Deck 7: Normalization of Relational Tables

Full screen (f)
exit full mode
Question
There is no known general algorithm to convert tables to DKNF.
Use Space or
up arrow
down arrow
to flip the card.
Question
A good database design ensures that users can change the contents of a database without unexpected side effects.
Question
When you split one table into two smaller tables to achieve 2NF,you can no longer derive the functional dependencies of the original table.
Question
One of the situations that BCNF addresses which 3NF does not is where part of a key determines part of a key.
Question
If an analysis of relationship independence reveals that redundancies exist,the way to alleviate this situation is to replace the entity with two binary relationships which will each be converted to a table.
Question
Although 3NF and BCNF usually produce the same table results,3NF is a stronger and simpler definition than BCNF.
Question
Primary key and foreign key constraints are both important kinds of value-based constraints.
Question
Redundancies can cause insert,update,and delete operations to produce unexpected side effects known as conversion errors.
Question
An unexpected side effect that occurs when changing the data in a table with excessive redundancies is referred to as a Modification Anomaly.
Question
Due to the extra joins involved,splitting a table because it has multiple candidate keys can degrade query performance.
Question
When part of a key determines a non-key,this is a violation of BCNF.
Question
Although rare,a table in DKNF can still have some modification anomalies.
Question
In the MVD expressed as ABCA \rightarrow \rightarrow B \mid C ,a given A value is associated with one or more B and C values.
Question
To achieve 4NF,it is possible that there may be M-way relationships that should be split into two or more binary relationships to avoid redundancy.
Question
The goal of 2NF and 3NF is to produce tables in which every key determines the other columns.
Question
Examining sample data in a table can be used to prove that a functional dependency exists,but it is of no use in proving that a functional dependency does not exist.
Question
Storing a relationship in a database that could otherwise be derived from two independent relationships through a join operation can cause data modification operations to perform slower,but has no effect on modification anomalies.
Question
4NF prohibits redundancies caused by MVDs.
Question
Like 4NF,5NF also applies to M-way relationships.
Question
A table with multiple candidate keys violates 3NF and BCNF.
Question
Figuer:
The table STUDENTA has the following meaning. A student may have several majors and several minors; the choice of majors and minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTA  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  GREEN  PHILO  MKTG  HONEY  INFO  MATH  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { GREEN } & \text { PHILO } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a functional dependency in the table STUDENTA:

A) Name -> Minor
B) Name -> Major
C) Name -> Minor, Major
D) None of the above
Question
Figuer:
Name is the unique candidate key in the table STUDENT. Each row in the table describes a different student. A student may only have one major and one minor. The choice of a major is independent of the choice of a minor
STUDENT  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  TRAN 45 MATH  INFF  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { TRAN } & 45 & \text { MATH } & \text { INFF } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a functional dependency in the table STUDENT:

A) Major -> Minor
B) Minor -> Major
C) Major -> Age
D) Name -> Minor
Question
A database design with many tables results in the database being easier to change but more difficult to query.
Question
Figuer:
The table STUDENTB has the following meaning. A student may have one major only and several minors; the choice of the major and of minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTB  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  HONEY  INFO  MATH  HONEY  INFO  MGT  LAMPOC  MKTG  MGT  TAKKER  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { HONEY } & \text { INFO } & \text { MGT } \\\hline \text { LAMPOC } & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a functional dependency in the table STUDENTB:

A) Name -> Minor
B) Name -> Major
C) Major -> Minor
D) Major -> Name
Question
Figuer:
The table STUDENTA has the following meaning. A student may have several majors and several minors; the choice of majors and minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTA  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  GREEN  PHILO  MKTG  HONEY  INFO  MATH  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { GREEN } & \text { PHILO } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a multivalued dependency in the table STUDENTA:

A) Name -> ->Major | Minor
B) Name -> Major
C) Name -> Minor
D) None of the above
Question
An experienced database designer always tries to achieve at least 3NF in all of their tables.
Question
Normalization techniques may be used in database development to improve the design that results from the Entity Relationship approach,but you cannot directly build database tables from the functional dependencies.
Question
Figuer:
The table STUDENTA has the following meaning. A student may have several majors and several minors; the choice of majors and minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTA  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  GREEN  PHILO  MKTG  HONEY  INFO  MATH  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { GREEN } & \text { PHILO } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The table STUDENTA satisfies the following normal form (choose the highest NF):

A) 1NF
B) 2NF
C) 3NF
D) 4NF
Question
In the table STUDENTB,when Green replaces her MATH major by a PHYSICS major,the following anomaly is evidenced:

A) update anomaly
B) insertion anomaly
C) deletion anomaly
D) none of the above
Question
Figuer:
The table STUDENTB has the following meaning. A student may have one major only and several minors; the choice of the major and of minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTB  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  HONEY  INFO  MATH  HONEY  INFO  MGT  LAMPOC  MKTG  MGT  TAKKER  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { HONEY } & \text { INFO } & \text { MGT } \\\hline \text { LAMPOC } & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The table STUDENTB satisfies the following normal form (choose the highest NF):

A) 1NF
B) 2NF
C) 3NF
D) 4NF
Question
Figuer:
Name is the unique candidate key in the table STUDENT. Each row in the table describes a different student. A student may only have one major and one minor. The choice of a major is independent of the choice of a minor
STUDENT  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  TRAN 45 MATH  INFF  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { TRAN } & 45 & \text { MATH } & \text { INFF } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is not a functional dependency in the table STUDENT:

A) Name -> Age
B) Age -> Name
C) Name -> Minor
D) Name -> Major
Question
The table STUDENTA contains many more rows than shown.It is replaced by the following two tables with appropriate distribution of data to the new tables. Table1 NAME MAJORTable1\\\begin{array}{|l|l|}\hline \text { NAME} & \text { MAJOR} \\\hline\end{array}

Table2 NAME MINOR Table2\\\begin{array}{|l|l|}\hline \text { NAME} & \text { MINOR } \\\hline\end{array}

A) Some information is lost in this transformation and some meaningless information is provided
B) The new tables provide the same information as the old one with less data duplication
C) The new tables provide the same information as the old one with more data duplication
D) None of the above
Question
The difference between value-based constraints and value-neutral constraints is that value-based constraints are based on the comparison of columns while value-neutral constraints are based on the comparison of a column to constant using a comparison operator.
Question
Figuer:
Name is the unique candidate key in the table STUDENT. Each row in the table describes a different student. A student may only have one major and one minor. The choice of a major is independent of the choice of a minor
STUDENT  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  TRAN 45 MATH  INFF  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { TRAN } & 45 & \text { MATH } & \text { INFF } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following anomaly exists in the table STUDENT:

A) update anomaly
B) insertion anomaly
C) deletion anomaly
D) none of the above
Question
The table schema STUDENT is replaced by the following two tables' schemas: Table1 NAME  AGE  MAJOR Table1\\\begin{array}{|l|l|l|}\hline \text { NAME } & \text { AGE } & \text { MAJOR } \\\hline\end{array}

Table2 MAJOR  MINOR Table2\\\begin{array}{|l|l|}\hline \text { MAJOR } & \text { MINOR } \\\hline\end{array}

A) Some information is lost in this transformation and some meaningless information is provided
B) The new tables provide the same information as the old ones with less data duplication
C) The new tables provide the same information as the old ones with more data duplication
D) None of the above
Question
One of the arguments in favor of using normalization as a refinement tool instead of an initial design tool is that by first developing an ERD,much of the normalization is done informally and therefore is not as tedious a process as recording all the functional dependencies.
Question
Figuer:
Name is the unique candidate key in the table STUDENT. Each row in the table describes a different student. A student may only have one major and one minor. The choice of a major is independent of the choice of a minor
STUDENT  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  TRAN 45 MATH  INFF  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { TRAN } & 45 & \text { MATH } & \text { INFF } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The table STUDENT satisfies the following normal form (choose the highest NF):

A) 1NF
B) 2NF
C) 3NF
D) 4NF
Question
Figuer:
The table STUDENTB has the following meaning. A student may have one major only and several minors; the choice of the major and of minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTB  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  HONEY  INFO  MATH  HONEY  INFO  MGT  LAMPOC  MKTG  MGT  TAKKER  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { HONEY } & \text { INFO } & \text { MGT } \\\hline \text { LAMPOC } & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a multivalued dependency in the table STUDENTB:

A) Name -> ->Major | Minor
B) Name -> Major
C) Name -> Minor
D) None of the above
Question
Even if a database is to be used mostly for querying data,with little or no change to the data,the highest degree of normalization should still be implemented.
Question
Deleting the second row from the table STUDENTA causes:

A) an update anomaly
B) a deletion anomaly
C) an insertion anomaly
D) no loss of information
Question
Figuer:
The table STUDENTD has the following meaning. A student may have several majors and several minors. In the table only one minor corresponds to a given major, and only one major corresponds to a given minor. Each student has a unique name.
STUDENTD  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  PHILO  LATIN  HONEY  INFO  CS  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  CS \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { PHILO } & \text { LATIN } \\\hline \text { HONEY } & \text { INFO } & \text { CS } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { CS } \\\hline\end{array}

-The table STUDENTD satisfies the following normal form (choose the highest NF):

A) 2NF
B) 3NF
C) BCNF
D) 4NF
Question
The column which appears on the left-hand side (LHS)of a functional dependency is the __________________.
Question
A(n)____________________ occurs when additional data beyond the desired data must be added to the database.
Question
The table STUDENTC contains many more rows than shown.It is replaced by the following two tables with appropriate distribution of data to the new tables. Table1 NAME  AGE  MAJOR Table1\\\begin{array}{|l|l|l|}\hline \text { NAME } & \text { AGE } & \text { MAJOR } \\\hline\end{array}

Table2 MAJOR  MINOR Table2\\\begin{array}{|l|l|}\hline \text { MAJOR } & \text { MINOR } \\\hline\end{array}

A) Some information is lost in this transformation and some meaningless information is provided
B) The new tables provide the same information as the old one with less data duplication
C) The new tables provide the same information as the old one with more data duplication
D) None of the above
Question
Figuer:
The table STUDENTD has the following meaning. A student may have several majors and several minors. In the table only one minor corresponds to a given major, and only one major corresponds to a given minor. Each student has a unique name.
STUDENTD  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  PHILO  LATIN  HONEY  INFO  CS  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  CS \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { PHILO } & \text { LATIN } \\\hline \text { HONEY } & \text { INFO } & \text { CS } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { CS } \\\hline\end{array}

-Which of the following is not one of the modification anomalies discussed in the text:

A) an update anomaly
B) a write anomaly
C) a deletion anomaly
D) an insertion anomaly
Question
Figuer:
Name is the unique candidate key in the table STUDENTC. Each row in the table describes a different student. A student may only have one major and one minor. To each major corresponds a unique minor.
STUDENTC  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a nontrivial multivalued dependency in the table STUDENTC:

A) Name -> ->Major | Minor
B) Name -> Major
C) Name -> Minor
D) None of the above
Question
Figuer:
The table STUDENTD has the following meaning. A student may have several majors and several minors. In the table only one minor corresponds to a given major, and only one major corresponds to a given minor. Each student has a unique name.
STUDENTD  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  PHILO  LATIN  HONEY  INFO  CS  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  CS \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { PHILO } & \text { LATIN } \\\hline \text { HONEY } & \text { INFO } & \text { CS } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { CS } \\\hline\end{array}

-Which of the following is not a normal form:

A) 1NF
B) 3NF
C) 7NF
D) DKNF
Question
When deletion of one row in a table inadvertently causes other data to be deleted,this would be called a(n)____________________.
Question
Figuer:
Name is the unique candidate key in the table STUDENTC. Each row in the table describes a different student. A student may only have one major and one minor. To each major corresponds a unique minor.
STUDENTC  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a functional dependency in the table STUDENTC:

A) Name -> Minor
B) Name -> Major
C) Major -> Minor
D) All of the above
Question
An unexpected side effect that occurs when data is changed in a table that contains excessive redundancies is called a ___________________.
Question
The process of __________________ removes redundancy in a table so that the table is easier to modify.
Question
Figuer:
Name is the unique candidate key in the table STUDENTC. Each row in the table describes a different student. A student may only have one major and one minor. To each major corresponds a unique minor.
STUDENTC  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a transitive functional dependency in the table STUDENTC:

A) Name -> Minor
B) Name -> Major
C) Major -> Minor
D) All of the above
Question
Figuer:
The table STUDENTD has the following meaning. A student may have several majors and several minors. In the table only one minor corresponds to a given major, and only one major corresponds to a given minor. Each student has a unique name.
STUDENTD  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  PHILO  LATIN  HONEY  INFO  CS  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  CS \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { PHILO } & \text { LATIN } \\\hline \text { HONEY } & \text { INFO } & \text { CS } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { CS } \\\hline\end{array}

-The following is a functional dependency in the table STUDENTD:

A) Name -> Minor
B) Name -> Major
C) Major -> Minor
D) Major -> Name
Question
The following functional dependencies demonstrate an example of a: A \rightarrow B
B \rightarrow C
Then A \rightarrow C

A) partial dependency
B) full dependency
C) homogeneous dependency
D) transitive dependency
Question
When it is necessary to change multiple rows in a table to modify only a single fact,this is known as a(n)_______________________.
Question
Figuer:
Name is the unique candidate key in the table STUDENTC. Each row in the table describes a different student. A student may only have one major and one minor. To each major corresponds a unique minor.
STUDENTC  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The table STUDENTC satisfies the following normal form (choose the highest NF):

A) 1NF
B) 2NF
C) 3NF
D) 4NF
Question
The table STUDENTB contains many more rows than shown.It is replaced by the following two tables with appropriate distribution of data to the new tables. Table1 NAME MAJORTable1\\\begin{array}{|l|l|}\hline \text { NAME} & \text { MAJOR} \\\hline\end{array}

Table2 NAME MINOR Table2\\\begin{array}{|l|l|}\hline \text { NAME} & \text { MINOR } \\\hline\end{array}

A) Some information is lost in this transformation and some meaningless information is provided
B) The new tables provide the same information as the old one with less data duplication
C) The new tables provide the same information as the old one with more data duplication
D) None of the above
Question
1NF prohibits the occurrence of __________________ in a table.
Question
When the constraint Age > = 21 is used in a database to restrict the sale of alcohol to minors,this is an example of a(n)________________ constraint.
Question
A table is in ___________ if every non-key column is dependent on a candidate key,the whole candidate key,and nothing but the candidate key.
Question
A process known as the __________________________ can be used to generate tables in BCNF using a list of functional dependencies.
Question
In the MVD expressed as A In the MVD expressed as A   B | C,a given A value is associated with a(n)___________________ of B and C values.<div style=padding-top: 35px> B | C,a given A value is associated with a(n)___________________ of B and C values.
Question
When you transform the ERD into tables and then use normalization techniques to analyze each table,this is known as the __________________ approach in database development.
Question
By definition,any table that is in BCNF must be in _____________.
Question
A table is said to be in ___________ if every determinant is a candidate key.
Question
A relationship that can be derived from other relationships is known in relational database terminology as a(n)____________________________.
Question
A table would be in ___________ if a three-way relationship should be replaced with three binary tables instead of two.
Question
A table is in ___________ if every constraint on a table can be derived form keys and domains.
Question
A table is in _____________ if it does not contain any MDVs that are not also FDs.
Question
If a database is used mostly for data modification,the _______________ degree of normal form should be achieved.
Question
The goal of _____________________ is to not store data about relationships that can be derived by joining other relationships.
Question
When you can conclude that object A is related to object C because A is related to object B and B is related to C,this is an example of a(n)____________________.
Question
In the MVD expressed as A In the MVD expressed as A   B | C,where A,B,and C are columns,the three columns comprise a(n)____________________ of an associative table.<div style=padding-top: 35px> B | C,where A,B,and C are columns,the three columns comprise a(n)____________________ of an associative table.
Question
_________________ is the process of combing tables to make them easier to query.
Question
An MVD that is not an FD is called a(n)________________ MVD.
Question
When you use normalization techniques in the conceptual data modeling phase without necessarily producing an ERD,this is known as ___________________ approach.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/76
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Normalization of Relational Tables
1
There is no known general algorithm to convert tables to DKNF.
True
2
A good database design ensures that users can change the contents of a database without unexpected side effects.
True
3
When you split one table into two smaller tables to achieve 2NF,you can no longer derive the functional dependencies of the original table.
False
Explanation: The FD's in the original table should be derivable from the FD's in the smaller tables.
4
One of the situations that BCNF addresses which 3NF does not is where part of a key determines part of a key.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
5
If an analysis of relationship independence reveals that redundancies exist,the way to alleviate this situation is to replace the entity with two binary relationships which will each be converted to a table.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
6
Although 3NF and BCNF usually produce the same table results,3NF is a stronger and simpler definition than BCNF.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
7
Primary key and foreign key constraints are both important kinds of value-based constraints.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
8
Redundancies can cause insert,update,and delete operations to produce unexpected side effects known as conversion errors.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
9
An unexpected side effect that occurs when changing the data in a table with excessive redundancies is referred to as a Modification Anomaly.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
10
Due to the extra joins involved,splitting a table because it has multiple candidate keys can degrade query performance.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
11
When part of a key determines a non-key,this is a violation of BCNF.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
12
Although rare,a table in DKNF can still have some modification anomalies.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
13
In the MVD expressed as ABCA \rightarrow \rightarrow B \mid C ,a given A value is associated with one or more B and C values.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
14
To achieve 4NF,it is possible that there may be M-way relationships that should be split into two or more binary relationships to avoid redundancy.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
15
The goal of 2NF and 3NF is to produce tables in which every key determines the other columns.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
16
Examining sample data in a table can be used to prove that a functional dependency exists,but it is of no use in proving that a functional dependency does not exist.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
17
Storing a relationship in a database that could otherwise be derived from two independent relationships through a join operation can cause data modification operations to perform slower,but has no effect on modification anomalies.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
18
4NF prohibits redundancies caused by MVDs.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
19
Like 4NF,5NF also applies to M-way relationships.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
20
A table with multiple candidate keys violates 3NF and BCNF.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
21
Figuer:
The table STUDENTA has the following meaning. A student may have several majors and several minors; the choice of majors and minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTA  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  GREEN  PHILO  MKTG  HONEY  INFO  MATH  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { GREEN } & \text { PHILO } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a functional dependency in the table STUDENTA:

A) Name -> Minor
B) Name -> Major
C) Name -> Minor, Major
D) None of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
22
Figuer:
Name is the unique candidate key in the table STUDENT. Each row in the table describes a different student. A student may only have one major and one minor. The choice of a major is independent of the choice of a minor
STUDENT  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  TRAN 45 MATH  INFF  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { TRAN } & 45 & \text { MATH } & \text { INFF } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a functional dependency in the table STUDENT:

A) Major -> Minor
B) Minor -> Major
C) Major -> Age
D) Name -> Minor
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
23
A database design with many tables results in the database being easier to change but more difficult to query.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
24
Figuer:
The table STUDENTB has the following meaning. A student may have one major only and several minors; the choice of the major and of minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTB  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  HONEY  INFO  MATH  HONEY  INFO  MGT  LAMPOC  MKTG  MGT  TAKKER  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { HONEY } & \text { INFO } & \text { MGT } \\\hline \text { LAMPOC } & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a functional dependency in the table STUDENTB:

A) Name -> Minor
B) Name -> Major
C) Major -> Minor
D) Major -> Name
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
25
Figuer:
The table STUDENTA has the following meaning. A student may have several majors and several minors; the choice of majors and minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTA  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  GREEN  PHILO  MKTG  HONEY  INFO  MATH  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { GREEN } & \text { PHILO } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a multivalued dependency in the table STUDENTA:

A) Name -> ->Major | Minor
B) Name -> Major
C) Name -> Minor
D) None of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
26
An experienced database designer always tries to achieve at least 3NF in all of their tables.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
27
Normalization techniques may be used in database development to improve the design that results from the Entity Relationship approach,but you cannot directly build database tables from the functional dependencies.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
28
Figuer:
The table STUDENTA has the following meaning. A student may have several majors and several minors; the choice of majors and minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTA  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  GREEN  PHILO  MKTG  HONEY  INFO  MATH  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { GREEN } & \text { PHILO } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The table STUDENTA satisfies the following normal form (choose the highest NF):

A) 1NF
B) 2NF
C) 3NF
D) 4NF
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
29
In the table STUDENTB,when Green replaces her MATH major by a PHYSICS major,the following anomaly is evidenced:

A) update anomaly
B) insertion anomaly
C) deletion anomaly
D) none of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
30
Figuer:
The table STUDENTB has the following meaning. A student may have one major only and several minors; the choice of the major and of minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTB  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  HONEY  INFO  MATH  HONEY  INFO  MGT  LAMPOC  MKTG  MGT  TAKKER  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { HONEY } & \text { INFO } & \text { MGT } \\\hline \text { LAMPOC } & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The table STUDENTB satisfies the following normal form (choose the highest NF):

A) 1NF
B) 2NF
C) 3NF
D) 4NF
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
31
Figuer:
Name is the unique candidate key in the table STUDENT. Each row in the table describes a different student. A student may only have one major and one minor. The choice of a major is independent of the choice of a minor
STUDENT  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  TRAN 45 MATH  INFF  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { TRAN } & 45 & \text { MATH } & \text { INFF } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is not a functional dependency in the table STUDENT:

A) Name -> Age
B) Age -> Name
C) Name -> Minor
D) Name -> Major
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
32
The table STUDENTA contains many more rows than shown.It is replaced by the following two tables with appropriate distribution of data to the new tables. Table1 NAME MAJORTable1\\\begin{array}{|l|l|}\hline \text { NAME} & \text { MAJOR} \\\hline\end{array}

Table2 NAME MINOR Table2\\\begin{array}{|l|l|}\hline \text { NAME} & \text { MINOR } \\\hline\end{array}

A) Some information is lost in this transformation and some meaningless information is provided
B) The new tables provide the same information as the old one with less data duplication
C) The new tables provide the same information as the old one with more data duplication
D) None of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
33
The difference between value-based constraints and value-neutral constraints is that value-based constraints are based on the comparison of columns while value-neutral constraints are based on the comparison of a column to constant using a comparison operator.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
34
Figuer:
Name is the unique candidate key in the table STUDENT. Each row in the table describes a different student. A student may only have one major and one minor. The choice of a major is independent of the choice of a minor
STUDENT  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  TRAN 45 MATH  INFF  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { TRAN } & 45 & \text { MATH } & \text { INFF } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following anomaly exists in the table STUDENT:

A) update anomaly
B) insertion anomaly
C) deletion anomaly
D) none of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
35
The table schema STUDENT is replaced by the following two tables' schemas: Table1 NAME  AGE  MAJOR Table1\\\begin{array}{|l|l|l|}\hline \text { NAME } & \text { AGE } & \text { MAJOR } \\\hline\end{array}

Table2 MAJOR  MINOR Table2\\\begin{array}{|l|l|}\hline \text { MAJOR } & \text { MINOR } \\\hline\end{array}

A) Some information is lost in this transformation and some meaningless information is provided
B) The new tables provide the same information as the old ones with less data duplication
C) The new tables provide the same information as the old ones with more data duplication
D) None of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
36
One of the arguments in favor of using normalization as a refinement tool instead of an initial design tool is that by first developing an ERD,much of the normalization is done informally and therefore is not as tedious a process as recording all the functional dependencies.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
37
Figuer:
Name is the unique candidate key in the table STUDENT. Each row in the table describes a different student. A student may only have one major and one minor. The choice of a major is independent of the choice of a minor
STUDENT  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  TRAN 45 MATH  INFF  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { TRAN } & 45 & \text { MATH } & \text { INFF } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The table STUDENT satisfies the following normal form (choose the highest NF):

A) 1NF
B) 2NF
C) 3NF
D) 4NF
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
38
Figuer:
The table STUDENTB has the following meaning. A student may have one major only and several minors; the choice of the major and of minors is independent of each other. Each student has a unique name. The table has only one candidate key.
STUDENTB  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  MATH  MKTG  HONEY  INFO  MATH  HONEY  INFO  MGT  LAMPOC  MKTG  MGT  TAKKER  MKTG  MGT  YONA  INFO  MATH \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { MATH } & \text { MKTG } \\\hline \text { HONEY } & \text { INFO } & \text { MATH } \\\hline \text { HONEY } & \text { INFO } & \text { MGT } \\\hline \text { LAMPOC } & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a multivalued dependency in the table STUDENTB:

A) Name -> ->Major | Minor
B) Name -> Major
C) Name -> Minor
D) None of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
39
Even if a database is to be used mostly for querying data,with little or no change to the data,the highest degree of normalization should still be implemented.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
40
Deleting the second row from the table STUDENTA causes:

A) an update anomaly
B) a deletion anomaly
C) an insertion anomaly
D) no loss of information
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
41
Figuer:
The table STUDENTD has the following meaning. A student may have several majors and several minors. In the table only one minor corresponds to a given major, and only one major corresponds to a given minor. Each student has a unique name.
STUDENTD  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  PHILO  LATIN  HONEY  INFO  CS  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  CS \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { PHILO } & \text { LATIN } \\\hline \text { HONEY } & \text { INFO } & \text { CS } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { CS } \\\hline\end{array}

-The table STUDENTD satisfies the following normal form (choose the highest NF):

A) 2NF
B) 3NF
C) BCNF
D) 4NF
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
42
The column which appears on the left-hand side (LHS)of a functional dependency is the __________________.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
43
A(n)____________________ occurs when additional data beyond the desired data must be added to the database.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
44
The table STUDENTC contains many more rows than shown.It is replaced by the following two tables with appropriate distribution of data to the new tables. Table1 NAME  AGE  MAJOR Table1\\\begin{array}{|l|l|l|}\hline \text { NAME } & \text { AGE } & \text { MAJOR } \\\hline\end{array}

Table2 MAJOR  MINOR Table2\\\begin{array}{|l|l|}\hline \text { MAJOR } & \text { MINOR } \\\hline\end{array}

A) Some information is lost in this transformation and some meaningless information is provided
B) The new tables provide the same information as the old one with less data duplication
C) The new tables provide the same information as the old one with more data duplication
D) None of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
45
Figuer:
The table STUDENTD has the following meaning. A student may have several majors and several minors. In the table only one minor corresponds to a given major, and only one major corresponds to a given minor. Each student has a unique name.
STUDENTD  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  PHILO  LATIN  HONEY  INFO  CS  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  CS \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { PHILO } & \text { LATIN } \\\hline \text { HONEY } & \text { INFO } & \text { CS } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { CS } \\\hline\end{array}

-Which of the following is not one of the modification anomalies discussed in the text:

A) an update anomaly
B) a write anomaly
C) a deletion anomaly
D) an insertion anomaly
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
46
Figuer:
Name is the unique candidate key in the table STUDENTC. Each row in the table describes a different student. A student may only have one major and one minor. To each major corresponds a unique minor.
STUDENTC  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a nontrivial multivalued dependency in the table STUDENTC:

A) Name -> ->Major | Minor
B) Name -> Major
C) Name -> Minor
D) None of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
47
Figuer:
The table STUDENTD has the following meaning. A student may have several majors and several minors. In the table only one minor corresponds to a given major, and only one major corresponds to a given minor. Each student has a unique name.
STUDENTD  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  PHILO  LATIN  HONEY  INFO  CS  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  CS \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { PHILO } & \text { LATIN } \\\hline \text { HONEY } & \text { INFO } & \text { CS } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { CS } \\\hline\end{array}

-Which of the following is not a normal form:

A) 1NF
B) 3NF
C) 7NF
D) DKNF
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
48
When deletion of one row in a table inadvertently causes other data to be deleted,this would be called a(n)____________________.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
49
Figuer:
Name is the unique candidate key in the table STUDENTC. Each row in the table describes a different student. A student may only have one major and one minor. To each major corresponds a unique minor.
STUDENTC  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a functional dependency in the table STUDENTC:

A) Name -> Minor
B) Name -> Major
C) Major -> Minor
D) All of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
50
An unexpected side effect that occurs when data is changed in a table that contains excessive redundancies is called a ___________________.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
51
The process of __________________ removes redundancy in a table so that the table is easier to modify.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
52
Figuer:
Name is the unique candidate key in the table STUDENTC. Each row in the table describes a different student. A student may only have one major and one minor. To each major corresponds a unique minor.
STUDENTC  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The following is a transitive functional dependency in the table STUDENTC:

A) Name -> Minor
B) Name -> Major
C) Major -> Minor
D) All of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
53
Figuer:
The table STUDENTD has the following meaning. A student may have several majors and several minors. In the table only one minor corresponds to a given major, and only one major corresponds to a given minor. Each student has a unique name.
STUDENTD  NAME  MAJOR  MINOR  GREEN  MATH  INFO  GREEN  PHILO  LATIN  HONEY  INFO  CS  LAMPO  MKTG  MGT  Takker  MKTG  MGT  YONA  INFO  CS \begin{array} { | l | l | l | } \hline \text { NAME } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & \text { MATH } & \text { INFO } \\\hline \text { GREEN } & \text { PHILO } & \text { LATIN } \\\hline \text { HONEY } & \text { INFO } & \text { CS } \\\hline \text { LAMPO } & \text { MKTG } & \text { MGT } \\\hline \text { Takker } & \text { MKTG } & \text { MGT } \\\hline \text { YONA } & \text { INFO } & \text { CS } \\\hline\end{array}

-The following is a functional dependency in the table STUDENTD:

A) Name -> Minor
B) Name -> Major
C) Major -> Minor
D) Major -> Name
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
54
The following functional dependencies demonstrate an example of a: A \rightarrow B
B \rightarrow C
Then A \rightarrow C

A) partial dependency
B) full dependency
C) homogeneous dependency
D) transitive dependency
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
55
When it is necessary to change multiple rows in a table to modify only a single fact,this is known as a(n)_______________________.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
56
Figuer:
Name is the unique candidate key in the table STUDENTC. Each row in the table describes a different student. A student may only have one major and one minor. To each major corresponds a unique minor.
STUDENTC  NAME  AGE  MAJOR  MINOR  GREEN 26 MATH  INFO  HONEY 18 INFO  MATH  LAMPOC 33 MKTG  MGT  TAKKER 45 MKTG  MGT  YONAR 28 INFO  MATH \begin{array} { | l | l | l | l | } \hline \text { NAME } & \text { AGE } & \text { MAJOR } & \text { MINOR } \\\hline \text { GREEN } & 26 & \text { MATH } & \text { INFO } \\\hline \text { HONEY } & 18 & \text { INFO } & \text { MATH } \\\hline \text { LAMPOC } & 33 & \text { MKTG } & \text { MGT } \\\hline \text { TAKKER } & 45 & \text { MKTG } & \text { MGT } \\\hline \text { YONAR } & 28 & \text { INFO } & \text { MATH } \\\hline\end{array}

-The table STUDENTC satisfies the following normal form (choose the highest NF):

A) 1NF
B) 2NF
C) 3NF
D) 4NF
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
57
The table STUDENTB contains many more rows than shown.It is replaced by the following two tables with appropriate distribution of data to the new tables. Table1 NAME MAJORTable1\\\begin{array}{|l|l|}\hline \text { NAME} & \text { MAJOR} \\\hline\end{array}

Table2 NAME MINOR Table2\\\begin{array}{|l|l|}\hline \text { NAME} & \text { MINOR } \\\hline\end{array}

A) Some information is lost in this transformation and some meaningless information is provided
B) The new tables provide the same information as the old one with less data duplication
C) The new tables provide the same information as the old one with more data duplication
D) None of the above
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
58
1NF prohibits the occurrence of __________________ in a table.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
59
When the constraint Age > = 21 is used in a database to restrict the sale of alcohol to minors,this is an example of a(n)________________ constraint.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
60
A table is in ___________ if every non-key column is dependent on a candidate key,the whole candidate key,and nothing but the candidate key.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
61
A process known as the __________________________ can be used to generate tables in BCNF using a list of functional dependencies.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
62
In the MVD expressed as A In the MVD expressed as A   B | C,a given A value is associated with a(n)___________________ of B and C values. B | C,a given A value is associated with a(n)___________________ of B and C values.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
63
When you transform the ERD into tables and then use normalization techniques to analyze each table,this is known as the __________________ approach in database development.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
64
By definition,any table that is in BCNF must be in _____________.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
65
A table is said to be in ___________ if every determinant is a candidate key.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
66
A relationship that can be derived from other relationships is known in relational database terminology as a(n)____________________________.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
67
A table would be in ___________ if a three-way relationship should be replaced with three binary tables instead of two.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
68
A table is in ___________ if every constraint on a table can be derived form keys and domains.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
69
A table is in _____________ if it does not contain any MDVs that are not also FDs.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
70
If a database is used mostly for data modification,the _______________ degree of normal form should be achieved.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
71
The goal of _____________________ is to not store data about relationships that can be derived by joining other relationships.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
72
When you can conclude that object A is related to object C because A is related to object B and B is related to C,this is an example of a(n)____________________.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
73
In the MVD expressed as A In the MVD expressed as A   B | C,where A,B,and C are columns,the three columns comprise a(n)____________________ of an associative table. B | C,where A,B,and C are columns,the three columns comprise a(n)____________________ of an associative table.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
74
_________________ is the process of combing tables to make them easier to query.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
75
An MVD that is not an FD is called a(n)________________ MVD.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
76
When you use normalization techniques in the conceptual data modeling phase without necessarily producing an ERD,this is known as ___________________ approach.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 76 flashcards in this deck.