Deck 10: Additional Topics in Trigonometry

Full screen (f)
exit full mode
Question
The initial point for the vector is the origin, and θ\theta denotes the angle (measured counterclockwise) from the XX -axis to the vector. The magnitude of V\mathrm { V } is 3030 cm/sec, and θ=120\theta = 120 ^ { \circ } Compute the horizontal and vertical components of the given vector. (Round your answers to two decimal places.)

A) Vx=25.98V _ { x } = 25.98 cm/sec Vy15V _ { y } \approx - 15 cm/sec
B) Vx=15V _ { x } = 15 cm/sec Vy25.98V _ { y } \approx 25.98 cm/sec
C) Vz=15V _ { z } = - 15 cm/sec Vy25.98V _ { y } \approx 25.98 cm/sec
D) Vx=21.21V _ { x } = 21.21 cm/sec Vy21.21V _ { y } \approx 21.21 cm/sec
E) Vx25.98 cm/secVy15 cm/secV _ { x } \approx - 25.98 \mathrm {~cm} / \mathrm { sec } V _ { y } \approx 15 \mathrm {~cm} / \mathrm { sec }
Use Space or
up arrow
down arrow
to flip the card.
Question
On a sheet of paper, graph the parametric equation after eliminating the parameter tt (0t2π( 0 \leq t \leq 2 \pi ). Specify the approximate direction on the curve corresponding to increasing values of tt . x=6sin2t,y=5cos2tx = 6 \sin 2 t , y = 5 \cos 2 t

A) counterclockwise
B) clockwise
Question
Convert the given rectangular coordinates to polar coordinates. Express the answer in such a way that r is nonnegative and 0θ<2π0 \leq \theta < 2 \pi . (5,5)( - 5 , - 5 )

A) (5,5π4)\left( 5 , - \frac { 5 \pi } { 4 } \right)
B) (52,5π4)\left( 5 \sqrt { 2 } , \frac { 5 \pi } { 4 } \right)
C) (5,π4)\left( 5 , \frac { \pi } { 4 } \right)
D) (52,π4)\left( 5 \sqrt { 2 } , \frac { \pi } { 4 } \right)
E) (52,5π4)\left( - 5 \sqrt { 2 } , \frac { 5 \pi } { 4 } \right)
Question
Convert the given rectangular coordinates to polar coordinates. Express the answer in such a way that r is nonnegative and 0θ<2π0 \leq \theta < 2 \pi . (7,0)( 7,0 )

A) (0,7)( 0,7 )
B) (7,0)( 7,0 )
C) (7,3π2)\left( - 7 , \frac { 3 \pi } { 2 } \right)
D) (7,0)( - 7,0 )
E) (7,3π2)\left( 7 , \frac { 3 \pi } { 2 } \right)
Question
Two points P and Q are on opposite sides of a river (see the sketch). From P to another point R on the same side is 340 ft. Angles PRQP R Q and RPQR P Q are found to be 2323 ^ { \circ } and 120120 ^ { \circ } , respectively. Compute the distance from P to Q, across the river. (Round your answer to the nearest foot.)  <strong>Two points P and Q are on opposite sides of a river (see the sketch). From P to another point R on the same side is 340 ft. Angles  P R Q  and  R P Q  are found to be  23 ^ { \circ }  and  120 ^ { \circ }  , respectively. Compute the distance from P to Q, across the river. (Round your answer to the nearest foot.)  </strong> A)  P Q = 221  ft. B)  P Q = 354  ft. C)  P Q = 246  ft. D)  P Q = 524  ft. E)  P Q = 694  ft. <div style=padding-top: 35px>

A) PQ=221P Q = 221 ft.
B) PQ=354P Q = 354 ft.
C) PQ=246P Q = 246 ft.
D) PQ=524P Q = 524 ft.
E) PQ=694P Q = 694 ft.
Question
Determine the graph that reflects the polar equation. r=55cosθr = - 5 - 5 \cos \theta

A)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
An airplane crashes in a lake and is spotted by observers at lighthouses A and B along the coast. Lighthouse B is 1.10 miles due east of lighthouse A. The bearing of the airplane from lighthouse A is S20E\mathrm { S } 20 ^ { \circ } \mathrm { E } ; the bearing of the plane from lighthouse B is S40W\mathrm { S } 40 ^ { \circ } \mathrm { W } . Find the distance from each lighthouse to the crash site.

A) Distance from lighthouse AA : 0.95 miles, Distance from lighthouse BB : 1.28 miles
B) Distance from lighthouse AA : 1.35 miles, Distance from lighthouse BB : 0.97 miles
C) Distance from lighthouse AA : 0.92 miles, Distance from lighthouse BB : 0.76 miles
D) Distance from lighthouse AA : 1.43 miles, Distance from lighthouse BB : 0.84 miles
E) Distance from lighthouse AA : 0.97miles, Distance from lighthouse BB : 1.19 miles
Question
Assume that the vectors a\mathbf { a } , b\mathbf { b } ,  C \text { C } and  d \text { d } are defined as follows: a=1,1\mathbf { a } = \langle 1,1 \rangle b=5,4\mathbf { b } = \langle 5,4 \rangle c=6,8c = \langle 6 , - 8 \rangle d=5,3\mathbf { d } = \langle - 5,3 \rangle Compute c+dc + d .

A) 11,4\langle 11 , - 4 \rangle
B) 0,7\langle 0,7 \rangle
C) 1,5\langle 1 , - 5 \rangle
D) 7,7\langle 7 , - 7 \rangle
E) 4,4\langle - 4,4 \rangle
Question
Convert to rectangular form. r=3tanθr = 3 \tan \theta

A) y2+x2(y29)=0y ^ { 2 } + x ^ { 2 } \left( y ^ { 2 } - 9 \right) = 0
B) y4+x2(y29)=0y ^ { 4 } + x ^ { 2 } \left( y ^ { 2 } - 9 \right) = 0
C) y4+x2(y21)9=0y ^ { 4 } + x ^ { 2 } \left( y ^ { 2 } - 1 \right) - 9 = 0
D) x2+y2(x23)=0x ^ { 2 } + y ^ { 2 } \left( x ^ { 2 } - 3 \right) = 0
E) x4+y2(x29)=0x ^ { 4 } + y ^ { 2 } \left( x ^ { 2 } - 9 \right) = 0
Question
Determine the graph that reflects the polar equation. r=2+4sinθr = - 2 + 4 \sin \theta

A)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Assume that the vectors a\mathbf { a } , b\mathbf { b } ,  C \text { C } and  d \text { d } are defined as follows: a=1,2\mathbf { a } = \langle 1,2 \rangle b=5,4\mathbf { b } = \langle 5,4 \rangle c=5,2\mathbf { c } = \langle 5 , - 2 \rangle
d=2,0\mathbf { d } = \langle - 2,0 \rangle Compute 13b4d(3b4c)\frac { 1 } { | 3 b - 4 d | } ( 3 b - 4 c )

A) 5673673,20673673\left\langle - \frac { 5 \sqrt { 673 } } { 673 } , \frac { 20 \sqrt { 673 } } { 673 } \right\rangle
B) 20673673,5673673\left\langle \frac { 20 \sqrt { 673 } } { 673 } , \frac { 5 \sqrt { 673 } } { 673 } \right\rangle
C) 20673673,5673673\left\langle - \frac { 20 \sqrt { 673 } } { 673 } , - \frac { 5 \sqrt { 673 } } { 673 } \right\rangle
D) 5673673,20673673\left\langle - \frac { 5 \sqrt { 673 } } { 673 } , - \frac { 20 \sqrt { 673 } } { 673 } \right\rangle
E) 5673673,20673673\left\langle \frac { 5 \sqrt { 673 } } { 673 } , \frac { 20 \sqrt { 673 } } { 673 } \right\rangle
Question
Refer to the figure. If B=45\angle B = 45 ^ { \circ } and AC=40 cmA C = 40 \mathrm {~cm} , find ABA B .  <strong>Refer to the figure. If  \angle B = 45 ^ { \circ }  and  A C = 40 \mathrm {~cm}  , find  A B  .  </strong> A)  80  B)  \frac { 80 \sqrt { 3 } } { 3 }  C)  40 \sqrt { 2 }  D)  40  E)  \frac { 80 \sqrt { 3 } } { 2 }  <div style=padding-top: 35px>

A) 8080
B) 8033\frac { 80 \sqrt { 3 } } { 3 }
C) 40240 \sqrt { 2 }
D) 4040
E) 8032\frac { 80 \sqrt { 3 } } { 2 }
Question
Graph the parametric equations using the given range for the parameter tt . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by x=costx = \cos t and y=sinty = \sin t it would be natural to choose a viewing rectangle extending from -1 to 1 in both the xx - and yy -directions. Graph the parametric equations on a graphing utility. Sketch the result. x=5costx = 5 \cos t and y=2sinty = 2 \sin t , 0tπ20 \leq t \leq \frac { \pi } { 2 } (one-quarter of an ellipse)

A)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Assume that the coordinates of the points PP and ee are as follows: P(2,4)Q(3,6)P ( - 2,4 ) \quad Q ( 3,6 ) Draw the vector QP\overrightarrow { Q P } (using graph paper) and compute its magnitude.

A) QP=43| \overrightarrow { Q P } | = \sqrt { 43 }
B) QP=37| \overrightarrow { Q P } | = \sqrt { 37 }
C) QP=57| \overrightarrow { Q P } | = \sqrt { 57 }
D) QP=29| \overrightarrow { Q P } | = \sqrt { 29 }
E) QP=59| \overrightarrow { Q P } | = \sqrt { 59 }
Question
Use the given information to find the cosines of angles in ABCA B C . a=13a = 13 cm, b=12b = 12 cm, c=5c = 5 cm

A) cosA=0.689\cos A = 0.689 , cosB=0.749\cos B = 0.749 , cosC=0.082\cos C = 0.082
B) cosA=0.859,cosB=0.601,cosC=0.993\cos A = 0.859 , \cos B = 0.601 , \cos C = 0.993
C) cosA=0.929\cos A = 0.929 , cosB=0.779\cos B = 0.779 , cosC=0.082\cos C = 0.082
D) cosA=0\cos A = 0 , cosB=0.385\cos B = 0.385 , cosC=0.923\cos C = 0.923
E) cosA=0.005\cos A = 0.005 , cosB=0.539\cos B = 0.539 , cosC=0.854\cos C = 0.854
Question
Use the equation to determine polar coordinates of the point B. r=3232sinθr = - \frac { 3 } { 2 } - \frac { 3 } { 2 } \sin \theta  <strong>Use the equation to determine polar coordinates of the point B.  r = - \frac { 3 } { 2 } - \frac { 3 } { 2 } \sin \theta   </strong> A)  \left( 1 , \frac { 5 \pi } { 4 } \right)  B)  \left( - 1.5 , \frac { 5 \pi } { 4 } \right)  C)  \left( 0 , \frac { 5 \pi } { 4 } \right)  D)  \left( - 0.44 , \frac { 5 \pi } { 4 } \right)  E)  \left( 2.56 , \frac { 5 \pi } { 4 } \right)  <div style=padding-top: 35px>

A) (1,5π4)\left( 1 , \frac { 5 \pi } { 4 } \right)
B) (1.5,5π4)\left( - 1.5 , \frac { 5 \pi } { 4 } \right)
C) (0,5π4)\left( 0 , \frac { 5 \pi } { 4 } \right)
D) (0.44,5π4)\left( - 0.44 , \frac { 5 \pi } { 4 } \right)
E) (2.56,5π4)\left( 2.56 , \frac { 5 \pi } { 4 } \right)
Question
On a sheet of paper, graph the parametric equation after eliminating the parameter tt ( 0t2π0 \leq t \leq 2 \pi ). Specify the approximate direction on the curve corresponding to increasing values of tt . x=cost,y=2sintx = \cos t , y = 2 \sin t

A) clockwise
B) counterclockwise
Question
Determine the graph that reflects the polar equation. r=2cos5θr = 2 \cos 5 \theta (five-leafed rose)

A)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Convert to rectangular form. rsin(θ+π4)=4r \sin \left( \theta + \frac { \pi } { 4 } \right) = 4

A) y=x+82y = - x + 8 \sqrt { 2 }
B) y=x+42y = - x + 4 \sqrt { 2 }
C) y=x2+42y = - x \sqrt { 2 } + 4 \sqrt { 2 }
D) y=x+42y = x + 4 \sqrt { 2 }
E) y=422y = 4 - \frac { \sqrt { 2 } } { 2 }
Question
The accompanying figure shows two ships at points PP and QQ , which are in the same vertical plane as an airplane at point RR . When the height of the airplane is 4,000 ft, the angle of depression to PP is 38° and that to ee is 15°. Find the distance between the two ships.  <strong>The accompanying figure shows two ships at points  P  and  Q  , which are in the same vertical plane as an airplane at point  R  . When the height of the airplane is 4,000 ft, the angle of depression to  P  is 38° and that to  e  is 15°. Find the distance between the two ships.  </strong> A) 54,900 ft B) 2,050 ft C) 20,050 ft D) 80,430 ft E) 4,200 ft <div style=padding-top: 35px>

A) 54,900 ft
B) 2,050 ft
C) 20,050 ft
D) 80,430 ft
E) 4,200 ft
Question
Convert from rectangular to trigonometric form. (Choose an argument θ\theta such that 0θ<2π0 \leq \theta < 2 \pi .) 12+123i- \frac { 1 } { 2 } + \frac { 1 } { 2 } \sqrt { 3 } i

A) 12(cos2π3+isin2π3)\frac { 1 } { 2 } \left( \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 } \right)
B) 12(sin2π3+icos2π3)\frac { 1 } { 2 } \left( \sin \frac { 2 \pi } { 3 } + i \cos \frac { 2 \pi } { 3 } \right)
C) (cos2π3isin2π3)\left( \cos \frac { 2 \pi } { 3 } - i \sin \frac { 2 \pi } { 3 } \right)
D) (sin2π3icos2π3)\left( \sin \frac { 2 \pi } { 3 } - i \cos \frac { 2 \pi } { 3 } \right)
E) (cos2π3+isin2π3)\left( \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 } \right)
Question
Determine the graph of the equation. r=2+3sinθr = 2 + 3 \sin \theta

A)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Convert from rectangular to trigonometric form. (Choose an argument θ\theta such that 0θ<2π0 \leq \theta < 2 \pi .) 6

A) 6(cosπ+isinπ)6 ( \cos \pi + i \sin \pi )
B) 6(sin0)6 ( \sin 0 )
C) 6(sinπ+icosπ)6 ( \sin \pi + i \cos \pi )
D) 6(cos0+isin0)6 ( \cos 0 + i \sin 0 )
E) 6(sin0+icos0)6 ( \sin 0 + i \cos 0 )
Question
Carry out the indicated operations. [cosπ11+isinπ11cos(π11)+isin(π11)]4\left[ \frac { \cos \frac { \pi } { 11 } + i \sin \frac { \pi } { 11 } } { \cos \left( - \frac { \pi } { 11 } \right) + i \sin \left( - \frac { \pi } { 11 } \right) } \right] ^ { 4 }

A) (cos4π11+isin4π11)\left( \cos \frac { - 4 \pi } { 11 } + i \sin \frac { - 4 \pi } { 11 } \right)
B) (cos8π11+isin8π11)\left( \cos \frac { 8 \pi } { 11 } + i \sin \frac { 8 \pi } { 11 } \right)
C) (cos0+isin0)( \cos 0 + i \sin 0 )
D) (cos16π11+isin16π11)\left( \cos \frac { 16 \pi } { 11 } + i \sin \frac { 16 \pi } { 11 } \right)
E) (cos4π11+isin4π11)\left( \cos \frac { 4 \pi } { 11 } + i \sin \frac { 4 \pi } { 11 } \right)
Question
Simplify. 3(cosπ3+isinπ3)5(cosπ6+isinπ6)\frac { 3 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) } { 5 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) }

A) 3310310i\frac { 3 \sqrt { 3 } } { 10 } - \frac { 3 } { 10 } i
B) 3103310i\frac { 3 } { 10 } - \frac { 3 \sqrt { 3 } } { 10 } i
C) 310+3310i\frac { 3 } { 10 } + \frac { 3 \sqrt { 3 } } { 10 } i
D) 3103310i- \frac { 3 } { 10 } - \frac { 3 \sqrt { 3 } } { 10 } i
E) 3310+310i\frac { 3 \sqrt { 3 } } { 10 } + \frac { 3 } { 10 } i
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Additional Topics in Trigonometry
1
The initial point for the vector is the origin, and θ\theta denotes the angle (measured counterclockwise) from the XX -axis to the vector. The magnitude of V\mathrm { V } is 3030 cm/sec, and θ=120\theta = 120 ^ { \circ } Compute the horizontal and vertical components of the given vector. (Round your answers to two decimal places.)

A) Vx=25.98V _ { x } = 25.98 cm/sec Vy15V _ { y } \approx - 15 cm/sec
B) Vx=15V _ { x } = 15 cm/sec Vy25.98V _ { y } \approx 25.98 cm/sec
C) Vz=15V _ { z } = - 15 cm/sec Vy25.98V _ { y } \approx 25.98 cm/sec
D) Vx=21.21V _ { x } = 21.21 cm/sec Vy21.21V _ { y } \approx 21.21 cm/sec
E) Vx25.98 cm/secVy15 cm/secV _ { x } \approx - 25.98 \mathrm {~cm} / \mathrm { sec } V _ { y } \approx 15 \mathrm {~cm} / \mathrm { sec }
Vz=15V _ { z } = - 15 cm/sec Vy25.98V _ { y } \approx 25.98 cm/sec
2
On a sheet of paper, graph the parametric equation after eliminating the parameter tt (0t2π( 0 \leq t \leq 2 \pi ). Specify the approximate direction on the curve corresponding to increasing values of tt . x=6sin2t,y=5cos2tx = 6 \sin 2 t , y = 5 \cos 2 t

A) counterclockwise
B) clockwise
clockwise
3
Convert the given rectangular coordinates to polar coordinates. Express the answer in such a way that r is nonnegative and 0θ<2π0 \leq \theta < 2 \pi . (5,5)( - 5 , - 5 )

A) (5,5π4)\left( 5 , - \frac { 5 \pi } { 4 } \right)
B) (52,5π4)\left( 5 \sqrt { 2 } , \frac { 5 \pi } { 4 } \right)
C) (5,π4)\left( 5 , \frac { \pi } { 4 } \right)
D) (52,π4)\left( 5 \sqrt { 2 } , \frac { \pi } { 4 } \right)
E) (52,5π4)\left( - 5 \sqrt { 2 } , \frac { 5 \pi } { 4 } \right)
(52,5π4)\left( 5 \sqrt { 2 } , \frac { 5 \pi } { 4 } \right)
4
Convert the given rectangular coordinates to polar coordinates. Express the answer in such a way that r is nonnegative and 0θ<2π0 \leq \theta < 2 \pi . (7,0)( 7,0 )

A) (0,7)( 0,7 )
B) (7,0)( 7,0 )
C) (7,3π2)\left( - 7 , \frac { 3 \pi } { 2 } \right)
D) (7,0)( - 7,0 )
E) (7,3π2)\left( 7 , \frac { 3 \pi } { 2 } \right)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
5
Two points P and Q are on opposite sides of a river (see the sketch). From P to another point R on the same side is 340 ft. Angles PRQP R Q and RPQR P Q are found to be 2323 ^ { \circ } and 120120 ^ { \circ } , respectively. Compute the distance from P to Q, across the river. (Round your answer to the nearest foot.)  <strong>Two points P and Q are on opposite sides of a river (see the sketch). From P to another point R on the same side is 340 ft. Angles  P R Q  and  R P Q  are found to be  23 ^ { \circ }  and  120 ^ { \circ }  , respectively. Compute the distance from P to Q, across the river. (Round your answer to the nearest foot.)  </strong> A)  P Q = 221  ft. B)  P Q = 354  ft. C)  P Q = 246  ft. D)  P Q = 524  ft. E)  P Q = 694  ft.

A) PQ=221P Q = 221 ft.
B) PQ=354P Q = 354 ft.
C) PQ=246P Q = 246 ft.
D) PQ=524P Q = 524 ft.
E) PQ=694P Q = 694 ft.
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
6
Determine the graph that reflects the polar equation. r=55cosθr = - 5 - 5 \cos \theta

A)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)
B)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)
C)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)
D)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)
E)  <strong>Determine the graph that reflects the polar equation.  r = - 5 - 5 \cos \theta </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
7
An airplane crashes in a lake and is spotted by observers at lighthouses A and B along the coast. Lighthouse B is 1.10 miles due east of lighthouse A. The bearing of the airplane from lighthouse A is S20E\mathrm { S } 20 ^ { \circ } \mathrm { E } ; the bearing of the plane from lighthouse B is S40W\mathrm { S } 40 ^ { \circ } \mathrm { W } . Find the distance from each lighthouse to the crash site.

A) Distance from lighthouse AA : 0.95 miles, Distance from lighthouse BB : 1.28 miles
B) Distance from lighthouse AA : 1.35 miles, Distance from lighthouse BB : 0.97 miles
C) Distance from lighthouse AA : 0.92 miles, Distance from lighthouse BB : 0.76 miles
D) Distance from lighthouse AA : 1.43 miles, Distance from lighthouse BB : 0.84 miles
E) Distance from lighthouse AA : 0.97miles, Distance from lighthouse BB : 1.19 miles
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
8
Assume that the vectors a\mathbf { a } , b\mathbf { b } ,  C \text { C } and  d \text { d } are defined as follows: a=1,1\mathbf { a } = \langle 1,1 \rangle b=5,4\mathbf { b } = \langle 5,4 \rangle c=6,8c = \langle 6 , - 8 \rangle d=5,3\mathbf { d } = \langle - 5,3 \rangle Compute c+dc + d .

A) 11,4\langle 11 , - 4 \rangle
B) 0,7\langle 0,7 \rangle
C) 1,5\langle 1 , - 5 \rangle
D) 7,7\langle 7 , - 7 \rangle
E) 4,4\langle - 4,4 \rangle
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
9
Convert to rectangular form. r=3tanθr = 3 \tan \theta

A) y2+x2(y29)=0y ^ { 2 } + x ^ { 2 } \left( y ^ { 2 } - 9 \right) = 0
B) y4+x2(y29)=0y ^ { 4 } + x ^ { 2 } \left( y ^ { 2 } - 9 \right) = 0
C) y4+x2(y21)9=0y ^ { 4 } + x ^ { 2 } \left( y ^ { 2 } - 1 \right) - 9 = 0
D) x2+y2(x23)=0x ^ { 2 } + y ^ { 2 } \left( x ^ { 2 } - 3 \right) = 0
E) x4+y2(x29)=0x ^ { 4 } + y ^ { 2 } \left( x ^ { 2 } - 9 \right) = 0
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
10
Determine the graph that reflects the polar equation. r=2+4sinθr = - 2 + 4 \sin \theta

A)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)
B)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)
C)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)
D)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)
E)  <strong>Determine the graph that reflects the polar equation.  r = - 2 + 4 \sin \theta </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
11
Assume that the vectors a\mathbf { a } , b\mathbf { b } ,  C \text { C } and  d \text { d } are defined as follows: a=1,2\mathbf { a } = \langle 1,2 \rangle b=5,4\mathbf { b } = \langle 5,4 \rangle c=5,2\mathbf { c } = \langle 5 , - 2 \rangle
d=2,0\mathbf { d } = \langle - 2,0 \rangle Compute 13b4d(3b4c)\frac { 1 } { | 3 b - 4 d | } ( 3 b - 4 c )

A) 5673673,20673673\left\langle - \frac { 5 \sqrt { 673 } } { 673 } , \frac { 20 \sqrt { 673 } } { 673 } \right\rangle
B) 20673673,5673673\left\langle \frac { 20 \sqrt { 673 } } { 673 } , \frac { 5 \sqrt { 673 } } { 673 } \right\rangle
C) 20673673,5673673\left\langle - \frac { 20 \sqrt { 673 } } { 673 } , - \frac { 5 \sqrt { 673 } } { 673 } \right\rangle
D) 5673673,20673673\left\langle - \frac { 5 \sqrt { 673 } } { 673 } , - \frac { 20 \sqrt { 673 } } { 673 } \right\rangle
E) 5673673,20673673\left\langle \frac { 5 \sqrt { 673 } } { 673 } , \frac { 20 \sqrt { 673 } } { 673 } \right\rangle
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
12
Refer to the figure. If B=45\angle B = 45 ^ { \circ } and AC=40 cmA C = 40 \mathrm {~cm} , find ABA B .  <strong>Refer to the figure. If  \angle B = 45 ^ { \circ }  and  A C = 40 \mathrm {~cm}  , find  A B  .  </strong> A)  80  B)  \frac { 80 \sqrt { 3 } } { 3 }  C)  40 \sqrt { 2 }  D)  40  E)  \frac { 80 \sqrt { 3 } } { 2 }

A) 8080
B) 8033\frac { 80 \sqrt { 3 } } { 3 }
C) 40240 \sqrt { 2 }
D) 4040
E) 8032\frac { 80 \sqrt { 3 } } { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
13
Graph the parametric equations using the given range for the parameter tt . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by x=costx = \cos t and y=sinty = \sin t it would be natural to choose a viewing rectangle extending from -1 to 1 in both the xx - and yy -directions. Graph the parametric equations on a graphing utility. Sketch the result. x=5costx = 5 \cos t and y=2sinty = 2 \sin t , 0tπ20 \leq t \leq \frac { \pi } { 2 } (one-quarter of an ellipse)

A)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)
B)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)
C)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)
D)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)
E)  <strong>Graph the parametric equations using the given range for the parameter  t  . Begin with the standard viewing rectangle and then make adjustments, as necessary, so that the graph utilizes as much of the viewing screen as possible. For example, in graphing the circle given by  x = \cos t  and  y = \sin t  it would be natural to choose a viewing rectangle extending from -1 to 1 in both the  x  - and  y  -directions. Graph the parametric equations on a graphing utility. Sketch the result.  x = 5 \cos t  and  y = 2 \sin t  ,  0 \leq t \leq \frac { \pi } { 2 }  (one-quarter of an ellipse)</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
14
Assume that the coordinates of the points PP and ee are as follows: P(2,4)Q(3,6)P ( - 2,4 ) \quad Q ( 3,6 ) Draw the vector QP\overrightarrow { Q P } (using graph paper) and compute its magnitude.

A) QP=43| \overrightarrow { Q P } | = \sqrt { 43 }
B) QP=37| \overrightarrow { Q P } | = \sqrt { 37 }
C) QP=57| \overrightarrow { Q P } | = \sqrt { 57 }
D) QP=29| \overrightarrow { Q P } | = \sqrt { 29 }
E) QP=59| \overrightarrow { Q P } | = \sqrt { 59 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
15
Use the given information to find the cosines of angles in ABCA B C . a=13a = 13 cm, b=12b = 12 cm, c=5c = 5 cm

A) cosA=0.689\cos A = 0.689 , cosB=0.749\cos B = 0.749 , cosC=0.082\cos C = 0.082
B) cosA=0.859,cosB=0.601,cosC=0.993\cos A = 0.859 , \cos B = 0.601 , \cos C = 0.993
C) cosA=0.929\cos A = 0.929 , cosB=0.779\cos B = 0.779 , cosC=0.082\cos C = 0.082
D) cosA=0\cos A = 0 , cosB=0.385\cos B = 0.385 , cosC=0.923\cos C = 0.923
E) cosA=0.005\cos A = 0.005 , cosB=0.539\cos B = 0.539 , cosC=0.854\cos C = 0.854
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
16
Use the equation to determine polar coordinates of the point B. r=3232sinθr = - \frac { 3 } { 2 } - \frac { 3 } { 2 } \sin \theta  <strong>Use the equation to determine polar coordinates of the point B.  r = - \frac { 3 } { 2 } - \frac { 3 } { 2 } \sin \theta   </strong> A)  \left( 1 , \frac { 5 \pi } { 4 } \right)  B)  \left( - 1.5 , \frac { 5 \pi } { 4 } \right)  C)  \left( 0 , \frac { 5 \pi } { 4 } \right)  D)  \left( - 0.44 , \frac { 5 \pi } { 4 } \right)  E)  \left( 2.56 , \frac { 5 \pi } { 4 } \right)

A) (1,5π4)\left( 1 , \frac { 5 \pi } { 4 } \right)
B) (1.5,5π4)\left( - 1.5 , \frac { 5 \pi } { 4 } \right)
C) (0,5π4)\left( 0 , \frac { 5 \pi } { 4 } \right)
D) (0.44,5π4)\left( - 0.44 , \frac { 5 \pi } { 4 } \right)
E) (2.56,5π4)\left( 2.56 , \frac { 5 \pi } { 4 } \right)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
17
On a sheet of paper, graph the parametric equation after eliminating the parameter tt ( 0t2π0 \leq t \leq 2 \pi ). Specify the approximate direction on the curve corresponding to increasing values of tt . x=cost,y=2sintx = \cos t , y = 2 \sin t

A) clockwise
B) counterclockwise
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
18
Determine the graph that reflects the polar equation. r=2cos5θr = 2 \cos 5 \theta (five-leafed rose)

A)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)
B)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)
C)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)
D)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)
E)  <strong>Determine the graph that reflects the polar equation.  r = 2 \cos 5 \theta  (five-leafed rose)</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
19
Convert to rectangular form. rsin(θ+π4)=4r \sin \left( \theta + \frac { \pi } { 4 } \right) = 4

A) y=x+82y = - x + 8 \sqrt { 2 }
B) y=x+42y = - x + 4 \sqrt { 2 }
C) y=x2+42y = - x \sqrt { 2 } + 4 \sqrt { 2 }
D) y=x+42y = x + 4 \sqrt { 2 }
E) y=422y = 4 - \frac { \sqrt { 2 } } { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
20
The accompanying figure shows two ships at points PP and QQ , which are in the same vertical plane as an airplane at point RR . When the height of the airplane is 4,000 ft, the angle of depression to PP is 38° and that to ee is 15°. Find the distance between the two ships.  <strong>The accompanying figure shows two ships at points  P  and  Q  , which are in the same vertical plane as an airplane at point  R  . When the height of the airplane is 4,000 ft, the angle of depression to  P  is 38° and that to  e  is 15°. Find the distance between the two ships.  </strong> A) 54,900 ft B) 2,050 ft C) 20,050 ft D) 80,430 ft E) 4,200 ft

A) 54,900 ft
B) 2,050 ft
C) 20,050 ft
D) 80,430 ft
E) 4,200 ft
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
21
Convert from rectangular to trigonometric form. (Choose an argument θ\theta such that 0θ<2π0 \leq \theta < 2 \pi .) 12+123i- \frac { 1 } { 2 } + \frac { 1 } { 2 } \sqrt { 3 } i

A) 12(cos2π3+isin2π3)\frac { 1 } { 2 } \left( \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 } \right)
B) 12(sin2π3+icos2π3)\frac { 1 } { 2 } \left( \sin \frac { 2 \pi } { 3 } + i \cos \frac { 2 \pi } { 3 } \right)
C) (cos2π3isin2π3)\left( \cos \frac { 2 \pi } { 3 } - i \sin \frac { 2 \pi } { 3 } \right)
D) (sin2π3icos2π3)\left( \sin \frac { 2 \pi } { 3 } - i \cos \frac { 2 \pi } { 3 } \right)
E) (cos2π3+isin2π3)\left( \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 } \right)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
22
Determine the graph of the equation. r=2+3sinθr = 2 + 3 \sin \theta

A)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)
B)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)
C)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)
D)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)
E)  <strong>Determine the graph of the equation.  r = 2 + 3 \sin \theta </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
23
Convert from rectangular to trigonometric form. (Choose an argument θ\theta such that 0θ<2π0 \leq \theta < 2 \pi .) 6

A) 6(cosπ+isinπ)6 ( \cos \pi + i \sin \pi )
B) 6(sin0)6 ( \sin 0 )
C) 6(sinπ+icosπ)6 ( \sin \pi + i \cos \pi )
D) 6(cos0+isin0)6 ( \cos 0 + i \sin 0 )
E) 6(sin0+icos0)6 ( \sin 0 + i \cos 0 )
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
24
Carry out the indicated operations. [cosπ11+isinπ11cos(π11)+isin(π11)]4\left[ \frac { \cos \frac { \pi } { 11 } + i \sin \frac { \pi } { 11 } } { \cos \left( - \frac { \pi } { 11 } \right) + i \sin \left( - \frac { \pi } { 11 } \right) } \right] ^ { 4 }

A) (cos4π11+isin4π11)\left( \cos \frac { - 4 \pi } { 11 } + i \sin \frac { - 4 \pi } { 11 } \right)
B) (cos8π11+isin8π11)\left( \cos \frac { 8 \pi } { 11 } + i \sin \frac { 8 \pi } { 11 } \right)
C) (cos0+isin0)( \cos 0 + i \sin 0 )
D) (cos16π11+isin16π11)\left( \cos \frac { 16 \pi } { 11 } + i \sin \frac { 16 \pi } { 11 } \right)
E) (cos4π11+isin4π11)\left( \cos \frac { 4 \pi } { 11 } + i \sin \frac { 4 \pi } { 11 } \right)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
25
Simplify. 3(cosπ3+isinπ3)5(cosπ6+isinπ6)\frac { 3 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) } { 5 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) }

A) 3310310i\frac { 3 \sqrt { 3 } } { 10 } - \frac { 3 } { 10 } i
B) 3103310i\frac { 3 } { 10 } - \frac { 3 \sqrt { 3 } } { 10 } i
C) 310+3310i\frac { 3 } { 10 } + \frac { 3 \sqrt { 3 } } { 10 } i
D) 3103310i- \frac { 3 } { 10 } - \frac { 3 \sqrt { 3 } } { 10 } i
E) 3310+310i\frac { 3 \sqrt { 3 } } { 10 } + \frac { 3 } { 10 } i
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 25 flashcards in this deck.