Deck 5: Probability

Full screen (f)
exit full mode
Question
If A and B are independent events, then P(A or B) = P(A) P(B).
Use Space or
up arrow
down arrow
to flip the card.
Question
When the outcome of a random experiment is a continuous measurement, the sample space is described by a rule instead of listing the possible simple events.
Question
P(A | B) is the joint probability of events A and B divided by the probability ofA.
Question
For any event A, the probability of A is always 0 ≤ P(A) ≤ 1.
Question
The sum of the probabilities of all compound events in a sample space equals one.
Question
The probability of the union of two events P(A or B) can exceed one.
Question
Events A and B are mutually exclusive if P(A∩B) = 0.
Question
Independent events are mutually exclusive.
Question
If events A and B are dependent, it can be concluded that one event causes the other.
Question
The odds of an event can be calculated by dividing the event's probability by the probability of its complement.
Question
The empirical view of probability is based on relative frequencies.
Question
The union of two events A and B is the event consisting of all outcomes in the sample space that are contained in both event A and event B.
Question
If events A and B are mutually exclusive, the joint probability of the events is zero.
Question
If events A and B are mutually exclusive, then P(A) + P(B) = 0.
Question
Grandma's predicting rain based on how much her arthritis is acting up is an example of the classical view of probability.
Question
The sum of all the probabilities of simple events in a sample space equals one.
Question
A sample space is the set of all possible outcomes in an experiment.
Question
Two events A and B are independent if P(A | B) is the same as P(A).
Question
Probability is the measure of the relative likelihood that an event will occur.
Question
The general law of addition for probabilities says P(A or B) = P(A) + P(B) - P(A∩B).
Question
If P(A) = 0.50, P(B) = 0.30, and P(A∩B) = 0.15, then A and B are independent events.
Question
Bayes' Theorem shows how to revise a prior probability to obtain a conditional or posterior probability when another event's occurrence is known.
Question
A contingency table is a cross-tabulation of frequencies for two categorical variables.
Question
The probability of A and its complement (A´) will always sum to one.
Question
Two events are mutually exclusive when they contain no outcomes in common.
Question
In a contingency table, the probability of the union of two events is found by taking the frequency of the intersection of the two events and dividing by the total.
Question
When two events cannot occur at the same time, they are said to be mutually exclusive.
Question
Events A and B are mutually exclusive when:

A)their joint probability is zero.
B)they are independent events.
C)P(A)P(B) = 0
D)P(A)P(B) = P(A | B)
Question
If A and B are mutually exclusive events, then P(A∩B) = P(A) + P(B).
Question
If event A occurs, then its complement (A´) will also occur.
Question
The probability of events A or B occurring can be found by summing their probabilities.
Question
The number of arrangements of sampled items drawn from a population is found with the formula for permutations (if order is important) or combinations (if order does not matter).
Question
If P(A) = .20 then the odds against event A's occurrence are 4 to 1.
Question
The general law of addition for probabilities says P(A or B) = P(A) P(B).
Question
The value of 7! is 5040.
Question
The union of two events is all outcomes in either or both, while the intersection is only those events in both.
Question
When two events A and B are independent, the probability of their intersection can be found by multiplying their probabilities.
Question
The sum of the probabilities of two mutually exclusive events is one.
Question
Insurance company life tables are an example of the classical (a priori) approach to probability.
Question
P(A∩B) = .50 is an example of a joint probability.
Question
Given the contingency table shown here, find P(V | W).  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).4000
B).0950
C).2375
D).5875
Question
Independent events A and B would be consistent with which of the following statements:

A)P(A) = .3, P(B) = .5, P(A∩B) = .4.
B)P(A) = .4, P(B) = .5, P(A∩B) = .2.
C)P(A) = .5, P(B) = .4, P(A∩B) = .3.
D)P(A) = .4, P(B) = .3, P(A∩B) = .5.
Question
Given the contingency table shown here, find P(A or B). \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Age \text { Age }
 Absences  Under 25(A)25 or More (A) Row Total  Under 2 days (B)5040902 or more days (B)3080110 Column Total 80120200\begin{array} {| l | c | c | c| } \hline\text { Absences } & \text { Under } 25 ( A ) & 25 \text { or More } \left( A ^ { \prime } \right) & \text { Row Total } \\\hline \text { Under } 2 \text { days } ( B ) & 50 & 40 & 90 \\\hline 2 \text { or more days } \left( B ^ { \prime } \right) & 30 & 80 & 110 \\\hline \text { Column Total } & 80 & 120 & 200\\\hline\end{array}

A).25
B).85
C).60
D).42
Question
Find the probability that either event A or B occurs if the chance of A occurring is .5, the chance of B occurring is .3, and events A and B are independent.

A).80
B).15
C).65
D).85
Question
If two events are complementary, then we know that:

A)the sum of their probabilities is one.
B)the joint probability of the two events is one.
C)their intersection has a nonzero probability.
D)they are independent events.
Question
Given the contingency table shown here, find P(A2 | B3). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).0685
B).1893
C).3721
D).1842
Question
Given the contingency table shown here, find P(A or M).  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).2500
B).7500
C).6250
D).1250
Question
Given the contingency table shown here, find P(A2). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).1842
B).1766
C).8163
D).0578
Question
Given the contingency table shown here, find P(W?S).  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).12
B).30
C).40
D).58
Question
Regarding probability, which of the following is correct?

A)When events A and B are mutually exclusive, then P(A∩B) = P(A) + P(B).
B)The union of events A and B consists of all outcomes in the sample space that are contained in both event A and event B.
C)When two events A and B are independent, the joint probability of the events can be found by multiplying the probabilities of the individual events.
D)The probability of the union of two events can exceed one.
Question
Given the contingency table shown here, find P(V).  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).20
B).40
C).50
D).80
Question
Within a given population, 22 percent of the people are smokers, 57 percent of the people are males, and 12 percent are males who smoke. If a person is chosen at random from the population, what is the probability that the selected person is either a male or a smoker?

A).67
B).79
C).22
D).43
Question
Given the contingency table shown here, find P(B). \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Age \text { Age }
 Absences  Under 25(A)25 or More (A) Row Total  Under 2 days (B)5040902 or more days (B)3080110 Column Total 80120200\begin{array} {| l | c | c | c| } \hline\text { Absences } & \text { Under } 25 ( A ) & 25 \text { or More } \left( A ^ { \prime } \right) & \text { Row Total } \\\hline \text { Under } 2 \text { days } ( B ) & 50 & 40 & 90 \\\hline 2 \text { or more days } \left( B ^ { \prime } \right) & 30 & 80 & 110 \\\hline \text { Column Total } & 80 & 120 & 200\\\hline\end{array}

A).85
B).25
C).45
D).22
Question
Given the contingency table shown here, find the probability that either event A2 or event B2 will occur. A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).4454
B).5054
C).0600
Question
Given the contingency table shown here, find P(A1?A2). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).00
B).09
C).28
D).38
Question
Regarding the rules of probability, which of the following statements is correct?

A)If A and B are independent events, then P(B) = P(A)P(B).
B)The sum of two mutually exclusive events is one.
C)The probability of A and its complement will sum to one.
D)If event A occurs, then its complement will also occur.
Question
Information was collected on those who attended the opening of a new movie. The analysis found that 56 percent of the moviegoers were female, 26 percent were under age 25, and 17 percent were females under the age of 25. Find the probability that a moviegoer is either female or under age 25.

A).79
B).82
C).65
D).50
Question
Given the contingency table shown here, find the probability P(V´), that is, the probability of the complement of V.  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).30
B).50
C).80
D).15
Question
Given the contingency table shown here, find P(A1 or B2). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).0933
B).3182
C).0300
D).3854
Question
Given the contingency table shown here, find P(A3?B2). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).3212
B).2933
C).0942
D).1006
Question
Oxnard Casualty wants to ensure that their e-mail server has 99.98 percent reliability. They will use several independent servers in parallel, each of which is 95 percent reliable. What is the smallest number of independent file servers that will accomplish the goal?

A)1
B)2
C)3
D)4
Question
Given the contingency table shown here, what is the probability that a student attends a public school in a rural area?  What type of school do you attend? \text { What type of school do you attend? }
 Location  Public (P) Religious (R) Other Private (O) Row Total  Inner City (I) 35152070 Sububan (S) 45102580 Rural (R) 255535 Col Total 1053050185\begin{array}{|c|c|c|c|c|}\hline \text { Location } &\text { Public }(P) & \text { Religious }(R) & \text { Other Private }(O) & \text { Row Total } \\\hline \text { Inner City (I) }&35 & 15 & 20&70 \\\hline \text { Sububan (S) }&45 & 10 & 25&80 \\\hline \text { Rural (R) }&25 & 5 & 5&35 \\\hline \text { Col Total }& 105 & 30 & 50&185 \\\hline\end{array}

A).238
B).714
C).135
D).567
Question
Given the contingency table shown here, what is the probability that a participant selected at random is a graduate student who opposes the change to a quarter system? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Group Surveyed \text { Group Surveyed }

 Opinion:  Undergrads (U) Graduates (G) Faculty (F) Row Total  Oppose Change (N) 732720120 Favor Change (S) 27233080 Col Total 1005050200\begin{array}{|c|c|c|c|c|}\hline \text { Opinion: } &\text { Undergrads }(U) & \text { Graduates }(G) & \text { Faculty }(F)& \text { Row Total } \\\hline \text { Oppose Change (N) } &73 & 27 & 20&120 \\\hline \text { Favor Change (S) } &27 & 23 & 30&80 \\\hline \text { Col Total } &100 & 50 & 50&200 \\\hline\end{array}

A).135
B).250
C).375
D).540
Question
Given the contingency table shown here, find P(B | A). \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Age \text { Age }
 Absences  Under 25(A)25 or More (A) Row Total  Under 2 days (B)5040902 or more days (B)3080110 Column Total 80120200\begin{array} {| l | c | c | c| } \hline\text { Absences } & \text { Under } 25 ( A ) & 25 \text { or More } \left( A ^ { \prime } \right) & \text { Row Total } \\\hline \text { Under } 2 \text { days } ( B ) & 50 & 40 & 90 \\\hline 2 \text { or more days } \left( B ^ { \prime } \right) & 30 & 80 & 110 \\\hline \text { Column Total } & 80 & 120 & 200\\\hline\end{array}

A).250
B).555
C).855
D).625
Question
Given the contingency table shown here, if a randomly chosen student attends a religious school, what is the probability the location is rural?
 What type of school do you attend? \text { What type of school do you attend? }
 Location  Public (P) Religious (R) Other Private (O) Row Total  Inner City (I) 35152070 Sububan (S) 45102580 Rural (R) 255535 Col Total 1053050185\begin{array}{|c|c|c|c|c|}\hline \text { Location } &\text { Public }(P) & \text { Religious }(R) & \text { Other Private }(O) & \text { Row Total } \\\hline \text { Inner City (I) }&35 & 15 & 20&70 \\\hline \text { Sububan (S) }&45 & 10 & 25&80 \\\hline \text { Rural (R) }&25 & 5 & 5&35 \\\hline \text { Col Total }& 105 & 30 & 50&185 \\\hline\end{array}

A).142
B).162
C).167
D).333
Question
Ramjac Company wants to set up k independent file servers, each capable of running the company's intranet. Each server has average "uptime" of 98 percent. What must k be to achieve 99.999 percent probability that the intranet will be "up"?

A)1
B)2
C)3
D)4
Question
Given the contingency table shown here, find P(W | M). Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A).145
B).250
C).581
D).687
Question
Given the contingency table shown here, find P(L or W). Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A).750
B).588
C).435
D).895
Question
Given the contingency table shown here, find P(R?L). Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A).250
B).315
C).425
D).850
Question
Given the contingency table shown here, what is the probability that a mother in the study smoked during pregnancy? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).2591
B).3174
C).5000
D).7401
Question
Given the contingency table shown here, what is the probability that a mother smoked during pregnancy and had a college degree? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).0111
B).0428
C).0803
D).2385
Question
Given the contingency table shown here, if a survey participant is selected at random, what is the probability he/she is an undergrad who favors the change to a quarter system? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Group Surveyed \text { Group Surveyed }

 Opinion:  Undergrads (U) Graduates (G) Faculty (F) Row Total  Oppose Change (N) 732720120 Favor Change (S) 27233080 Col Total 1005050200\begin{array}{|c|c|c|c|c|}\hline \text { Opinion: } &\text { Undergrads }(U) & \text { Graduates }(G) & \text { Faculty }(F)& \text { Row Total } \\\hline \text { Oppose Change (N) } &73 & 27 & 20&120 \\\hline \text { Favor Change (S) } &27 & 23 & 30&80 \\\hline \text { Col Total } &100 & 50 & 50&200 \\\hline\end{array}

A).270
B).135
C).338
D).756
Question
Given the contingency table shown here, if a faculty member is chosen at random, what is the probability he/she opposes the change to a quarter system? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Group Surveyed \text { Group Surveyed }

 Opinion:  Undergrads (U) Graduates (G) Faculty (F) Row Total  Oppose Change (N) 732720120 Favor Change (S) 27233080 Col Total 1005050200\begin{array}{|c|c|c|c|c|}\hline \text { Opinion: } &\text { Undergrads }(U) & \text { Graduates }(G) & \text { Faculty }(F)& \text { Row Total } \\\hline \text { Oppose Change (N) } &73 & 27 & 20&120 \\\hline \text { Favor Change (S) } &27 & 23 & 30&80 \\\hline \text { Col Total } &100 & 50 & 50&200 \\\hline\end{array}

A).10
B).25
C).40
D).60
Question
Given the contingency table shown here, what is the probability that a mother smoked during pregnancy or that she graduated from college? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).0111
B).2591
C).3861
D).7850
Question
Given the contingency table shown here, find the probability that a randomly chosen employee is a line worker who plans to retire at age 65. Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A).227
B).419
C).750
D).315
Question
Given the contingency table shown here, find the probability that a mother with some college smoked during pregnancy. \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).1078
B).1746
C).1601
D).1117
Question
Given the contingency table shown here, what is the probability that a randomly chosen employee who is under age 25 would be absent 2 or more days? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Age \text { Age }
 Absences  Under 25(A)25 or More (A) Row Total  Under 2 days (B)5040902 or more days (B)3080110 Column Total 80120200\begin{array} {| l | c | c | c| } \hline\text { Absences } & \text { Under } 25 ( A ) & 25 \text { or More } \left( A ^ { \prime } \right) & \text { Row Total } \\\hline \text { Under } 2 \text { days } ( B ) & 50 & 40 & 90 \\\hline 2 \text { or more days } \left( B ^ { \prime } \right) & 30 & 80 & 110 \\\hline \text { Column Total } & 80 & 120 & 200\\\hline\end{array}

A).625
B).375
C).150
D).273
Question
Given the contingency table shown here, does the decision to retire appear independent of the employee type? Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A)Yes.
B)No.
Question
Given the contingency table shown here, if a mother attended some college but did not have a degree, what is the probability that she did not smoke during her pregnancy? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).2736
B).8399
C).8752
D).9197
Question
Given the contingency table shown here, what is the probability that a mother smoked during pregnancy if her education level was below high school? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).2385
B).0907
C).3503
D).3804
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/123
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Probability
1
If A and B are independent events, then P(A or B) = P(A) P(B).
False
2
When the outcome of a random experiment is a continuous measurement, the sample space is described by a rule instead of listing the possible simple events.
True
3
P(A | B) is the joint probability of events A and B divided by the probability ofA.
False
4
For any event A, the probability of A is always 0 ≤ P(A) ≤ 1.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
5
The sum of the probabilities of all compound events in a sample space equals one.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
6
The probability of the union of two events P(A or B) can exceed one.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
7
Events A and B are mutually exclusive if P(A∩B) = 0.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
8
Independent events are mutually exclusive.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
9
If events A and B are dependent, it can be concluded that one event causes the other.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
10
The odds of an event can be calculated by dividing the event's probability by the probability of its complement.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
11
The empirical view of probability is based on relative frequencies.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
12
The union of two events A and B is the event consisting of all outcomes in the sample space that are contained in both event A and event B.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
13
If events A and B are mutually exclusive, the joint probability of the events is zero.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
14
If events A and B are mutually exclusive, then P(A) + P(B) = 0.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
15
Grandma's predicting rain based on how much her arthritis is acting up is an example of the classical view of probability.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
16
The sum of all the probabilities of simple events in a sample space equals one.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
17
A sample space is the set of all possible outcomes in an experiment.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
18
Two events A and B are independent if P(A | B) is the same as P(A).
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
19
Probability is the measure of the relative likelihood that an event will occur.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
20
The general law of addition for probabilities says P(A or B) = P(A) + P(B) - P(A∩B).
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
21
If P(A) = 0.50, P(B) = 0.30, and P(A∩B) = 0.15, then A and B are independent events.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
22
Bayes' Theorem shows how to revise a prior probability to obtain a conditional or posterior probability when another event's occurrence is known.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
23
A contingency table is a cross-tabulation of frequencies for two categorical variables.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
24
The probability of A and its complement (A´) will always sum to one.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
25
Two events are mutually exclusive when they contain no outcomes in common.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
26
In a contingency table, the probability of the union of two events is found by taking the frequency of the intersection of the two events and dividing by the total.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
27
When two events cannot occur at the same time, they are said to be mutually exclusive.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
28
Events A and B are mutually exclusive when:

A)their joint probability is zero.
B)they are independent events.
C)P(A)P(B) = 0
D)P(A)P(B) = P(A | B)
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
29
If A and B are mutually exclusive events, then P(A∩B) = P(A) + P(B).
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
30
If event A occurs, then its complement (A´) will also occur.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
31
The probability of events A or B occurring can be found by summing their probabilities.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
32
The number of arrangements of sampled items drawn from a population is found with the formula for permutations (if order is important) or combinations (if order does not matter).
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
33
If P(A) = .20 then the odds against event A's occurrence are 4 to 1.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
34
The general law of addition for probabilities says P(A or B) = P(A) P(B).
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
35
The value of 7! is 5040.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
36
The union of two events is all outcomes in either or both, while the intersection is only those events in both.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
37
When two events A and B are independent, the probability of their intersection can be found by multiplying their probabilities.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
38
The sum of the probabilities of two mutually exclusive events is one.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
39
Insurance company life tables are an example of the classical (a priori) approach to probability.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
40
P(A∩B) = .50 is an example of a joint probability.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
41
Given the contingency table shown here, find P(V | W).  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).4000
B).0950
C).2375
D).5875
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
42
Independent events A and B would be consistent with which of the following statements:

A)P(A) = .3, P(B) = .5, P(A∩B) = .4.
B)P(A) = .4, P(B) = .5, P(A∩B) = .2.
C)P(A) = .5, P(B) = .4, P(A∩B) = .3.
D)P(A) = .4, P(B) = .3, P(A∩B) = .5.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
43
Given the contingency table shown here, find P(A or B). \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Age \text { Age }
 Absences  Under 25(A)25 or More (A) Row Total  Under 2 days (B)5040902 or more days (B)3080110 Column Total 80120200\begin{array} {| l | c | c | c| } \hline\text { Absences } & \text { Under } 25 ( A ) & 25 \text { or More } \left( A ^ { \prime } \right) & \text { Row Total } \\\hline \text { Under } 2 \text { days } ( B ) & 50 & 40 & 90 \\\hline 2 \text { or more days } \left( B ^ { \prime } \right) & 30 & 80 & 110 \\\hline \text { Column Total } & 80 & 120 & 200\\\hline\end{array}

A).25
B).85
C).60
D).42
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
44
Find the probability that either event A or B occurs if the chance of A occurring is .5, the chance of B occurring is .3, and events A and B are independent.

A).80
B).15
C).65
D).85
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
45
If two events are complementary, then we know that:

A)the sum of their probabilities is one.
B)the joint probability of the two events is one.
C)their intersection has a nonzero probability.
D)they are independent events.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
46
Given the contingency table shown here, find P(A2 | B3). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).0685
B).1893
C).3721
D).1842
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
47
Given the contingency table shown here, find P(A or M).  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).2500
B).7500
C).6250
D).1250
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
48
Given the contingency table shown here, find P(A2). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).1842
B).1766
C).8163
D).0578
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
49
Given the contingency table shown here, find P(W?S).  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).12
B).30
C).40
D).58
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
50
Regarding probability, which of the following is correct?

A)When events A and B are mutually exclusive, then P(A∩B) = P(A) + P(B).
B)The union of events A and B consists of all outcomes in the sample space that are contained in both event A and event B.
C)When two events A and B are independent, the joint probability of the events can be found by multiplying the probabilities of the individual events.
D)The probability of the union of two events can exceed one.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
51
Given the contingency table shown here, find P(V).  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).20
B).40
C).50
D).80
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
52
Within a given population, 22 percent of the people are smokers, 57 percent of the people are males, and 12 percent are males who smoke. If a person is chosen at random from the population, what is the probability that the selected person is either a male or a smoker?

A).67
B).79
C).22
D).43
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
53
Given the contingency table shown here, find P(B). \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Age \text { Age }
 Absences  Under 25(A)25 or More (A) Row Total  Under 2 days (B)5040902 or more days (B)3080110 Column Total 80120200\begin{array} {| l | c | c | c| } \hline\text { Absences } & \text { Under } 25 ( A ) & 25 \text { or More } \left( A ^ { \prime } \right) & \text { Row Total } \\\hline \text { Under } 2 \text { days } ( B ) & 50 & 40 & 90 \\\hline 2 \text { or more days } \left( B ^ { \prime } \right) & 30 & 80 & 110 \\\hline \text { Column Total } & 80 & 120 & 200\\\hline\end{array}

A).85
B).25
C).45
D).22
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
54
Given the contingency table shown here, find the probability that either event A2 or event B2 will occur. A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).4454
B).5054
C).0600
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
55
Given the contingency table shown here, find P(A1?A2). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).00
B).09
C).28
D).38
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
56
Regarding the rules of probability, which of the following statements is correct?

A)If A and B are independent events, then P(B) = P(A)P(B).
B)The sum of two mutually exclusive events is one.
C)The probability of A and its complement will sum to one.
D)If event A occurs, then its complement will also occur.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
57
Information was collected on those who attended the opening of a new movie. The analysis found that 56 percent of the moviegoers were female, 26 percent were under age 25, and 17 percent were females under the age of 25. Find the probability that a moviegoer is either female or under age 25.

A).79
B).82
C).65
D).50
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
58
Given the contingency table shown here, find the probability P(V´), that is, the probability of the complement of V.  Cell Phone Service Provider County Sprint (S) AT&T (A) Verizon (I) Row Total Macomb(M)1725850Oakland(O)19381370Wayne(W)24371980ColTotal6010040200\begin{array}{l}\quad\quad\quad\quad\quad\quad\quad\quad\text { Cell Phone Service Provider }\\\begin{array}{|c|c|c|c|c|}\hline County&\text { Sprint }(S) &\text { AT\&T }(A)& \text { Verizon }(I)& \text { Row Total }\\\hline Macomb (M) &17 & 25 & 8 & 50 \\\hline Oakland (O) &19 & 38 & 13 & 70 \\\hline Wayne (W) &24 & 37 & 19 & 80 \\\hline Col Total &60 & 100 & 40 & 200 \\\hline\end{array}\end{array}

A).30
B).50
C).80
D).15
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
59
Given the contingency table shown here, find P(A1 or B2). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).0933
B).3182
C).0300
D).3854
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
60
Given the contingency table shown here, find P(A3?B2). A1A2A3A4 Row Total B112264268148B214284464150B318324772169 Col Total 4486133204467\begin{array} { |c | c | c | c | c | c | } \hline{ } & { A _ { 1 } } & A _ { 2 } & A _ { 3 } & A _ { 4 } & \text { Row Total } \\\hline B _ { 1 } & 12 & 26 & 42 & 68&148 \\\hline B _ { 2 } & 14 & 28 & 44 & 64 &150\\\hline B _ { 3 } & 18 & 32 & 47 & 72 &169\\\hline \text { Col Total } & 44 & 86 & 133 & 204 & 467 \\\hline\end{array}

A).3212
B).2933
C).0942
D).1006
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
61
Oxnard Casualty wants to ensure that their e-mail server has 99.98 percent reliability. They will use several independent servers in parallel, each of which is 95 percent reliable. What is the smallest number of independent file servers that will accomplish the goal?

A)1
B)2
C)3
D)4
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
62
Given the contingency table shown here, what is the probability that a student attends a public school in a rural area?  What type of school do you attend? \text { What type of school do you attend? }
 Location  Public (P) Religious (R) Other Private (O) Row Total  Inner City (I) 35152070 Sububan (S) 45102580 Rural (R) 255535 Col Total 1053050185\begin{array}{|c|c|c|c|c|}\hline \text { Location } &\text { Public }(P) & \text { Religious }(R) & \text { Other Private }(O) & \text { Row Total } \\\hline \text { Inner City (I) }&35 & 15 & 20&70 \\\hline \text { Sububan (S) }&45 & 10 & 25&80 \\\hline \text { Rural (R) }&25 & 5 & 5&35 \\\hline \text { Col Total }& 105 & 30 & 50&185 \\\hline\end{array}

A).238
B).714
C).135
D).567
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
63
Given the contingency table shown here, what is the probability that a participant selected at random is a graduate student who opposes the change to a quarter system? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Group Surveyed \text { Group Surveyed }

 Opinion:  Undergrads (U) Graduates (G) Faculty (F) Row Total  Oppose Change (N) 732720120 Favor Change (S) 27233080 Col Total 1005050200\begin{array}{|c|c|c|c|c|}\hline \text { Opinion: } &\text { Undergrads }(U) & \text { Graduates }(G) & \text { Faculty }(F)& \text { Row Total } \\\hline \text { Oppose Change (N) } &73 & 27 & 20&120 \\\hline \text { Favor Change (S) } &27 & 23 & 30&80 \\\hline \text { Col Total } &100 & 50 & 50&200 \\\hline\end{array}

A).135
B).250
C).375
D).540
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
64
Given the contingency table shown here, find P(B | A). \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Age \text { Age }
 Absences  Under 25(A)25 or More (A) Row Total  Under 2 days (B)5040902 or more days (B)3080110 Column Total 80120200\begin{array} {| l | c | c | c| } \hline\text { Absences } & \text { Under } 25 ( A ) & 25 \text { or More } \left( A ^ { \prime } \right) & \text { Row Total } \\\hline \text { Under } 2 \text { days } ( B ) & 50 & 40 & 90 \\\hline 2 \text { or more days } \left( B ^ { \prime } \right) & 30 & 80 & 110 \\\hline \text { Column Total } & 80 & 120 & 200\\\hline\end{array}

A).250
B).555
C).855
D).625
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
65
Given the contingency table shown here, if a randomly chosen student attends a religious school, what is the probability the location is rural?
 What type of school do you attend? \text { What type of school do you attend? }
 Location  Public (P) Religious (R) Other Private (O) Row Total  Inner City (I) 35152070 Sububan (S) 45102580 Rural (R) 255535 Col Total 1053050185\begin{array}{|c|c|c|c|c|}\hline \text { Location } &\text { Public }(P) & \text { Religious }(R) & \text { Other Private }(O) & \text { Row Total } \\\hline \text { Inner City (I) }&35 & 15 & 20&70 \\\hline \text { Sububan (S) }&45 & 10 & 25&80 \\\hline \text { Rural (R) }&25 & 5 & 5&35 \\\hline \text { Col Total }& 105 & 30 & 50&185 \\\hline\end{array}

A).142
B).162
C).167
D).333
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
66
Ramjac Company wants to set up k independent file servers, each capable of running the company's intranet. Each server has average "uptime" of 98 percent. What must k be to achieve 99.999 percent probability that the intranet will be "up"?

A)1
B)2
C)3
D)4
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
67
Given the contingency table shown here, find P(W | M). Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A).145
B).250
C).581
D).687
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
68
Given the contingency table shown here, find P(L or W). Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A).750
B).588
C).435
D).895
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
69
Given the contingency table shown here, find P(R?L). Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A).250
B).315
C).425
D).850
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
70
Given the contingency table shown here, what is the probability that a mother in the study smoked during pregnancy? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).2591
B).3174
C).5000
D).7401
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
71
Given the contingency table shown here, what is the probability that a mother smoked during pregnancy and had a college degree? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).0111
B).0428
C).0803
D).2385
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
72
Given the contingency table shown here, if a survey participant is selected at random, what is the probability he/she is an undergrad who favors the change to a quarter system? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Group Surveyed \text { Group Surveyed }

 Opinion:  Undergrads (U) Graduates (G) Faculty (F) Row Total  Oppose Change (N) 732720120 Favor Change (S) 27233080 Col Total 1005050200\begin{array}{|c|c|c|c|c|}\hline \text { Opinion: } &\text { Undergrads }(U) & \text { Graduates }(G) & \text { Faculty }(F)& \text { Row Total } \\\hline \text { Oppose Change (N) } &73 & 27 & 20&120 \\\hline \text { Favor Change (S) } &27 & 23 & 30&80 \\\hline \text { Col Total } &100 & 50 & 50&200 \\\hline\end{array}

A).270
B).135
C).338
D).756
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
73
Given the contingency table shown here, if a faculty member is chosen at random, what is the probability he/she opposes the change to a quarter system? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Group Surveyed \text { Group Surveyed }

 Opinion:  Undergrads (U) Graduates (G) Faculty (F) Row Total  Oppose Change (N) 732720120 Favor Change (S) 27233080 Col Total 1005050200\begin{array}{|c|c|c|c|c|}\hline \text { Opinion: } &\text { Undergrads }(U) & \text { Graduates }(G) & \text { Faculty }(F)& \text { Row Total } \\\hline \text { Oppose Change (N) } &73 & 27 & 20&120 \\\hline \text { Favor Change (S) } &27 & 23 & 30&80 \\\hline \text { Col Total } &100 & 50 & 50&200 \\\hline\end{array}

A).10
B).25
C).40
D).60
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
74
Given the contingency table shown here, what is the probability that a mother smoked during pregnancy or that she graduated from college? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).0111
B).2591
C).3861
D).7850
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
75
Given the contingency table shown here, find the probability that a randomly chosen employee is a line worker who plans to retire at age 65. Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A).227
B).419
C).750
D).315
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
76
Given the contingency table shown here, find the probability that a mother with some college smoked during pregnancy. \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).1078
B).1746
C).1601
D).1117
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
77
Given the contingency table shown here, what is the probability that a randomly chosen employee who is under age 25 would be absent 2 or more days? \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad  Age \text { Age }
 Absences  Under 25(A)25 or More (A) Row Total  Under 2 days (B)5040902 or more days (B)3080110 Column Total 80120200\begin{array} {| l | c | c | c| } \hline\text { Absences } & \text { Under } 25 ( A ) & 25 \text { or More } \left( A ^ { \prime } \right) & \text { Row Total } \\\hline \text { Under } 2 \text { days } ( B ) & 50 & 40 & 90 \\\hline 2 \text { or more days } \left( B ^ { \prime } \right) & 30 & 80 & 110 \\\hline \text { Column Total } & 80 & 120 & 200\\\hline\end{array}

A).625
B).375
C).150
D).273
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
78
Given the contingency table shown here, does the decision to retire appear independent of the employee type? Survey question: Do you plan on retiring or keep working when you turn 65?  Employee  Retire (R) Work (W) Total  Management (M)131831 Line worker (L)395493 Total 5272124\begin{array} { | l | c | c | c | } \hline\text { Employee } & \text { Retire } ( R ) & \text { Work } ( W ) & \text { Total }\\\hline \text { Management } ( M ) & 13 & 18 &31 \\\hline \text { Line worker } ( L ) & 39 & 54 & 93 \\\hline \text { Total } & 52 & 72 & 124\\\hline\end{array}

A)Yes.
B)No.
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
79
Given the contingency table shown here, if a mother attended some college but did not have a degree, what is the probability that she did not smoke during her pregnancy? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).2736
B).8399
C).8752
D).9197
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
80
Given the contingency table shown here, what is the probability that a mother smoked during pregnancy if her education level was below high school? \quad \quad \quad \quad \quad \quad \quad \quad  Smoked during \text { Smoked during } \quad  Didn’t Smoke during \text { Didn't Smoke during }

 Mother’s Education  Pregnancy  Pregnancy  Row Total  Below High School 3936401,033 High School 5601,3701,930 Some College 121635756 College Degree48550598 Col Total 1,1223,2094,331\begin{array}{|c|r|r|r|}\hline \text { Mother's Education } & \text { Pregnancy } & \text { Pregnancy } & \text { Row Total } \\\hline\text { Below High School } &393 & 640 &1,033\\\hline \text { High School }&560 & 1,370&1,930 \\\hline \text { Some College }&121 & 635 &756\\\hline\text { College Degree} &48 & 550 &598\\\hline \text { Col Total } &1,122 & 3,209&4,331\\\hline\end{array}

A).2385
B).0907
C).3503
D).3804
Unlock Deck
Unlock for access to all 123 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 123 flashcards in this deck.