan t = \frac { 4 } { 5 }\end{array}
E)​ sint=35cost=45tant=34\begin{array} { l } \sin t = - \frac { 3 } { 5 } \\\\\cos t = - \frac { 4 } { 5 } \\\\\tan t = \frac { 3 } { 4 }\end{array}
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=3π2t = - \frac { 3 \pi } { 2 }

A) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,0)( x , y ) = ( 0,0 ) . sin(3π2)=0cos(3π2)=0tan(3π2)=0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
B) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( 1,0 ) . sin(3π2)=1cos(3π2)=0tan(3π2)=0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
C) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(0,1)( x , y ) = ( 0,1 ) . sin(3π2)=1cos(3π2)=0tan(3π2) is undefined.\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\\\cos \left( - \frac { 3 \pi } { 2 } \right) = 0\\\\\tan \left( - \frac { 3 \pi } { 2 } \right)~ is~ undefined.\end{array}
D) t=3π2t = - \frac { 3 \pi } { 2 } corresponds to the point (x,y)=(1,0)( x , y ) = ( 1,0 ) .​ sin(3π2)=0cos(3π2)=1tan(3π2)=0\begin{array} { l } \sin \left( - \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( - \frac { 3 \pi } { 2 } \right) = 1 \\\\\tan \left( - \frac { 3 \pi } { 2 } \right) = 0\end{array}
E)Not possible
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
16
Evaluate the trigonometric function using its period as an aid.​ sin4π\sin 4 \pi

A) sin4π=4\sin 4 \pi = 4
B) sin4π=1\sin 4 \pi = - 1
C) sin4π=4\sin 4 \pi = - 4
D) sin4π=0\sin 4 \pi = 0
E) sin4π=\sin 4 \pi = \infty
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
17
Find the point (x,y)on the unit circle that corresponds to the real number t.​ t=19π3t = \frac { 19 \pi } { 3 }

A) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12)\left( \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right) .
B) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12)\left( \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
C) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (12,32)\left( \frac { 1 } { 2 } , - \frac { \sqrt { 3 } } { 2 } \right) .
D) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (12,32)\left( \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right) .
E) t=19π3t = \frac { 19 \pi } { 3 } corresponds to the point (32,12)\left( - \frac { \sqrt { 3 } } { 2 } , - \frac { 1 } { 2 } \right) .
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
18
Evaluate the trigonometric function using its period as an aid.​ cos5π3\cos \frac { 5 \pi } { 3 }

A) cos5π3=\cos \frac { 5 \pi } { 3 } = \infty
B) cos5π3=12\cos \frac { 5 \pi } { 3 } = - \frac { 1 } { 2 }
C) cos5π3=2\cos \frac { 5 \pi } { 3 } = 2
D) cos5π3=2\cos \frac { 5 \pi } { 3 } = - 2
E) cos5π3=12\cos \frac { 5 \pi } { 3 } = \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
19
Evaluate (if possible)the sine,cosine,and tangent of the real number.​ t=9π4t = \frac { 9 \pi } { 4 }

A) t=9π4t = \frac { 9 \pi } { 4 } corresponds to the point (x,y)=(22,22)( x , y ) = \left( \frac { \sqrt { 2 } } { 2 } , - \frac { \sqrt { 2 } } { 2 } \right) . sin(9π4)=22cos(9π4)=22tan(9π4)=1\begin{array} { l } \sin \left( \frac { 9 \pi } { 4 } \right) = - \frac { \sqrt { 2 } } { 2 } \\\cos \left( \frac { 9 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } \\\tan \left( \frac { 9 \pi } { 4 } \right) = - 1\end{array}
B) t=9π4t = \frac { 9 \pi } { 4 } corresponds to the point (x,y)=(22,22)( x , y ) = \left( \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right) . sin(9π4)=22cos(9π4)=22tan(9π4)=1\begin{array} { l } \sin \left( \frac { 9 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } \\\cos \left( \frac { 9 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } \\\tan \left( \frac { 9 \pi } { 4 } \right) = 1\end{array}
C) t=9π4t = \frac { 9 \pi } { 4 } corresponds to the point (x,y)=(22,22)( x , y ) = \left( - \frac { \sqrt { 2 } } { 2 } , - \frac { \sqrt { 2 } } { 2 } \right) . sin(9π4)=22cos(9π4)=22tan(9π4)=1\begin{array} { l } \sin \left( \frac { 9 \pi } { 4 } \right) = - \frac { \sqrt { 2 } } { 2 } \\\cos \left( \frac { 9 \pi } { 4 } \right) = - \frac { \sqrt { 2 } } { 2 } \\\tan \left( \frac { 9 \pi } { 4 } \right) = 1\end{array}
D) t=9π4t = \frac { 9 \pi } { 4 } corresponds to the point (x,y)=(22,22)( x , y ) = \left( - \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right) .​ sin(9π4)=22cos(9π4)=22tan(9π4)=1\begin{array} { l } \sin \left( \frac { 9 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } \\\cos \left( \frac { 9 \pi } { 4 } \right) = - \frac { \sqrt { 2 } } { 2 } \\\tan \left( \frac { 9 \pi } { 4 } \right) = - 1\end{array}
E)Not possible
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
20
Find the point (x,y)on the unit circle that corresponds to the real number t.​ t=3πt = 3 \pi

A) t=3πt = 3 \pi corresponds to the point (1,0)( - 1,0 ) .
B) t=3πt = 3 \pi corresponds to the point (0,1)( 0 , - 1 ) .
C) t=3πt = 3 \pi corresponds to the point (0,3)( 0,3 ) .
D) t=3πt = 3 \pi corresponds to the point (3,0)( 3,0 ) .
E) t=3πt = 3 \pi corresponds to the point (1,1)( - 1 , - 1 ) .
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
21
Find the value of given trigonometric function.Round your answer to four decimal places.​ sinπ6\sin \frac { \pi } { 6 }

A) sinπ6\sin \frac { \pi } { 6 } \approx - 0.5000
B) sinπ6\sin \frac { \pi } { 6 } \approx 0.6000
C) sinπ6\sin \frac { \pi } { 6 } \approx 0.4000
D) sinπ6\sin \frac { \pi } { 6 } \approx 0.7000
E) sinπ6\sin \frac { \pi } { 6 } \approx 0.5000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
22
Use the value of the trigonometric function to find csc(t)\csc ( - t ) .​ sint=16\sin t = \frac { 1 } { 6 }

A) csc(t)=16\csc ( - t ) = \frac { 1 } { 6 }
B) csc(t)=6\csc ( - t ) = 6
C) csc(t)=16\csc ( - t ) = - \frac { 1 } { 6 }
D) csc(t)=6\csc ( - t ) = - 6
E) csc(t)=\csc ( - t ) = \infty
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
23
Use the value of the trigonometric function to find sec(t)\sec ( - t ) .​ cos(t)=16\cos ( - t ) = - \frac { 1 } { 6 }

A) sec(t)=\sec ( - t ) = \infty
B) sec(t)=16\sec ( - t ) = - \frac { 1 } { 6 }
C) sec(t)=6\sec ( - t ) = - 6
D) sec(t)=16\sec ( - t ) = \frac { 1 } { 6 }
E) sec(t)=6\sec ( - t ) = 6
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
24
Use the value of the trigonometric function to find cos(πt)\cos ( \pi - t ) .​ cost=56\cos t = \frac { 5 } { 6 }

A) cos(πt)=56\cos ( \pi - t ) = \frac { 5 } { 6 }
B) cos(πt)=56\cos ( \pi - t ) = - \frac { 5 } { 6 }
C) cos(πt)=65\cos ( \pi - t ) = \frac { 6 } { 5 }
D) cos(πt)=\cos ( \pi - t ) = \infty
E) cos(πt)=65\cos ( \pi - t ) = - \frac { 6 } { 5 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
25
Find the value of given trigonometric function.Round your answer to four decimal places.​ cotπ7\cot \frac { \pi } { 7 }

A) cotπ72.0765\cot \frac { \pi } { 7 } \approx 2.0765
B) cotπ71.9765\cot \frac { \pi } { 7 } \approx 1.9765
C) cotπ72.2765\cot \frac { \pi } { 7 } \approx 2.2765
D) cotπ72.0765\cot \frac { \pi } { 7 } \approx - 2.0765
E) cotπ72.1765\cot \frac { \pi } { 7 } \approx 2.1765
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
26
Use the value of the trigonometric function to find sint\sin t .​ sin(t)=310\sin ( - t ) = \frac { 3 } { 10 }

A) sint=103\sin t = \frac { 10 } { 3 }
B) sint=310\sin t = \frac { 3 } { 10 }
C) sint=\sin t = \infty
D) sint=310\sin t = - \frac { 3 } { 10 }
E) sint=103\sin t = - \frac { 10 } { 3 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
27
Use the value of the trigonometric function to find sin(πt)\sin ( \pi - t ) .​ sint=67\sin t = \frac { 6 } { 7 }

A) sin(πt)=67\sin ( \pi - t ) = \frac { 6 } { 7 }
B) sin(πt)=67\sin ( \pi - t ) = - \frac { 6 } { 7 }
C) sin(πt)=76\sin ( \pi - t ) = - \frac { 7 } { 6 }
D) sin(πt)=\sin ( \pi - t ) = \infty
E) sin(πt)=76\sin ( \pi - t ) = \frac { 7 } { 6 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
28
Evaluate the trigonometric function using its period as an aid.​ cos23π4\cos \frac { 23 \pi } { 4 }

A) cos23π4=22\cos \frac { 23 \pi } { 4 } = - \frac { \sqrt { 2 } } { 2 }
B) cos23π4=2\cos \frac { 23 \pi } { 4 } = - \sqrt { 2 }
C) cos23π4=2\cos \frac { 23 \pi } { 4 } = \sqrt { 2 }
D) cos23π4=22\cos \frac { 23 \pi } { 4 } = \frac { \sqrt { 2 } } { 2 }
E) cos23π4=\cos \frac { 23 \pi } { 4 } = \infty
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
29
Find the value of given trigonometric function.Round your answer to four decimal places..​ csc2π3\csc \frac { 2 \pi } { 3 }

A) csc2π31.1547\csc \frac { 2 \pi } { 3 } \approx 1.1547
B) csc2π31.2547\csc \frac { 2 \pi } { 3 } \approx 1.2547
C) csc2π31.1547\csc \frac { 2 \pi } { 3 } \approx - 1.1547
D) csc2π31.0547\csc \frac { 2 \pi } { 3 } \approx 1.0547
E) csc2π31.3547\csc \frac { 2 \pi } { 3 } \approx 1.3547
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
30
Use the value of the trigonometric function to find cos(t)\cos ( - t ) .​ cost=38\cos t = - \frac { 3 } { 8 }

A) cos(t)=83\cos ( - t ) = \frac { 8 } { 3 }
B) cos(t)=38\cos ( - t ) = \frac { 3 } { 8 }
C) cos(t)=38\cos ( - t ) = - \frac { 3 } { 8 }
D) cos(t)=83\cos ( - t ) = - \frac { 8 } { 3 }
E) cos(t)=\cos ( - t ) = \infty
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
31
Use the value of the trigonometric function to find sec(t)\sec ( - t ) .​ cost=34\cos t = - \frac { 3 } { 4 }

A) sec(t)=43\sec ( - t ) = \frac { 4 } { 3 }
B) sec(t)=34\sec ( - t ) = - \frac { 3 } { 4 }
C) sec(t)=43\sec ( - t ) = - \frac { 4 } { 3 }
D) sec(t)=\sec ( - t ) = \infty
E) sec(t)=34\sec ( - t ) = \frac { 3 } { 4 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
32
Use the value of the trigonometric function to find the sin(t)\sin ( - t ) .​ sint=16\sin t = \frac { 1 } { 6 }

A) sin(t)=16\sin ( - t ) = - \frac { 1 } { 6 }
B) sin(t)=6\sin ( - t ) = - 6
C) sin(t)=6\sin ( - t ) = 6
D) sin(t)=\sin ( - t ) = \infty
E) sin(t)=16\sin ( - t ) = \frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
33
Find the value of given trigonometric function.Round your answer to four decimal places.​ cos(2.5)\cos ( - 2.5 )

A) cos(2.5)0.7011\cos ( - 2.5 ) \approx - 0.7011
B) cos(2.5)0.8011\cos ( - 2.5 ) \approx 0.8011
C) cos(2.5)0.8011\cos ( - 2.5 ) \approx - 0.8011
D) cos(2.5)0.9011\cos ( - 2.5 ) \approx - 0.9011
E) cos(2.5)0.6011\cos ( - 2.5 ) \approx - 0.6011
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
34
Use the value of the trigonometric function to find sin(t+π)\sin ( t + \pi ) .​ sint=78\sin t = \frac { 7 } { 8 }

A) sin(t+π)=87\sin ( t + \pi ) = - \frac { 8 } { 7 }
B) sin(t+π)=87\sin ( t + \pi ) = \frac { 8 } { 7 }
C) sin(t+π)=78\sin ( t + \pi ) = \frac { 7 } { 8 }
D) sin(t+π)=\sin ( t + \pi ) = \infty
E) sin(t+π)=78\sin ( t + \pi ) = - \frac { 7 } { 8 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
35
Use the value of the trigonometric function to find cos t\cos~ t .​ cos(t)=14\cos ( - t ) = - \frac { 1 } { 4 }

A) cost=14\cos t = \frac { 1 } { 4 }
B) cost=4\cos t = - 4
C) cost=\cos t = \infty
D) cost=4\cos t = 4
E) cost=14\cos t = - \frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
36
Find the value of given trigonometric function.Round your answer to four decimal places.​ cos(1.6)\cos ( - 1.6 )

A) cos(1.6)0.1708\cos ( - 1.6 ) \approx 0.1708
B) cos(1.6)0.0708\cos ( - 1.6 ) \approx 0.0708
C) cos(1.6)0.0292\cos ( - 1.6 ) \approx 0.0292
D) cos(1.6)0.0292\cos ( - 1.6 ) \approx - 0.0292
E) cos(1.6)0.1292\cos ( - 1.6 ) \approx - 0.1292
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
37
Find the value of given trigonometric function.Round your answer to four decimal places.​ tanπ8\tan \frac { \pi } { 8 }

A) tanπ8\tan \frac { \pi } { 8 } \approx 0.3142
B) tanπ8\tan \frac { \pi } { 8 } \approx 0.6142
C) tanπ8\tan \frac { \pi } { 8 } \approx - 0.4142
D) tanπ8\tan \frac { \pi } { 8 } \approx 0.4142
E) tanπ8\tan \frac { \pi } { 8 } \approx 0.5142
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
38
Use the value of the trigonometric function to find csct\csc t .​ sin(t)=34\sin ( - t ) = \frac { 3 } { 4 }

A) csct=34\csc t = \frac { 3 } { 4 }
B) csct=34\csc t = - \frac { 3 } { 4 }
C) csct=\csc t = \infty
D) csct=43\csc t = \frac { 4 } { 3 }
E) csct=43\csc t = - \frac { 4 } { 3 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
39
Use the value of the trigonometric function to find cos(t+π)\cos ( t + \pi ) .​ cost=78\cos t = \frac { 7 } { 8 }

A) cos(t+π)=78\cos ( t + \pi ) = \frac { 7 } { 8 }
B) cos(t+π)=87\cos ( t + \pi ) = - \frac { 8 } { 7 }
C) cos(t+π)=\cos ( t + \pi ) = \infty
D) cos(t+π)=87\cos ( t + \pi ) = \frac { 8 } { 7 }
E) cos(t+π)=78\cos ( t + \pi ) = - \frac { 7 } { 8 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
40
Evaluate the trigonometric function using its period as an aid.​ sin(11π6)\sin \left( \frac { 11 \pi } { 6 } \right)

A) sin(11π6)=12\sin \left( \frac { 11 \pi } { 6 } \right) = - \frac { 1 } { 2 }
B) sin(11π6)=22\sin \left( \frac { 11 \pi } { 6 } \right) = \frac { \sqrt { 2 } } { 2 }
C) sin(11π6)=\sin \left( \frac { 11 \pi } { 6 } \right) = \infty
D) sin(11π6)=12\sin \left( \frac { 11 \pi } { 6 } \right) = \frac { 1 } { 2 }
E) sin(11π6)=22\sin \left( \frac { 11 \pi } { 6 } \right) = - \frac { \sqrt { 2 } } { 2 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
41
Find the value of given trigonometric function.Round your answer to four decimal places.​ cot(0.9)\cot ( - 0.9 )

A) cot(0.9)0.6936\cot ( - 0.9 ) \approx - 0.6936
B) cot(0.9)0.7936\cot ( - 0.9 ) \approx - 0.7936
C) cot(0.9)0.5936\cot ( - 0.9 ) \approx - 0.5936
D) cot(0.9)0.8936\cot ( - 0.9 ) \approx - 0.8936
E) cot(0.9)0.7936\cot ( - 0.9 ) \approx 0.7936
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
42
Find the value of given trigonometric function.Round your answer to four decimal places.​ csc 0.5\csc~ 0.5

A) csc0.52.2858\csc 0.5 \approx 2.2858
B) csc0.52.0858\csc 0.5 \approx - 2.0858
C) csc0.52.0858\csc 0.5 \approx 2.0858
D) csc0.51.9858\csc 0.5 \approx 1.9858
E) csc 0.52.1858\csc~ 0.5 \approx 2.1858
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
43
The displacement from equilibrium of an oscillating weight suspended by a spring and subject to the damping effect of friction is given by y(t)=14etcos6ty ( t ) = \frac { 1 } { 4 } e ^ { - t } \cos 6 t ,where y is the displacement (in feet)and t is the time (in seconds).Complete the following table.(Round your answer to four decimal places. ) ​
t11815375y\begin{array} { | c | c | c | c | c | c | } \hline\\ t & 1 & \frac { 1 } { 8 } & \frac { 1 } { 5 } & \frac { 3 } { 7 } & 5 \\\\\hline y & & & & & \\\hline\end{array}

A) t11815375y0.08830.16140.07420.06290.2003\begin{array}{|l|l|l|l|l|l|}\hline \\t&1 & \frac{1}{8} & \frac{1}{5} & \frac{3}{7} & 5\\\\\hline y & 0.0883 & 0.1614 & 0.0742 & 0.0629 & 0.2003\\\hline\end{array}
B) t11815375y0.08830.16140.27420.13710.0003\begin{array} { | c | c | c | c | c | c | } \hline \\t & 1 & \frac { 1 } { 8 } & \frac { 1 } { 5 } & \frac { 3 } { 7 } & 5 \\\\\hline y & 0.0883 & 0.1614 & 0.2742 & - 0.1371 & 0.0003 \\\hline\end{array}
C) t11815375y0.18830.36140.07420.13710.0883\begin{array} { | c | c | c | c | c | c | } \hline \\t & 1 & \frac { 1 } { 8 } & \frac { 1 } { 5 } & \frac { 3 } { 7 } & 5 \\\\\hline y & 0.1883 & 0.3614 & 0.0742 & - 0.1371 & 0.0883 \\\hline\end{array}
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
44
Find the value of given trigonometric function.Round your answer to four decimal places.​ sec(22.3)\sec ( - 22.3 )

A) sec(22.3)0.8497\sec ( - 22.3 ) \approx - 0.8497
B) sec(22.3)1.0497\sec ( - 22.3 ) \approx 1.0497
C) sec(22.3)0.9497\sec ( - 22.3 ) \approx - 0.9497
D) sec(22.3)1.1497\sec ( - 22.3 ) \approx - 1.1497
E) sec(22.3)1.0497\sec ( - 22.3 ) \approx - 1.0497
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
45
The displacement from equilibrium of an oscillating weight suspended by a spring is given by y(t)=14cos(6t)y ( t ) = \frac { 1 } { 4 } \cos ( 6 t ) ,where y is the displacement (in feet)and t is the time (in seconds).Find the displacements when t=5t = 5 .(Round your answers to two decimal places. )

A) y(5)0.04y ( 5 ) \approx 0.04 foot
B) y(5)0.14y ( 5 ) \approx 0.14 foot
C) y(5)0.44y ( 5 ) \approx 0.44 foot
D) y(5)0.34y ( 5 ) \approx 0.34 foot
E) y(5)0.24y ( 5 ) \approx 0.24 foot
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
46
Find the point (x,y)( x , y ) on the unit circle that corresponds to the real number 5π6\frac { 5 \pi } { 6 } .Use your results to evaluate cost\cos t .

A) cost=32\cos t = \frac { \sqrt { 3 } } { 2 }
B) cost=32\cos t = - \frac { \sqrt { 3 } } { 2 }
C) cost=12\cos t = - \frac { 1 } { 2 }
D) cost=1\cos t = - 1
E) cost=1\cos t = 1
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
47
The displacement from equilibrium of an oscillating weight suspended by a spring is given by y(t)=14cos6ty ( t ) = \frac { 1 } { 4 } \cos 6 t ,where y is the displacement (in feet)and t is the time (in seconds).Find the displacements when t=12t = \frac { 1 } { 2 } .

A) y(12)0.15y \left( \frac { 1 } { 2 } \right) \approx - 0.15 foot
B) y(12)0.15y \left( \frac { 1 } { 2 } \right) \approx 0.15 foot
C) y(12)0.05y \left( \frac { 1 } { 2 } \right) \approx - 0.05 foot
D) y(12)0.05y \left( \frac { 1 } { 2 } \right) \approx 0.05 foot
E) y(12)0.25y \left( \frac { 1 } { 2 } \right) \approx - 0.25 foot
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
48
Find the value of given trigonometric function.Round your answer to four decimal places.​  sec 1.6\text { sec } 1.6

A) sec1.634.1471\sec 1.6 \approx - 34.1471
B) sec1.634.0471\sec 1.6 \approx - 34.0471
C) sec1.634.2471\sec 1.6 \approx - 34.2471
D) sec1.634.3471\sec 1.6 \approx - 34.3471
E) sec1.634.2471\sec 1.6 \approx 34.2471
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
49
Find the point (x,y)( x , y ) on the unit circle that corresponds to the real number t=5π4t = \frac { 5 \pi } { 4 } .Use your results to evaluate tant\tan t .

A) tant=22\tan t = \frac { \sqrt { 2 } } { 2 }
B) tant=0\tan t = 0
C) tant=22\tan t = - \frac { \sqrt { 2 } } { 2 }
D) tant=1\tan t = 1
E) tant= undefined \tan t = \text { undefined }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
50
The displacement from equilibrium of an oscillating weight suspended by a spring is given by y(t)=3cos10ty ( t ) = 3 \cos 10 t ,where y is the displacement in centimeters and t is the time in seconds.Find the displacement when t=0.65t = 0.65 ,rounding answer to four decimal places.

A)-3.7018 cm
B)-6.4350 cm
C)23.8825 cm
D)2.9298 cm
E)-1.6362 cm
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 50 flashcards in this deck.