Deck 13: Double and Triple Integrals

Full screen (f)
exit full mode
Question
Evaluate the sum i=12j=13ij\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } i j
Use Space or
up arrow
down arrow
to flip the card.
Question
Evaluate the sum i=13j=12i2j\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 2 } i ^ { 2 } j
Question
Evaluate the sum i=12j=13ji\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } j ^ { i }
Question
Evaluate the sum i=13j=12ji\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 2 } j ^ { i }

A) 17
B) 6
C) 36
D) 20
Question
Evaluate the sum i=12j=13k=12ijk\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } \sum _ { k = 1 } ^ { 2 } \frac { i j } { k }
Question
Evaluate the sum i=13j=13k=12(kj)\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 3 } \sum _ { k = 1 } ^ { 2 } ( k - j )
Question
Evaluate the double integral Rxy+1dA\iint _ { R } x y + 1 d A where R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}
Question
Evaluate the double integral Rx2ydA\iint _ { R } \frac { x ^ { 2 } } { y } d A where R={(x,y):0x2 and 1ye}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 1 \leq \mathrm { y } \leq e \}
Question
Evaluate the double integral Rx2y3dA\iint _ { R } x ^ { 2 } y ^ { 3 } d A where R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}

A) 18\frac { 1 } { 8 }
B) 14\frac { 1 } { 4 }
C) 652\frac { 65 } { 2 }
D) 16\frac { 1 } { 6 }
Question
Evaluate the double integral Rxcos(xy)dA\iint _ { R } x \cos ( x y ) d A where R={(x,y):0xπ2 and 0y1}R = \left\{ ( x , y ) : 0 \leq x \leq \frac { \pi } { 2 } \text { and } 0 \leq \mathrm { y } \leq 1 \right\}
Question
Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=xy+1f ( x , y ) = x y + 1 and R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}
Question
Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=x2yf ( x , y ) = \frac { x ^ { 2 } } { y } and R={(x,y):0x2 and 1ye}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 1 \leq \mathrm { y } \leq e \}
Question
Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=x2y3f ( x , y ) = x ^ { 2 } y ^ { 3 } and R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}

A) 18\frac { 1 } { 8 }
B) 14\frac { 1 } { 4 }
C) 652\frac { 65 } { 2 }
D) 16\frac { 1 } { 6 }
Question
Find the volume between the graph of the given function and the specified rectangle. f(x,y)=x2yf ( x , y ) = x ^ { 2 } y and R={(x,y):1x1 and 1y1}R = \{ ( x , y ) : - 1 \leq x \leq 1 \text { and } - 1 \leq \mathrm { y } \leq 1 \}
Question
Find the volume between the graph of the given function and the specified rectangle. f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and R={(x,y):1x1 and 1y1}R = \{ ( x , y ) : - 1 \leq x \leq 1 \text { and } - 1 \leq \mathrm { y } \leq 1 \}

A) 00
B) 13\frac { 1 } { 3 }
C) 23\frac { 2 } { 3 }
D) 11
Question
Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to yy , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}
Question
Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to XX , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}
Question
Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to yy , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}

A) 022x2f(x,y)dydx\int _ { 0 } ^ { 2 } \int _ { 2 x } ^ { 2 } f ( x , y ) d y d x
B) 22x22+2f(x,y)dydx\int_{-2}^{2 x^{2}} \int_{-2}^{{+2}}f(x, y) d y d x

C) 024x24x2f(x,y)dydx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } f ( x , y ) d y d x
D) 224x24x2f(x,y)dydx\int _ { - 2 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } f ( x , y ) d y d x
Question
Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to XX , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}
Question
Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 01xxf(x,y)dydx\int _ { 0 } ^ { 1 } \int _ { - x } ^ { x } f ( x , y ) d y d x
Question
Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 111x21x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } f ( x , y ) d y d x
Question
Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 11x21f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { x ^ { 2 } } ^ { 1 } f ( x , y ) d y d x

A) 01yyf(x,y)dxdy\int _ { 0 } ^ { 1 } \int _ { - \sqrt { y } } ^ { \sqrt { y } } f ( x , y ) d x d y
B) 110yf(x,y)dxdy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { y } } f ( x , y ) d x d y
C) 010yf(x,y)dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { y } } f ( x , y ) d x d y
D) 11y2y2f(x,y)dxdy\int _ { - 1 } ^ { 1 } \int _ { - y ^ { 2 } } ^ { y ^ { 2 } } f ( x , y ) d x d y
Question
Find the volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=3xy+5f ( x , y ) = 3 x - y + 5 and Ω={(x,y):0x2 and 0y2x}\Omega = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}
Question
Find the (signed) volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and Ω={(x,y):x2+y24}\Omega = \left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 4 \right\}
Question
Find the volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=xeyf ( x , y ) = x e ^ { y } and Ω={(x,y):0x1 and x2y1}\Omega = \left\{ ( x , y ) : 0 \leq x \leq 1 \text { and } x ^ { 2 } \leq y \leq 1 \right\}

A) 32e\frac { 3 } { 2 } e
B) 12\frac { 1 } { 2 }
C) 12e\frac { 1 } { 2 } e
D) e12e - \frac { 1 } { 2 }
Question
Find the volume of the solid bounded above by the plane z=x+yz = x + y and below by the triangle with vertices (0, 0, 0), (1, 1, 0), and (1, -1, 0).
Question
Find the volume of the solid bounded above by the plane z=10x2yz = 10 - x - 2 y and below by the triangle with vertices (0, 0), (1, 0), and (0, 1) in the first quadrant of the xy plane.

A) 203\frac { 20 } { 3 }
B) 236\frac { 23 } { 6 }
C) 44
D) 83\frac { 8 } { 3 }
Question
Evaluate the integral 012xx2xydydx\int _ { 0 } ^ { 1 } \int _ { 2 x } ^ { x ^ { 2 } } x y d y d x
Question
Evaluate the integral 0π2sin(x)sin(x)cos(cos(x))dydx\int _ { 0 } ^ { \frac { \pi } { 2 } } \int _ { - \sin ( x ) } ^ { \sin ( x ) } \cos ( \cos ( x ) ) d y d x
Question
Evaluate the integral Rxsin(x3)dA\iint _ { R } x \sin \left( x ^ { 3 } \right) d A over the triangle with vertices (0, 0), (1, 3), and (1, -3).

A) 22
B) 2cos(1)22 \cos ( 1 ) - 2
C) 00
D) 22cos(1)2 - 2 \cos ( 1 )
Question
Find the area enclosed by the spiral r=θr = \theta and the y-axis for π2θ3π2\frac { \pi } { 2 } \leq \theta \leq \frac { 3 \pi } { 2 }
Question
Find the area enclosed in one petal of r=sin(3θ)r = \sin ( 3 \theta )
Question
Find the area enclosed in one petal of r=sin(5θ)r = \sin ( 5 \theta )

A) π15\frac { \pi } { 15 }
B) π20\frac { \pi } { 20 }
C) π25\frac { \pi } { 25 }
D) π30\frac { \pi } { 30 }
Question
Find the area between the cardioids r=3+3sin(θ)r = 3 + 3 \sin ( \theta ) and r=2+2sin(θ)r = 2 + 2 \sin ( \theta )
Question
Find the area inside the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 and to the right of x=1x = 1
Question
Find the area between the cardioids r=5+5sin(θ)r = 5 + 5 \sin ( \theta ) and r=2+2sin(θ)r = 2 + 2 \sin ( \theta )

A) 57π2\frac { 57 \pi } { 2 }
B) 59π2\frac { 59 \pi } { 2 }
C) 61π2\frac { 61 \pi } { 2 }
D) 63π2\frac { 63 \pi } { 2 }
Question
Find the volume of the solid bounded by the graph of z=1x2y2z = 1 - x ^ { 2 } - y ^ { 2 } and the xy plane.
Question
Find the volume of the solid bounded by the graph of z=4x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } and the xy plane.
Question
Find the volume of the solid bounded below by the graph of z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above by the plane z=4z = 4
Question
Find the volume of the solid bounded by the graph of z=16x2y2z = 16 - x ^ { 2 } - y ^ { 2 } and the xy plane.

A) 64π64 \pi
B) 128π128 \pi
C) 192π192 \pi
D) 256π256 \pi
Question
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Find the centroid of T.
Question
Let T be the triangle with vertices (0,0), (2,4), and (2,0). Let the density at each point of T be equal to the point's distance from the x-axis. Find the mass of T.
Question
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to the point's distance from the x-axis. Find MxM _ { x } for T.

A) 323\frac { 32 } { 3 }
B) 1616
C) 88
D) 44
Question
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to the point's distance from the x-axis. Find MyM _ { y } for T.

A) 323\frac { 32 } { 3 }
B) 1616
C) 88
D) 44
Question
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to 1. Find IxI _ { x } for T.
Question
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to 1. Find IyI _ { y } for T.
Question
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to 1. Find I0I _ { 0 } for T.

A) 88
B) 563\frac { 56 } { 3 }
C) 163\frac { 16 } { 3 }
D) 323\frac { 32 } { 3 }
Question
A disk of radius 2 meters is covered with mites. At the edge of the disk their density is 10,000 mites per square meter and at the center the density is 20,000 mites per square meter. If the mite density varies linearly with the distance from the center, how many mites are in the disk?
Question
Let ρ(r,θ)=θπ2\rho ( r , \theta ) = \frac { \theta } { \pi ^ { 2 } } be a joint probability distribution function on the unit disk. What is the probability of an event occurring in the region bounded by the spiral r=θ4,0θπr = \frac { \theta } { 4 } , 0 \leq \theta \leq \pi and the x-axis?
Question
Let D be the upper half of the unit disk. Assume it has density ρ(x,y)=x2+y2\rho ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } Find the mass of D.
Question
Evaluate the iterated integral 012311xyz2dzdydx\int _ { 0 } ^ { 1 } \int _ { 2 } ^ { 3 } \int _ { - 1 } ^ { 1 } x y z ^ { 2 } d z d y d x
Question
Evaluate the iterated integral 010π0yexsin(y2)dzdydx\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { \pi } } \int _ { 0 } ^ { y } e ^ { x } \sin \left( y ^ { 2 } \right) d z d y d x
Question
Evaluate the iterated integral 34121yxyzdzdydx\int _ { 3 } ^ { 4 } \int _ { 1 } ^ { 2 } \int _ { 1 } ^ { y } \frac { x } { y z } d z d y d x

A) 74ln(2)\frac { 7 } { 4 } \ln ( 2 )
B) 74(ln(2))2\frac { 7 } { 4 } ( \ln ( 2 ) ) ^ { 2 }
C) 72(ln(2))2\frac { 7 } { 2 } ( \ln ( 2 ) ) ^ { 2 }
D) 78(ln(2))2\frac { 7 } { 8 } ( \ln ( 2 ) ) ^ { 2 }
Question
Evaluate the following Rxyz2dV\iiint _ { R } x y z ^ { 2 } d V , where R={(x,y,z):0x1,0y3, and 1z1}R = \{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 3 , \text { and } - 1 \leq z \leq 1 \}
Question
Evaluate the following Rxysin(z)dV\iiint _ { R } x y \sin ( z ) d V , where R={(x,y,z):0x1,0y2, and 0zπ2}R = \left\{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 2 , \text { and } 0 \leq z \leq \frac { \pi } { 2 } \right\}
Question
Evaluate the following Rx2ysin(zy)dV\iiint _ { R } x ^ { 2 } y \sin ( z y ) d V , where R={(x,y,z):0x1,0y2, and 0zπ2}R = \left\{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 2 , \text { and } 0 \leq z \leq \frac { \pi } { 2 } \right\}

A) 12\frac { 1 } { 2 }
B) 34\frac { 3 } { 4 }
C) 23\frac { 2 } { 3 }
D) 18\frac { 1 } { 8 }
Question
Rewrite the following integral, switching the order of the y and z integrations. 024x24x24x2y24x2y2f(x,y,z)dzdydx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { - \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } f ( x , y , z ) d z d y d x
Question
Rewrite the following integral, switching the order of the y and z integrations. 024x24x24x2z24x2z2f(x,y,z)dydzdx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { - \sqrt { 4 - x ^ { 2 } - z ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - z ^ { 2 } } } f ( x , y , z ) d y d z d x
Question
Evaluate 0201+x21x+y1+y2zxdzdydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 + x ^ { 2 } } \int _ { 1 - x + y } ^ { 1 + y } 2 z x d z d y d x
Question
Evaluate 3172x2+x24xx23xyz3dzdydx\int _ { 3 } ^ { 17 } \int _ { - 2 - x } ^ { 2 + x ^ { 2 } } \int _ { 4 x } ^ { x ^ { 2 } } 3 x y z ^ { 3 } d z d y d x

A) 343\frac { 34 } { 3 }
B) 1742- \frac { 17 } { 42 }
C) 00
D) 66
Question
Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+y+z=1x + y + z = 1 , where the density is equal to the distance from the yz-plane.
Question
Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+4y+z=4x + 4 y + z = 4 , where the density is equal to the distance from the xz-plane.
Question
Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+y+z=1x + y + z = 1 , where the density is ρ(x,y,z)=12xy\rho ( x , y , z ) = 12 x y

A) 18\frac { 1 } { 8 }
B) 110\frac { 1 } { 10 }
C) 112\frac { 1 } { 12 }
D) 114\frac { 1 } { 14 }
Question
Give the cylindrical coordinates for the point with the rectangular coordinates (1,1,1)( 1,1,1 )
Question
Give the spherical coordinates for the point with the rectangular coordinates (1,1,1)( 1,1,1 )
Question
Give the rectangular coordinates for the point with the cylindrical coordinates (2,π4,1)\left( \sqrt { 2 } , \frac { \pi } { 4 } , 1 \right)

A) (1,1,1)( 1,1,1 )
B) (1,2,1)( 1,2,1 )
C) (1,12,1)\left( 1 , \frac { 1 } { 2 } , 1 \right)
D) (2,2,2)( 2,2,2 ) d
Question
Give the rectangular coordinates for the point with the spherical coordinates (3,π4,arccos(13))\left( \sqrt { 3 } , \frac { \pi } { 4 } , \arccos \left( \frac { 1 } { \sqrt { 3 } } \right) \right)
Question
Write y=2y = 2 in cylindrical coordinates.
Question
Write y=2y = 2 in spherical coordinates.

A) ρ=2csc(θ)sec(φ)\rho = 2 \csc ( \theta ) \sec ( \varphi )
B) ρ=2csc(θ)csc(φ)\rho = 2 \csc ( \theta ) \csc ( \varphi )
C) ρ=2sec(θ)csc(φ)\rho = 2 \sec ( \theta ) \csc ( \varphi )
D) ρ=2sec(θ)sec(φ)\rho = 2 \sec ( \theta ) \sec ( \varphi )
Question
Write the cylindrical equation r=16r = 16 in rectangular coordinates.
Question
Give the rectangular coordinates for the point with the spherical coordinates (4,π6,π4)\left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)

A) (6,6,22)( \sqrt { 6 } , \sqrt { 6 } , 2 \sqrt { 2 } )
B) (6,26,2)( \sqrt { 6 } , 2 \sqrt { 6 } , \sqrt { 2 } )
C) (26,26,22)( 2 \sqrt { 6 } , 2 \sqrt { 6 } , 2 \sqrt { 2 } )
D) (6,2,22)( \sqrt { 6 } , \sqrt { 2 } , 2 \sqrt { 2 } )
Question
Give the cylindrical coordinates for the point with the spherical coordinates (4,π6,π4)\left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)
Question
Change x2+y2=zx ^ { 2 } + y ^ { 2 } = z into cylindrical coordinates.
Question
Use cylindrical coordinates to find RzdV\iiint _ { R } z d V , where R={(x,y,z):x2+y24, and 0zx2+y2}R = \left\{ ( x , y , z ) : x ^ { 2 } + y ^ { 2 } \leq 4 , \text { and } 0 \leq \mathrm { z } \leq x ^ { 2 } + y ^ { 2 } \right\}
Question
Use cylindrical coordinates to find RdV\iiint _ { R } d V , where R={(r,θ,z):0θπ,0r4sin(θ), and 0z16r2}R = \left\{ ( r , \theta , z ) : 0 \leq \theta \leq \pi , 0 \leq \mathrm { r } \leq 4 \sin ( \theta ) , \text { and } 0 \leq \mathrm { z } \leq \sqrt { 16 - r ^ { 2 } } \right\}
Question
Use cylindrical coordinates to find RdV\iiint _ { R } d V , where RR is the intersection of the sphere of radius 2 and the interior of the cone φ=π4\varphi = \frac { \pi } { 4 }
Question
Find the mass of the solid whose density is equal to twice the distance from the origin, which is below the plane z=4z = 4 and above the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and the xy plane.

A) 83π\frac { 8 } { 3 } \pi
B) 163π\frac { 16 } { 3 } \pi
C) 323π\frac { 32 } { 3 } \pi
D) 2563π(221)\frac { 256 } { 3 } \pi ( 2 \sqrt { 2 } - 1 )
Question
Find the mass of the solid whose density is equal to twice the distance from the origin, which is outside the sphere of radius 3 and inside the sphere of radius 5.

A) 544π544 \pi
B) 1088π1088 \pi
C) 272π272 \pi
D) 136π136 \pi
Question
The functions x=x(u,v)x = x ( u , v ) and y=y(u,v)y = y ( u , v ) are given to determine transformations from the xy-coordinate system to a uv-coordinate system. Find the Jacobian of the transformation. x=2uvy=2u+v\begin{array} { l } x = 2 u - v \\y = 2 u + v\end{array}
Question
The functions x=x(u,v)x = x ( u , v ) and y=y(u,v)y = y ( u , v ) are given to determine transformations from the xy-coordinate system to a uv-coordinate system. Find the Jacobian of the transformation. x=3u+2vy=u+v\begin{array} { l } x = 3 u + 2 v \\y = u + v\end{array}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/84
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Double and Triple Integrals
1
Evaluate the sum i=12j=13ij\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } i j
18
2
Evaluate the sum i=13j=12i2j\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 2 } i ^ { 2 } j
42
3
Evaluate the sum i=12j=13ji\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } j ^ { i }
20
4
Evaluate the sum i=13j=12ji\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 2 } j ^ { i }

A) 17
B) 6
C) 36
D) 20
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
5
Evaluate the sum i=12j=13k=12ijk\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } \sum _ { k = 1 } ^ { 2 } \frac { i j } { k }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
6
Evaluate the sum i=13j=13k=12(kj)\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 3 } \sum _ { k = 1 } ^ { 2 } ( k - j )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate the double integral Rxy+1dA\iint _ { R } x y + 1 d A where R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate the double integral Rx2ydA\iint _ { R } \frac { x ^ { 2 } } { y } d A where R={(x,y):0x2 and 1ye}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 1 \leq \mathrm { y } \leq e \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
9
Evaluate the double integral Rx2y3dA\iint _ { R } x ^ { 2 } y ^ { 3 } d A where R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}

A) 18\frac { 1 } { 8 }
B) 14\frac { 1 } { 4 }
C) 652\frac { 65 } { 2 }
D) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate the double integral Rxcos(xy)dA\iint _ { R } x \cos ( x y ) d A where R={(x,y):0xπ2 and 0y1}R = \left\{ ( x , y ) : 0 \leq x \leq \frac { \pi } { 2 } \text { and } 0 \leq \mathrm { y } \leq 1 \right\}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
11
Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=xy+1f ( x , y ) = x y + 1 and R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
12
Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=x2yf ( x , y ) = \frac { x ^ { 2 } } { y } and R={(x,y):0x2 and 1ye}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 1 \leq \mathrm { y } \leq e \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
13
Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=x2y3f ( x , y ) = x ^ { 2 } y ^ { 3 } and R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}

A) 18\frac { 1 } { 8 }
B) 14\frac { 1 } { 4 }
C) 652\frac { 65 } { 2 }
D) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
14
Find the volume between the graph of the given function and the specified rectangle. f(x,y)=x2yf ( x , y ) = x ^ { 2 } y and R={(x,y):1x1 and 1y1}R = \{ ( x , y ) : - 1 \leq x \leq 1 \text { and } - 1 \leq \mathrm { y } \leq 1 \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
15
Find the volume between the graph of the given function and the specified rectangle. f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and R={(x,y):1x1 and 1y1}R = \{ ( x , y ) : - 1 \leq x \leq 1 \text { and } - 1 \leq \mathrm { y } \leq 1 \}

A) 00
B) 13\frac { 1 } { 3 }
C) 23\frac { 2 } { 3 }
D) 11
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
16
Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to yy , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
17
Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to XX , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
18
Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to yy , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}

A) 022x2f(x,y)dydx\int _ { 0 } ^ { 2 } \int _ { 2 x } ^ { 2 } f ( x , y ) d y d x
B) 22x22+2f(x,y)dydx\int_{-2}^{2 x^{2}} \int_{-2}^{{+2}}f(x, y) d y d x

C) 024x24x2f(x,y)dydx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } f ( x , y ) d y d x
D) 224x24x2f(x,y)dydx\int _ { - 2 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } f ( x , y ) d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
19
Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to XX , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
20
Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 01xxf(x,y)dydx\int _ { 0 } ^ { 1 } \int _ { - x } ^ { x } f ( x , y ) d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
21
Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 111x21x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } f ( x , y ) d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
22
Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 11x21f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { x ^ { 2 } } ^ { 1 } f ( x , y ) d y d x

A) 01yyf(x,y)dxdy\int _ { 0 } ^ { 1 } \int _ { - \sqrt { y } } ^ { \sqrt { y } } f ( x , y ) d x d y
B) 110yf(x,y)dxdy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { y } } f ( x , y ) d x d y
C) 010yf(x,y)dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { y } } f ( x , y ) d x d y
D) 11y2y2f(x,y)dxdy\int _ { - 1 } ^ { 1 } \int _ { - y ^ { 2 } } ^ { y ^ { 2 } } f ( x , y ) d x d y
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
23
Find the volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=3xy+5f ( x , y ) = 3 x - y + 5 and Ω={(x,y):0x2 and 0y2x}\Omega = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
24
Find the (signed) volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and Ω={(x,y):x2+y24}\Omega = \left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 4 \right\}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
25
Find the volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=xeyf ( x , y ) = x e ^ { y } and Ω={(x,y):0x1 and x2y1}\Omega = \left\{ ( x , y ) : 0 \leq x \leq 1 \text { and } x ^ { 2 } \leq y \leq 1 \right\}

A) 32e\frac { 3 } { 2 } e
B) 12\frac { 1 } { 2 }
C) 12e\frac { 1 } { 2 } e
D) e12e - \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
26
Find the volume of the solid bounded above by the plane z=x+yz = x + y and below by the triangle with vertices (0, 0, 0), (1, 1, 0), and (1, -1, 0).
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
27
Find the volume of the solid bounded above by the plane z=10x2yz = 10 - x - 2 y and below by the triangle with vertices (0, 0), (1, 0), and (0, 1) in the first quadrant of the xy plane.

A) 203\frac { 20 } { 3 }
B) 236\frac { 23 } { 6 }
C) 44
D) 83\frac { 8 } { 3 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
28
Evaluate the integral 012xx2xydydx\int _ { 0 } ^ { 1 } \int _ { 2 x } ^ { x ^ { 2 } } x y d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
29
Evaluate the integral 0π2sin(x)sin(x)cos(cos(x))dydx\int _ { 0 } ^ { \frac { \pi } { 2 } } \int _ { - \sin ( x ) } ^ { \sin ( x ) } \cos ( \cos ( x ) ) d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
30
Evaluate the integral Rxsin(x3)dA\iint _ { R } x \sin \left( x ^ { 3 } \right) d A over the triangle with vertices (0, 0), (1, 3), and (1, -3).

A) 22
B) 2cos(1)22 \cos ( 1 ) - 2
C) 00
D) 22cos(1)2 - 2 \cos ( 1 )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
31
Find the area enclosed by the spiral r=θr = \theta and the y-axis for π2θ3π2\frac { \pi } { 2 } \leq \theta \leq \frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
32
Find the area enclosed in one petal of r=sin(3θ)r = \sin ( 3 \theta )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
33
Find the area enclosed in one petal of r=sin(5θ)r = \sin ( 5 \theta )

A) π15\frac { \pi } { 15 }
B) π20\frac { \pi } { 20 }
C) π25\frac { \pi } { 25 }
D) π30\frac { \pi } { 30 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
34
Find the area between the cardioids r=3+3sin(θ)r = 3 + 3 \sin ( \theta ) and r=2+2sin(θ)r = 2 + 2 \sin ( \theta )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
35
Find the area inside the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 and to the right of x=1x = 1
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
36
Find the area between the cardioids r=5+5sin(θ)r = 5 + 5 \sin ( \theta ) and r=2+2sin(θ)r = 2 + 2 \sin ( \theta )

A) 57π2\frac { 57 \pi } { 2 }
B) 59π2\frac { 59 \pi } { 2 }
C) 61π2\frac { 61 \pi } { 2 }
D) 63π2\frac { 63 \pi } { 2 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
37
Find the volume of the solid bounded by the graph of z=1x2y2z = 1 - x ^ { 2 } - y ^ { 2 } and the xy plane.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
38
Find the volume of the solid bounded by the graph of z=4x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } and the xy plane.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
39
Find the volume of the solid bounded below by the graph of z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above by the plane z=4z = 4
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
40
Find the volume of the solid bounded by the graph of z=16x2y2z = 16 - x ^ { 2 } - y ^ { 2 } and the xy plane.

A) 64π64 \pi
B) 128π128 \pi
C) 192π192 \pi
D) 256π256 \pi
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
41
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Find the centroid of T.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
42
Let T be the triangle with vertices (0,0), (2,4), and (2,0). Let the density at each point of T be equal to the point's distance from the x-axis. Find the mass of T.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
43
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to the point's distance from the x-axis. Find MxM _ { x } for T.

A) 323\frac { 32 } { 3 }
B) 1616
C) 88
D) 44
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
44
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to the point's distance from the x-axis. Find MyM _ { y } for T.

A) 323\frac { 32 } { 3 }
B) 1616
C) 88
D) 44
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
45
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to 1. Find IxI _ { x } for T.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
46
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to 1. Find IyI _ { y } for T.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
47
Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to 1. Find I0I _ { 0 } for T.

A) 88
B) 563\frac { 56 } { 3 }
C) 163\frac { 16 } { 3 }
D) 323\frac { 32 } { 3 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
48
A disk of radius 2 meters is covered with mites. At the edge of the disk their density is 10,000 mites per square meter and at the center the density is 20,000 mites per square meter. If the mite density varies linearly with the distance from the center, how many mites are in the disk?
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
49
Let ρ(r,θ)=θπ2\rho ( r , \theta ) = \frac { \theta } { \pi ^ { 2 } } be a joint probability distribution function on the unit disk. What is the probability of an event occurring in the region bounded by the spiral r=θ4,0θπr = \frac { \theta } { 4 } , 0 \leq \theta \leq \pi and the x-axis?
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
50
Let D be the upper half of the unit disk. Assume it has density ρ(x,y)=x2+y2\rho ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } Find the mass of D.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
51
Evaluate the iterated integral 012311xyz2dzdydx\int _ { 0 } ^ { 1 } \int _ { 2 } ^ { 3 } \int _ { - 1 } ^ { 1 } x y z ^ { 2 } d z d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
52
Evaluate the iterated integral 010π0yexsin(y2)dzdydx\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { \pi } } \int _ { 0 } ^ { y } e ^ { x } \sin \left( y ^ { 2 } \right) d z d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
53
Evaluate the iterated integral 34121yxyzdzdydx\int _ { 3 } ^ { 4 } \int _ { 1 } ^ { 2 } \int _ { 1 } ^ { y } \frac { x } { y z } d z d y d x

A) 74ln(2)\frac { 7 } { 4 } \ln ( 2 )
B) 74(ln(2))2\frac { 7 } { 4 } ( \ln ( 2 ) ) ^ { 2 }
C) 72(ln(2))2\frac { 7 } { 2 } ( \ln ( 2 ) ) ^ { 2 }
D) 78(ln(2))2\frac { 7 } { 8 } ( \ln ( 2 ) ) ^ { 2 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
54
Evaluate the following Rxyz2dV\iiint _ { R } x y z ^ { 2 } d V , where R={(x,y,z):0x1,0y3, and 1z1}R = \{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 3 , \text { and } - 1 \leq z \leq 1 \}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
55
Evaluate the following Rxysin(z)dV\iiint _ { R } x y \sin ( z ) d V , where R={(x,y,z):0x1,0y2, and 0zπ2}R = \left\{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 2 , \text { and } 0 \leq z \leq \frac { \pi } { 2 } \right\}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
56
Evaluate the following Rx2ysin(zy)dV\iiint _ { R } x ^ { 2 } y \sin ( z y ) d V , where R={(x,y,z):0x1,0y2, and 0zπ2}R = \left\{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 2 , \text { and } 0 \leq z \leq \frac { \pi } { 2 } \right\}

A) 12\frac { 1 } { 2 }
B) 34\frac { 3 } { 4 }
C) 23\frac { 2 } { 3 }
D) 18\frac { 1 } { 8 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
57
Rewrite the following integral, switching the order of the y and z integrations. 024x24x24x2y24x2y2f(x,y,z)dzdydx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { - \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } f ( x , y , z ) d z d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
58
Rewrite the following integral, switching the order of the y and z integrations. 024x24x24x2z24x2z2f(x,y,z)dydzdx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { - \sqrt { 4 - x ^ { 2 } - z ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - z ^ { 2 } } } f ( x , y , z ) d y d z d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
59
Evaluate 0201+x21x+y1+y2zxdzdydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 + x ^ { 2 } } \int _ { 1 - x + y } ^ { 1 + y } 2 z x d z d y d x
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
60
Evaluate 3172x2+x24xx23xyz3dzdydx\int _ { 3 } ^ { 17 } \int _ { - 2 - x } ^ { 2 + x ^ { 2 } } \int _ { 4 x } ^ { x ^ { 2 } } 3 x y z ^ { 3 } d z d y d x

A) 343\frac { 34 } { 3 }
B) 1742- \frac { 17 } { 42 }
C) 00
D) 66
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
61
Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+y+z=1x + y + z = 1 , where the density is equal to the distance from the yz-plane.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
62
Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+4y+z=4x + 4 y + z = 4 , where the density is equal to the distance from the xz-plane.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
63
Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+y+z=1x + y + z = 1 , where the density is ρ(x,y,z)=12xy\rho ( x , y , z ) = 12 x y

A) 18\frac { 1 } { 8 }
B) 110\frac { 1 } { 10 }
C) 112\frac { 1 } { 12 }
D) 114\frac { 1 } { 14 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
64
Give the cylindrical coordinates for the point with the rectangular coordinates (1,1,1)( 1,1,1 )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
65
Give the spherical coordinates for the point with the rectangular coordinates (1,1,1)( 1,1,1 )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
66
Give the rectangular coordinates for the point with the cylindrical coordinates (2,π4,1)\left( \sqrt { 2 } , \frac { \pi } { 4 } , 1 \right)

A) (1,1,1)( 1,1,1 )
B) (1,2,1)( 1,2,1 )
C) (1,12,1)\left( 1 , \frac { 1 } { 2 } , 1 \right)
D) (2,2,2)( 2,2,2 ) d
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
67
Give the rectangular coordinates for the point with the spherical coordinates (3,π4,arccos(13))\left( \sqrt { 3 } , \frac { \pi } { 4 } , \arccos \left( \frac { 1 } { \sqrt { 3 } } \right) \right)
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
68
Write y=2y = 2 in cylindrical coordinates.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
69
Write y=2y = 2 in spherical coordinates.

A) ρ=2csc(θ)sec(φ)\rho = 2 \csc ( \theta ) \sec ( \varphi )
B) ρ=2csc(θ)csc(φ)\rho = 2 \csc ( \theta ) \csc ( \varphi )
C) ρ=2sec(θ)csc(φ)\rho = 2 \sec ( \theta ) \csc ( \varphi )
D) ρ=2sec(θ)sec(φ)\rho = 2 \sec ( \theta ) \sec ( \varphi )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
70
Write the cylindrical equation r=16r = 16 in rectangular coordinates.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
71
Give the rectangular coordinates for the point with the spherical coordinates (4,π6,π4)\left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)

A) (6,6,22)( \sqrt { 6 } , \sqrt { 6 } , 2 \sqrt { 2 } )
B) (6,26,2)( \sqrt { 6 } , 2 \sqrt { 6 } , \sqrt { 2 } )
C) (26,26,22)( 2 \sqrt { 6 } , 2 \sqrt { 6 } , 2 \sqrt { 2 } )
D) (6,2,22)( \sqrt { 6 } , \sqrt { 2 } , 2 \sqrt { 2 } )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
72
Give the cylindrical coordinates for the point with the spherical coordinates (4,π6,π4)\left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
73
Change x2+y2=zx ^ { 2 } + y ^ { 2 } = z into cylindrical coordinates.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
74
Use cylindrical coordinates to find RzdV\iiint _ { R } z d V , where R={(x,y,z):x2+y24, and 0zx2+y2}R = \left\{ ( x , y , z ) : x ^ { 2 } + y ^ { 2 } \leq 4 , \text { and } 0 \leq \mathrm { z } \leq x ^ { 2 } + y ^ { 2 } \right\}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
75
Use cylindrical coordinates to find RdV\iiint _ { R } d V , where R={(r,θ,z):0θπ,0r4sin(θ), and 0z16r2}R = \left\{ ( r , \theta , z ) : 0 \leq \theta \leq \pi , 0 \leq \mathrm { r } \leq 4 \sin ( \theta ) , \text { and } 0 \leq \mathrm { z } \leq \sqrt { 16 - r ^ { 2 } } \right\}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
76
Use cylindrical coordinates to find RdV\iiint _ { R } d V , where RR is the intersection of the sphere of radius 2 and the interior of the cone φ=π4\varphi = \frac { \pi } { 4 }
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
77
Find the mass of the solid whose density is equal to twice the distance from the origin, which is below the plane z=4z = 4 and above the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and the xy plane.

A) 83π\frac { 8 } { 3 } \pi
B) 163π\frac { 16 } { 3 } \pi
C) 323π\frac { 32 } { 3 } \pi
D) 2563π(221)\frac { 256 } { 3 } \pi ( 2 \sqrt { 2 } - 1 )
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
78
Find the mass of the solid whose density is equal to twice the distance from the origin, which is outside the sphere of radius 3 and inside the sphere of radius 5.

A) 544π544 \pi
B) 1088π1088 \pi
C) 272π272 \pi
D) 136π136 \pi
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
79
The functions x=x(u,v)x = x ( u , v ) and y=y(u,v)y = y ( u , v ) are given to determine transformations from the xy-coordinate system to a uv-coordinate system. Find the Jacobian of the transformation. x=2uvy=2u+v\begin{array} { l } x = 2 u - v \\y = 2 u + v\end{array}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
80
The functions x=x(u,v)x = x ( u , v ) and y=y(u,v)y = y ( u , v ) are given to determine transformations from the xy-coordinate system to a uv-coordinate system. Find the Jacobian of the transformation. x=3u+2vy=u+v\begin{array} { l } x = 3 u + 2 v \\y = u + v\end{array}
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 84 flashcards in this deck.