Deck 11: Sequences, Series, and the Binomial Theorem

Full screen (f)
exit full mode
Question
Find S1,S2S _ { 1 } , S _ { 2 } and S6S _ { 6 } for an=8n+9a _ { n } = 8 n + 9 .

A) S1=17;S2=34;S6=102S _ { 1 } = 17 ; S _ { 2 } = 34 ; S _ { 6 } = 102
B) S1=17;S2=25;S6=57S _ { 1 } = 17 ; S _ { 2 } = 25 ; S _ { 6 } = 57
C) S1=17;S2=25;S6=177S _ { 1 } = 17 ; S _ { 2 } = 25 ; S _ { 6 } = 177
D) S1=17;S2=33;S6=177S _ { 1 } = 17 ; S _ { 2 } = 33 ; S _ { 6 } = 177
E) S1=17;S2=42;S6=222S _ { 1 } = 17 ; S _ { 2 } = 42 ; S _ { 6 } = 222
Use Space or
up arrow
down arrow
to flip the card.
Question
Write the first five terms of the sequence (14)n+2\left( - \frac { 1 } { 4 } \right) ^ { n + 2 } . Assume that n begins with 1.

A) a1=164,a2=1256,a3=11024,a4=14096,a5=116384a _ { 1 } = - \frac { 1 } { 64 } , a _ { 2 } = \frac { 1 } { 256 } , a _ { 3 } = - \frac { 1 } { 1024 } , a _ { 4 } = \frac { 1 } { 4096 } , a _ { 5 } = - \frac { 1 } { 16384 }
B) a1=116,a2=164,a3=1256,a4=11024,a5=14096a _ { 1 } = \frac { 1 } { 16 } , a _ { 2 } = \frac { 1 } { 64 } , a _ { 3 } = \frac { 1 } { 256 } , a _ { 4 } = \frac { 1 } { 1024 } , a _ { 5 } = \frac { 1 } { 4096 }
C) a1=116,a2=164,a3=1256,a4=11024,a5=14096a _ { 1 } = - \frac { 1 } { 16 } , a _ { 2 } = \frac { 1 } { 64 } , a _ { 3 } = - \frac { 1 } { 256 } , a _ { 4 } = \frac { 1 } { 1024 } , a _ { 5 } = - \frac { 1 } { 4096 }
D) a1=116,a2=164,a3=1256,a4=11024,a5=14096a _ { 1 } = \frac { 1 } { 16 } , a _ { 2 } = - \frac { 1 } { 64 } , a _ { 3 } = \frac { 1 } { 256 } , a _ { 4 } = - \frac { 1 } { 1024 } , a _ { 5 } = \frac { 1 } { 4096 }
E) a1=164,a2=1256,a3=11024,a4=14096,a5=116384a _ { 1 } = \frac { 1 } { 64 } , a _ { 2 } = \frac { 1 } { 256 } , a _ { 3 } = \frac { 1 } { 1024 } , a _ { 4 } = \frac { 1 } { 4096 } , a _ { 5 } = \frac { 1 } { 16384 }
Question
Write an expression for the n th term of the sequence 3,8,13,18,23,3,8,13,18,23 , \ldots Assume that n begins with 1.

A) an=3+5na _ { n } = 3 + 5 n
B) an=3+6na _ { n } = 3 + 6 n
C) an=3+6(n+1)a _ { n } = 3 + 6 ( n + 1 )
D) an=3+5(n1)a _ { n } = 3 + 5 ( n - 1 )
E) an=3+5(n+1)a _ { n } = 3 + 5 ( n + 1 )
Question
Write the first five terms of the sequence an=(n+6)!(n+3)!a _ { n } = \frac { ( n + 6 ) ! } { ( n + 3 ) ! } . Assume that n begins with 1.

A) a1=120,a2=210,a3=336,a4=504,a5=720a _ { 1 } = 120 , a _ { 2 } = 210 , a _ { 3 } = 336 , a _ { 4 } = 504 , a _ { 5 } = 720
B) a1=202,a2=330,a3=502,a4=719,a5=990a _ { 1 } = 202 , a _ { 2 } = 330 , a _ { 3 } = 502 , a _ { 4 } = 719 , a _ { 5 } = 990
C) a1=210,a2=336,a3=504,a4=720,a5=990a _ { 1 } = 210 , a _ { 2 } = 336 , a _ { 3 } = 504 , a _ { 4 } = 720 , a _ { 5 } = 990
D) a1=103,a2=194,a3=328,a4=501,a5=719a _ { 1 } = 103 , a _ { 2 } = 194 , a _ { 3 } = 328 , a _ { 4 } = 501 , a _ { 5 } = 719
E) a1=336,a2=504,a3=720,a4=990,a5=1320a _ { 1 } = 336 , a _ { 2 } = 504 , a _ { 3 } = 720 , a _ { 4 } = 990 , a _ { 5 } = 1320
Question
Write the first five terms of the sequence an=3+(5n)n!a _ { n } = \frac { - 3 + \left( - 5 ^ { n } \right) } { n ! } . Assume that n begins with 1.

A) a1=2,a2=14,a3=613,a4=1576,a5=156160a _ { 1 } = - 2 , a _ { 2 } = 14 , a _ { 3 } = - \frac { 61 } { 3 } , a _ { 4 } = \frac { 157 } { 6 } , a _ { 5 } = - \frac { 1561 } { 60 }
B) a1=8,a2=11,a3=643,a4=31112,a5=39115a _ { 1 } = 8 , a _ { 2 } = - 11 , a _ { 3 } = \frac { 64 } { 3 } , a _ { 4 } = - \frac { 311 } { 12 } , a _ { 5 } = \frac { 391 } { 15 }
C) a1=2,a2=14,a3=613,a4=3116,a5=39115a _ { 1 } = - 2 , a _ { 2 } = 14 , a _ { 3 } = \frac { 61 } { 3 } , a _ { 4 } = - \frac { 311 } { 6 } , a _ { 5 } = - \frac { 391 } { 15 }
D) a1=2,a2=14,a3=613,a4=1576,a5=156160a _ { 1 } = 2 , a _ { 2 } = - 14 , a _ { 3 } = \frac { 61 } { 3 } , a _ { 4 } = - \frac { 157 } { 6 } , a _ { 5 } = \frac { 1561 } { 60 }
E) a1=8,a2=11,a3=643,a4=31112,a5=39115a _ { 1 } = - 8 , a _ { 2 } = 11 , a _ { 3 } = - \frac { 64 } { 3 } , a _ { 4 } = \frac { 311 } { 12 } , a _ { 5 } = - \frac { 391 } { 15 }
Question
Write an expression for the n th term of the sequence 2,5,10,17,26,....2,5,10,17,26,.... Assume that n begins with 1.

A) an=n+4a _ { n } = n + 4
B) an=n2+1a _ { n } = n ^ { 2 } + 1
C) an=n3+1a _ { n } = n ^ { 3 } + 1
D) an=n32a _ { n } = n ^ { 3 } - 2
E) an=n22a _ { n } = n ^ { 2 } - 2
Question
Simplify the expression 8!11!\frac { 8 ! } { 11 ! } .

A) 1729\frac { 1 } { 729 }
B) 1990\frac { 1 } { 990 }
C) 1720\frac { 1 } { 720 }
D) 990
E) 720
Question
Write an expression for the n th term of the sequence 16,136,1216,11296,\frac { 1 } { 6 } , - \frac { 1 } { 36 } , \frac { 1 } { 216 } , - \frac { 1 } { 1296 } , \ldots Assume that n begins with 1.

A) an=(1)n6n+2a _ { n } = \frac { ( - 1 ) ^ { n } } { 6 ^ { n + 2 } }
B) an=(1)n+16n+1a _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { 6 ^ { n + 1 } }
C) an=(1)n6n+1a _ { n } = \frac { ( - 1 ) ^ { n } } { 6 ^ { n + 1 } }
D) an=(1)n+16na _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { 6 ^ { n } }
E) an=(1)n6na _ { n } = \frac { ( - 1 ) ^ { n } } { 6 ^ { n } }
Question
Write the first five terms of the sequence (1)n9n( - 1 ) ^ { n } 9 n . Assume that n begins with 1.

A) a1=0,a2=9,a3=18,a4=27,a5=36a _ { 1 } = 0 , a _ { 2 } = - 9 , a _ { 3 } = 18 , a _ { 4 } = - 27 , a _ { 5 } = 36
B) a1=9,a2=18,a3=27,a4=36,a5=45a _ { 1 } = 9 , a _ { 2 } = 18 , a _ { 3 } = 27 , a _ { 4 } = 36 , a _ { 5 } = 45
C) a1=0,a2=18,a3=27,a4=36,a5=45a _ { 1 } = 0 , a _ { 2 } = - 18 , a _ { 3 } = 27 , a _ { 4 } = - 36 , a _ { 5 } = 45
D) a1=9,a2=18,a3=27,a4=36,a5=45a _ { 1 } = - 9 , a _ { 2 } = 18 , a _ { 3 } = - 27 , a _ { 4 } = 36 , a _ { 5 } = - 45
E) a1=9,a2=18,a3=27,a4=36,a5=45a _ { 1 } = 9 , a _ { 2 } = - 18 , a _ { 3 } = 27 , a _ { 4 } = - 36 , a _ { 5 } = 45
Question
Write an expression for the n th term of the sequence 89,910,1011,1112,1213,....\frac { 8 } { 9 } , \frac { 9 } { 10 } , \frac { 10 } { 11 } , \frac { 11 } { 12 } , \frac { 12 } { 13 } ,.... Assume that n begins with 1.

A) an=n+7n+8a _ { n } = \frac { n + 7 } { n + 8 }
B) an=n+8n+9a _ { n } = \frac { n + 8 } { n + 9 }
C) an=(n+8)!(n+9)!a _ { n } = \frac { ( n + 8 ) ! } { ( n + 9 ) ! }
D) an=n+9n+10a _ { n } = \frac { n + 9 } { n + 10 }
E) an=(n+7)!(n+8)!a _ { n } = \frac { ( n + 7 ) ! } { ( n + 8 ) ! }
Question
Write an expression for the n th term of the sequence 4,42,46,424,4120,4 , \frac { 4 } { 2 } , \frac { 4 } { 6 } , \frac { 4 } { 24 } , \frac { 4 } { 120 } , \ldots Assume that n begins with 1.

A) an=4+1n!a _ { n } = 4 + \frac { 1 } { n ! }
B) an=4(n+1)a _ { n } = \frac { 4 } { ( n + 1 ) }
C) an=4n(n+1)a _ { n } = \frac { 4 } { n ( n + 1 ) }
D) an=4n!a _ { n } = \frac { 4 } { n ! }
E) an=4+1(n+1)!a _ { n } = 4 + \frac { 1 } { ( n + 1 ) ! }
Question
Write the first five terms of the sequence an=n9n+1a _ { n } = \frac { n } { 9 n + 1 } . Assume that n begins with 1.

A) a1=110,a2=219,a3=328,a4=437,a5=546a _ { 1 } = - \frac { 1 } { 10 } , a _ { 2 } = - \frac { 2 } { 19 } , a _ { 3 } = - \frac { 3 } { 28 } , a _ { 4 } = - \frac { 4 } { 37 } , a _ { 5 } = - \frac { 5 } { 46 }
B) a1=110,a2=219,a3=328,a4=437,a5=546a _ { 1 } = \frac { 1 } { 10 } , a _ { 2 } = \frac { 2 } { 19 } , a _ { 3 } = \frac { 3 } { 28 } , a _ { 4 } = \frac { 4 } { 37 } , a _ { 5 } = \frac { 5 } { 46 }
C) a1=0,a2=110,a3=219,a4=328,a5=437a _ { 1 } = 0 , a _ { 2 } = - \frac { 1 } { 10 } , a _ { 3 } = \frac { 2 } { 19 } , a _ { 4 } = - \frac { 3 } { 28 } , a _ { 5 } = \frac { 4 } { 37 }
D) a1=110,a2=219,a3=328,a4=437,a5=546a _ { 1 } = - \frac { 1 } { 10 } , a _ { 2 } = \frac { 2 } { 19 } , a _ { 3 } = - \frac { 3 } { 28 } , a _ { 4 } = \frac { 4 } { 37 } , a _ { 5 } = - \frac { 5 } { 46 }
E) a1=0,a2=110,a3=219,a4=328,a5=437a _ { 1 } = 0 , a _ { 2 } = \frac { 1 } { 10 } , a _ { 3 } = \frac { 2 } { 19 } , a _ { 4 } = \frac { 3 } { 28 } , a _ { 5 } = \frac { 4 } { 37 }
Question
Write an expression for the n th term of the sequence 1,3,322,336,3424,35120,1,3 , \frac { 3 ^ { 2 } } { 2 } , \frac { 3 ^ { 3 } } { 6 } , \frac { 3 ^ { 4 } } { 24 } , \frac { 3 ^ { 5 } } { 120 } , \ldots Assume that n begins with 1.

A) an=3n1n!a _ { n } = \frac { 3 ^ { n - 1 } } { n ! }
B) an=3n+1(n1)!a _ { n } = \frac { 3 ^ { n + 1 } } { ( n - 1 ) ! }
C) αn=3n(n1)!\alpha _ { n } = \frac { 3 ^ { n } } { ( n - 1 ) ! }
D) an=3nn!a _ { n } = \frac { 3 ^ { n } } { n ! }
E) αn=3n1(n1)!\alpha _ { n } = \frac { 3 ^ { n - 1 } } { ( n - 1 ) ! }
Question
Find the partial sum i=056i+2\sum _ { i = 0 } ^ { 5 } 6 i + 2 .

A) 104
B) 140
C) 102
D) 142
E) 120
Question
Find a8a _ { 8 } of the sequence an=n27(n2)!a _ { n } = \frac { n ^ { 2 } - 7 } { ( n - 2 ) ! } .

A) a8=32361a _ { 8 } = \frac { 32 } { 361 }
B) a8=32361a _ { 8 } = - \frac { 32 } { 361 }
C) a8=191680a _ { 8 } = - \frac { 19 } { 1680 }
D) a8=191680a _ { 8 } = \frac { 19 } { 1680 }
E) a8=19240a _ { 8 } = \frac { 19 } { 240 }
Question
Write the first five terms of the sequence an=(1)n+4n2+1a _ { n } = \frac { ( - 1 ) ^ { n + 4 } } { n ^ { 2 } + 1 } . Assume that n begins with 1.

A) a1=12,a2=15,a3=110,a4=117,a5=126a _ { 1 } = - \frac { 1 } { 2 } , a _ { 2 } = \frac { 1 } { 5 } , a _ { 3 } = - \frac { 1 } { 10 } , a _ { 4 } = \frac { 1 } { 17 } , a _ { 5 } = - \frac { 1 } { 26 }
B) a1=12,a2=15,a3=110,a4=117,a5=126a _ { 1 } = \frac { 1 } { 2 } , a _ { 2 } = \frac { 1 } { 5 } , a _ { 3 } = \frac { 1 } { 10 } , a _ { 4 } = \frac { 1 } { 17 } , a _ { 5 } = \frac { 1 } { 26 }
C) a1=1,a2=14,a3=19,a4=116,a5=125a _ { 1 } = - 1 , a _ { 2 } = \frac { 1 } { 4 } , a _ { 3 } = - \frac { 1 } { 9 } , a _ { 4 } = \frac { 1 } { 16 } , a _ { 5 } = - \frac { 1 } { 25 }
D) a1=12,a2=15,a3=110,a4=117,a5=126a _ { 1 } = \frac { 1 } { 2 } , a _ { 2 } = - \frac { 1 } { 5 } , a _ { 3 } = \frac { 1 } { 10 } , a _ { 4 } = - \frac { 1 } { 17 } , a _ { 5 } = \frac { 1 } { 26 }
E) a1=1,a2=14,a3=19,a4=116,a5=125a _ { 1 } = 1 , a _ { 2 } = - \frac { 1 } { 4 } , a _ { 3 } = \frac { 1 } { 9 } , a _ { 4 } = - \frac { 1 } { 16 } , a _ { 5 } = \frac { 1 } { 25 }
Question
Write an expression for the n th term of the sequence 7+21,7+22,7+23,7+24,7+25,7 + \frac { 2 } { 1 } , 7 + \frac { 2 } { 2 } , 7 + \frac { 2 } { 3 } , 7 + \frac { 2 } { 4 } , 7 + \frac { 2 } { 5 } , \cdots Assume that n begins with 1.

A) an=8n+3na _ { n } = \frac { 8 n + 3 } { n }
B) an=3n+8na _ { n } = \frac { 3 n + 8 } { n }
C) an=7n+2na _ { n } = \frac { 7 n + 2 } { n }
D) an=2n+7na _ { n } = \frac { 2 n + 7 } { n }
E) an=9na _ { n } = \frac { 9 } { n }
Question
Match the sequence an=20n+1a _ { n } = \frac { 20 } { n + 1 } with the graph of its first 10 terms.

A)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Write the first five terms of the sequence an=413na _ { n } = - 4 - \frac { 1 } { 3 ^ { n } } . Assume that n begins with 1.

A) a1=113,a2=359,a3=10727,a4=32381,a5=971243a _ { 1 } = - \frac { 11 } { 3 } , a _ { 2 } = - \frac { 35 } { 9 } , a _ { 3 } = - \frac { 107 } { 27 } , a _ { 4 } = - \frac { 323 } { 81 } , a _ { 5 } = - \frac { 971 } { 243 }
B) a1=133,a2=379,a3=10927,a4=32581,a5=973243a _ { 1 } = - \frac { 13 } { 3 } , a _ { 2 } = - \frac { 37 } { 9 } , a _ { 3 } = - \frac { 109 } { 27 } , a _ { 4 } = - \frac { 325 } { 81 } , a _ { 5 } = - \frac { 973 } { 243 }
C) a1=113,a2=359,a3=10727,a4=32381,a5=971243a _ { 1 } = \frac { 11 } { 3 } , a _ { 2 } = \frac { 35 } { 9 } , a _ { 3 } = \frac { 107 } { 27 } , a _ { 4 } = \frac { 323 } { 81 } , a _ { 5 } = \frac { 971 } { 243 }
D) a1=3,a2=113,a3=359,a4=10727,a5=32381a _ { 1 } = - 3 , a _ { 2 } = \frac { 11 } { 3 } , a _ { 3 } = \frac { 35 } { 9 } , a _ { 4 } = \frac { 107 } { 27 } , a _ { 5 } = \frac { 323 } { 81 }
E) a1=5,a2=133,a3=379,a4=10927,a5=32581a _ { 1 } = - 5 , a _ { 2 } = - \frac { 13 } { 3 } , a _ { 3 } = - \frac { 37 } { 9 } , a _ { 4 } = - \frac { 109 } { 27 } , a _ { 5 } = - \frac { 325 } { 81 }
Question
Write the first five terms of the sequence an=3n+4a _ { n } = - \frac { 3 } { n + 4 } . Assume that n begins with 1.

A) a1=35,a2=12,a3=37,a4=38,a5=13a _ { 1 } = \frac { 3 } { 5 } , a _ { 2 } = - \frac { 1 } { 2 } , a _ { 3 } = \frac { 3 } { 7 } , a _ { 4 } = - \frac { 3 } { 8 } , a _ { 5 } = \frac { 1 } { 3 }
B) a1=34,a2=35a3=12,a4=37,a5=38a _ { 1 } = \frac { 3 } { 4 } , a _ { 2 } = - \frac { 3 } { 5 } a _ { 3 } = \frac { 1 } { 2 } , a _ { 4 } = \frac { 3 } { 7 } , a _ { 5 } = \frac { 3 } { 8 }
C) a1=34,a2=35a3=12,a4=37,a5=38a _ { 1 } = \frac { 3 } { 4 } , a _ { 2 } = \frac { 3 } { 5 } a _ { 3 } = \frac { 1 } { 2 } , a _ { 4 } = \frac { 3 } { 7 } , a _ { 5 } = \frac { 3 } { 8 }
D) a1=34,a2=35a3=12,a4=37,a5=38a _ { 1 } = - \frac { 3 } { 4 } , a _ { 2 } = \frac { 3 } { 5 } a _ { 3 } = - \frac { 1 } { 2 } , a _ { 4 } = \frac { 3 } { 7 } , a _ { 5 } = - \frac { 3 } { 8 }
E) a1=35,a2=12,a3=37,a4=38,a5=13a _ { 1 } = - \frac { 3 } { 5 } , a _ { 2 } = - \frac { 1 } { 2 } , a _ { 3 } = - \frac { 3 } { 7 } , a _ { 4 } = - \frac { 3 } { 8 } , a _ { 5 } = - \frac { 1 } { 3 }
Question
Find a formula for the n th term of the arithmetic sequence. a5=22,a6=29a _ { 5 } = 22 , a _ { 6 } = 29

A) 7n137 n - 13
B) 7n207 n - 20
C) 7n+157 n + 15
D) 7n+297 n + 29
E) 7n67 n - 6
Question
Find the common difference of the arithmetic sequence 34,45,56,67,34,45,56,67 , \ldots

A) 22
B) 11
C) -22
D) 34
E) -11
Question
Write the sum using sigma notation. Begin with k=1k = 1 . 113+123+133+143++1163\frac { 1 } { 1 ^ { 3 } } + \frac { 1 } { 2 ^ { 3 } } + \frac { 1 } { 3 ^ { 3 } } + \frac { 1 } { 4 ^ { 3 } } + \ldots + \frac { 1 } { 16 ^ { 3 } }

A) k=1151k3\sum _ { k = 1 } ^ { 15 } \frac { 1 } { k ^ { 3 } }
B) k=1151(k1)3\sum _ { k = 1 } ^ { 15 } \frac { 1 } { ( k - 1 ) ^ { 3 } }
C) k=1161(k1)3\sum _ { k = 1 } ^ { 16 } \frac { 1 } { ( k - 1 ) ^ { 3 } }
D) k=1161(k+1)3\sum _ { k = 1 } ^ { 16 } \frac { 1 } { ( k + 1 ) ^ { 3 } }
E) k=1161k3\sum _ { k = 1 } ^ { 16 } \frac { 1 } { k ^ { 3 } }
Question
Write the sum using sigma notation. Begin with k=0k = 0 . 23+26+29+32+3523 + 26 + 29 + 32 + 35

A) k=043k+23\sum _ { k = 0 } ^ { 4 } 3 k + 23
B) k=053k+23\sum _ { k = 0 } ^ { 5 } 3 k + 23
C) k=0523k+20\sum _ { k = 0 } ^ { 5 } 23 k + 20
D) k=0423k+20\sum _ { k = 0 } ^ { 4 } 23 k + 20
E) k=0423k+3\sum _ { k = 0 } ^ { 4 } 23 k + 3
Question
Find the partial sum of k=130(k+8)\sum _ { k = 1 } ^ { 30 } ( k + 8 ) .

A) 930
B) 705
C) 255
D) 240
E) 2280
Question
Find a formula for the n th term of the arithmetic sequence. a29=16,d=37a _ { 29 } = 16 , d = \frac { 3 } { 7 }

A) an=3n+317a _ { n } = \frac { 3 n + 31 } { 7 }
B) an=3n+47a _ { n } = \frac { 3 n + 4 } { 7 }
C) an=3n+17a _ { n } = \frac { 3 n + 1 } { 7 }
D) an=3n+287a _ { n } = \frac { 3 n + 28 } { 7 }
E) an=3n+257a _ { n } = \frac { 3 n + 25 } { 7 }
Question
Find a formula for the n th term of the arithmetic sequence. a1=11,d=4a _ { 1 } = 11 , d = 4

A) αn=4n+11\alpha _ { n } = 4 n + 11
B) an=4n+15a _ { n } = 4 n + 15
C) an=4n+7a _ { n } = 4 n + 7
D) an=n2(11+4n)a _ { n } = \frac { n } { 2 } ( 11 + 4 n )
E) an=n2(11+4(n1))a _ { n } = \frac { n } { 2 } ( 11 + 4 ( n - 1 ) )
Question
Write the first five terms of the arithmetic sequence defined recursively. a1=50,ak+1=ak5a _ { 1 } = 50 , a _ { k + 1 } = a _ { k } - 5

A) a1=70,a2=65,a3=60,a4=55,a5=50a _ { 1 } = 70 , a _ { 2 } = 65 , a _ { 3 } = 60 , a _ { 4 } = 55 , a _ { 5 } = 50
B) a1=50,a2=55,a3=60,a4=65,a5=70a _ { 1 } = 50 , a _ { 2 } = 55 , a _ { 3 } = 60 , a _ { 4 } = 65 , a _ { 5 } = 70
C) a1=50,a2=45,a3=40,a4=35,a5=30a _ { 1 } = 50 , a _ { 2 } = 45 , a _ { 3 } = 40 , a _ { 4 } = 35 , a _ { 5 } = 30
D) a1=30,a2=35,a3=40,a4=45,a5=50a _ { 1 } = 30 , a _ { 2 } = 35 , a _ { 3 } = 40 , a _ { 4 } = 45 , a _ { 5 } = 50
E) a1=50,a2=40,a3=45,a4=30,a5=35a _ { 1 } = 50 , a _ { 2 } = 40 , a _ { 3 } = 45 , a _ { 4 } = 30 , a _ { 5 } = 35
Question
Find a formula for the n th term of the arithmetic sequence. a5=13,a9=3a _ { 5 } = 13 , a _ { 9 } = 3

A) an=5n512a _ { n } = - \frac { 5 n - 51 } { 2 }
B) an=5n512a _ { n } = \frac { 5 n - 51 } { 2 }
C) an=23n10a _ { n } = 23 n - 10
D) αn=13n+10\alpha _ { n } = 13 n + 10
E) an=5n+512a _ { n } = - \frac { 5 n + 51 } { 2 }
Question
Find the partial sum n=05(15)n\sum _ { n = 0 } ^ { 5 } \left( - \frac { 1 } { 5 } \right) ^ { n }

A) 5213125\frac { 521 } { 3125 }
B) 26043125\frac { 2604 } { 3125 }
C) 1043125- \frac { 104 } { 3125 }
D) 26043125- \frac { 2604 } { 3125 }
E) 5213125\frac { 521 } { 3125 } .
Question
Determine whether the sequence ln7,ln14,ln21,ln28,\ln 7 , \ln 14 , \ln 21 , \ln 28 , \ldots is arithmetic. If so, find the common difference.

A)arithmetic; 14
B)arithmetic; 2
C)arithmetic;7
D)arithmetic; 28
E)not arithmetic
Question
Write the sum using sigma notation. Begin with k=0k = 0 . 190191+192193+1911\frac { 1 } { 9 ^ { 0 } } - \frac { 1 } { 9 ^ { 1 } } + \frac { 1 } { 9 ^ { 2 } } - \frac { 1 } { 9 ^ { 3 } } + \ldots - \frac { 1 } { 9 ^ { 11 } }

A) k=01019k\sum _ { k = 0 } ^ { 10 } - \frac { 1 } { 9 ^ { k } }
B) k=011(19)k+1\sum _ { k = 0 } ^ { 11 } \left( - \frac { 1 } { 9 } \right) ^ { k + 1 }
C) k=010(19)k+1\sum _ { k = 0 } ^ { 10 } \left( - \frac { 1 } { 9 } \right) ^ { k + 1 }
D) k=01119k\sum _ { k = 0 } ^ { 11 } - \frac { 1 } { 9 ^ { k } }
E) k=011(19)k\sum _ { k = 0 } ^ { 11 } \left( - \frac { 1 } { 9 } \right) ^ { k }
Question
Determine whether the sequence is arithmetic. If so, find the common difference. 15,35,95,275,815,\frac { 1 } { 5 } , \frac { 3 } { 5 } , \frac { 9 } { 5 } , \frac { 27 } { 5 } , \frac { 81 } { 5 } , \ldots

A) 35\frac { 3 } { 5 }
B) 95\frac { 9 } { 5 }
C) 2
5
D) 815\frac { 81 } { 5 }
E)The sequence is not arithmetic.
Question
Find the partial sum j=13(1)jj3\sum _ { j = 1 } ^ { 3 } \frac { ( - 1 ) ^ { j } } { j ^ { 3 } } .

A) 235216- \frac { 235 } { 216 }
B) 65216\frac { 65 } { 216 }
C) 65216- \frac { 65 } { 216 }
D) 197216- \frac { 197 } { 216 }
E) 197216\frac { 197 } { 216 }
Question
Find a formula for the n th term of the arithmetic sequence. a1=75,d=8a _ { 1 } = 75 , d = - 8

A) an=8n83a _ { n } = - 8 n - 83
B) an=8n+83a _ { n } = - 8 n + 83
C) an=8n+75a _ { n } = 8 n + 75
D) an=8n+67a _ { n } = - 8 n + 67
E) an=8n+75a _ { n } = - 8 n + 75
Question
A deposit of $3,000\$ 3,000 is made in an account that earns 4%4 \% interest compounded yearly. The balance in the account after N years is given by AN=3,000(1+0.04)NA _ { N } = 3,000 ( 1 + 0.04 ) ^ { N } , N=1,2,3,N = 1,2,3 , \ldots Find the balance in this account after 2020 years by computing A20A _ { 20 } . Round your answer to the nearest cent.

A) A20=$5,403A _ { 20 } = \$ 5,403
B) A20=$62,400A _ { 20 } = \$ 62,400
C) A20=$6,573A _ { 20 } = \$ 6,573
D) A20=$3,245A _ { 20 } = \$ 3,245
E) A20=$6,321A _ { 20 } = \$ 6,321
Question
Write the first five terms of the arithmetic sequence defined recursively. a1=12,ak+1=ak+6a _ { 1 } = 12 , a _ { k + 1 } = a _ { k } + 6

A) a1=18,a2=30,a3=42,a4=54,a5=66a _ { 1 } = 18 , a _ { 2 } = 30 , a _ { 3 } = 42 , a _ { 4 } = 54 , a _ { 5 } = 66
B) a1=12,a2=24,a3=36,a4=48,a5=60a _ { 1 } = 12 , a _ { 2 } = 24 , a _ { 3 } = 36 , a _ { 4 } = 48 , a _ { 5 } = 60
C) a1=12,a2=24,a3=18,a4=36,a5=30a _ { 1 } = 12 , a _ { 2 } = 24 , a _ { 3 } = 18 , a _ { 4 } = 36 , a _ { 5 } = 30
D) a1=18,a2=24,a3=30,a4=36,a5=42a _ { 1 } = 18 , a _ { 2 } = 24 , a _ { 3 } = 30 , a _ { 4 } = 36 , a _ { 5 } = 42
E) a1=12,a2=18,a3=24,a4=30,a5=36a _ { 1 } = 12 , a _ { 2 } = 18 , a _ { 3 } = 24 , a _ { 4 } = 30 , a _ { 5 } = 36
Question
Find the common difference of the arithmetic sequence with the n th term an=56na _ { n } = 5 - 6 n .

A) -5
B) -6
C) 6
D) -1
E) 5
Question
Find the common difference of the arithmetic sequence 178,74,118,1,58,\frac { 17 } { 8 } , \frac { 7 } { 4 } , \frac { 11 } { 8 } , 1 , \frac { 5 } { 8 } , \ldots

A) 114\frac { 11 } { 4 }
B) 38- \frac { 3 } { 8 }
C) 34- \frac { 3 } { 4 }
D) 74- \frac { 7 } { 4 }
E) 118\frac { 11 } { 8 }
Question
Determine whether the sequence is arithmetic. If so, find the common difference. ln4,ln8,ln12,ln16,ln20,\ln 4 , \ln 8 , \ln 12 , \ln 16 , \ln 20 , \ldots

A) 8
B) 4
C) ln8\ln 8
D) ln4\ln 4
E)The sequence is not arithmetic.
Question
Find the common ratio of the geometric sequence. 12,14,18,116,...\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16},...

A) 18-\frac{1}{8}
B) 14\frac{1}{4}
C) 12\frac{1}{2}
D) 12-\frac{1}{2}
E) 14-\frac{1}{4}
Question
Find the common ratio of the geometric sequence. 18π,1(8π)2,1(8π)3,1(8π)4,....\frac{1}{8 \pi}, \frac{1}{(8 \pi)^{2}}, \frac{1}{(8 \pi)^{3}}, \frac{1}{(8 \pi)^{4}},....

A) 1π2\frac{1}{\pi^{2}}
B) 1π\frac{1}{\pi}
C) 18π\frac{1}{8 \pi}
D) 18\frac{1}{8}
E) 1(8π)2\frac { 1 } { ( 8 \pi ) ^ { 2 } }
Question
Write the first five terms of the geometric sequence, given a1=9a_{1}=-9 and r=13r=-\frac{1}{3} .

A) 9,3,1,13,19-9,3,-1, \frac{1}{3},-\frac{1}{9}
B) 9,3,1,13,19-9,-3,1,-\frac{1}{3},-\frac{1}{9}
C) 9,27,1,19,127-9,27,-1, \frac{1}{9},-\frac{1}{27}
D) 27,9,1,19,127-27,9,1, \frac{1}{9},-\frac{1}{27}
E) 27,9,1,13,127- 27,9 , - 1 , - \frac { 1 } { 3 } , - \frac { 1 } { 27 }
Question
Find a formula for the n th term of the geometric sequence. Assume that n begins with 1. a1=3,r=74a_{1}=3, r=\frac{7}{4}

A) an=3(74)n1a_{n}=3\left(\frac{7}{4}\right)^{n-1}
B) an=(214)n1a_{n}=\left(\frac{21}{4}\right)^{n-1}
C) an=(74)na_{n}=\left(\frac{7}{4}\right)^{n}
D) an=(214)na_{n}=\left(\frac{21}{4}\right)^{n}
E) an=3(74)na_{n}=3\left(\frac{7}{4}\right)^{n}
Question
Find the sum of the first <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> positive integers.

A) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the sum of the first <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> positive even integers.

A) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
A jogger decides to take a jog of 1212 miles. The first two miles take the jogger 88 minutes and 1010 minutes respectively to complete each mile. The jogger estimates that this pattern will continue for 1212 miles. Estimate the time required to jog 1212 miles.

A) 240240 minutes
B) 228228 minutes
C) 180180 minutes
D) 168168 minutes
E) 264264 minutes
Question
Determine whether the sequence is geometric. If so, find the common ratio. 9,15,21,27,9,15,21,27, \ldots

A)9
B)15
C) 52\frac{5}{2}
D)6
E)not geometric
Question
Determine whether the sequence is geometric. If so, find the common ratio. 1024,256,64,16,1024,256,64,16, \ldots

A)-4
B)4
C) 14-\frac{1}{4}
D) 14\frac{1}{4}
E)not geometric
Question
Find the common ratio of the geometric sequence. 11,11,11,11,...-11,11,-11,11,...

A) 1
B)-11
C) -1
D) 111-\frac{1}{11}
E)11
Question
Find a formula for the n th term of the geometric sequence. Assume that n begins with 1. a1=10,a2=2a_{1}=10, a_{2}=2

A) an=10(15)n1a_{n}=10\left(\frac{1}{5}\right)^{n-1}
B) an=2n1a_{n}=2^{n-1}
C) an=2(5)n1a_{n}=2(5)^{n-1}
D) an=2(5)na_{n}=2(5)^{n}
E) an=10(15)xa_{n}=10\left(\frac{1}{5}\right)^{x}
Question
Find the n th partial sum of the arithmetic sequence. 8,13,18,23,28,,n=128,13,18,23,28 , \ldots , n = 12

A) 390
B) 438
C) 426
D) 354
E) 402
Question
Find the partial sum of k=15n10\sum _ { k = 1 } ^ { 5 } \frac { n } { 10 } .

A) -13.75
B) 0.25
C) 2.5
D) 1.5
E) 3
Question
Find the n th partial sum of the arithmetic sequence. 9,16,23,30,37,,n=109,16,23,30,37 , \ldots , n = 10

A) 440
B) 790
C) 405
D) 395
E) 880
Question
Determine whether the sequence is geometric. If so, find the common ratio. 1,72,494,3438,240116,..1,-\frac{7}{2}, \frac{49}{4},-\frac{343}{8}, \frac{2401}{16},..

A) 27\frac{2}{7}
B) - 27\frac{2}{7}
C) 72\frac{7}{2}
D) - 72\frac{7}{2}
E)not geometric
Question
A museum only allows patrons to enter at fifteen minute intervals. An observer notices that every weekday at 2:00 there are 88 people waiting at the entrance and at 3:00 there are 2020 people waiting. In addition, there are 1010 people waiting at the entrance at all 15-minute intervals that are not on the hour. This pattern continues through 6:00. How many people wait to enter the museum in the interval from 2:00 to 6:00?

A) 280280
B) 232232
C) 291291
D) 248248
E) 208208
Question
In section 112 of Hammer Stadium there are 2525 rows of seats: 1616 in the first row, 1717 seats in the second row, 1818 seats in the third row, and so on. What is the cost of each ticket if the total cost of all the seats in section 112 is $29,400\$ 29,400 ? Round the answer to two decimal places.

A) $42.00\$ 42.00
B) $43.25\$ 43.25
C) $48.75\$ 48.75
D) $45.75\$ 45.75
E) $39.50\$ 39.50
Question
Find the n th partial sum of the arithmetic sequence. a1=0.8,a5=2.8,,n=13a _ { 1 } = 0.8 , a _ { 5 } = 2.8 , \ldots , n = 13

A) 52.65
B) 92.30
C) 105.30
D) 46.15
E) 49.40
Question
In your new job as an accountant you are told that your starting salary will be $36,000\$ 36,000 with an increase of $2500\$ 2500 at the end of each of the first 44 years. How much will you be paid through the end of your first 5 years of employment with the company?

A)$ 211,250211,250
B)$ 164,000164,000
C)$ 159,000159,000
D)$ 205,000205,000
E)$ 198,750198,750
Question
Find the n th partial sum of the arithmetic sequence. 300,257,214,171,128,n=9300,257,214,171,128 \ldots , n = 9

A) 1926
B) 2304
C) -198
D) 958.5
E) 1152
Question
Find the n th partial sum of the geometric sequence. 5,15,45,135,405,,n=75,15,45,135,405, \ldots, \quad n=7

A)1,820
B)5,465
C)200
D)5,514
E)5,808
Question
Find the balance of an increasing annuity in which a principal of $300 is invested each month for 33 years, compounded monthly at a rate of 8%.

A)$42,454.33
B)$583,960.90
C)$63,895.28
D)$123,835.77
E)$11,406.08
Question
Find the partial sum. i=142(32)i1\sum_{i=1}^{4} 2\left(\frac{3}{2}\right)^{i-1}

A) 1054\frac{105}{4}
B) 174\frac{17}{4}
C) 654\frac{65}{4}
D) 894\frac{89}{4}
E) 794\frac{79}{4}
Question
Evaluate the binomial coefficient 15C13{ } _ { 15 } C _ { 13 } .

A) 120120
B) 300300
C) 118118
D) 317317
E) 105105
Question
Find the partial sum. i183(14)i1\sum_{i-1}^{8} 3\left(-\frac{1}{4}\right)^{i-1}

A) 916,384\frac{9}{16,384}
B) 29116,384\frac{291}{16,384}
C) 39,32116,384\frac{39,321}{16,384}
D) 316,384\frac{3}{16,384}
E) 9916,384\frac{99}{16,384}
Question
A ball is dropped from a height of 10 feet. Each time it drops h feet, it rebounds 0.79 h feet. Find the total distance traveled by the ball. Round your answer to two decimal places.

A)75.24
B)37.62
C)47.62
D)85.24
E)22.66
Question
Find the n th partial sum of the geometric sequence. Round your answer to 2 decimal places. 22,22(1.04),22(1.04)2,22(1.04)3,,n=922,22(1.04), 22(1.04)^{2}, 22(1.04)^{3}, \ldots, \quad n=9

A)330.57
B)173.76
C)752.71
D)232.82
E)296.70
Question
Find a formula for the n th term of the geometric sequence. Assume that n begins with 1. 4,10,25,1252,4,-10,25,-\frac{125}{2}, \ldots

A) an=2(52)n1a_{n}=2\left(-\frac{5}{2}\right)^{n-1}
B) an=2(52)n2a_{n}=2\left(-\frac{5}{2}\right)^{n-2}
C) an=4(52)n1a_{n}=4\left(-\frac{5}{2}\right)^{n-1}
D) an=2(52)na_{n}=-2\left(-\frac{5}{2}\right)^{n}
E) an=4(52)na_{n}=-4\left(-\frac{5}{2}\right)^{n}
Question
You accept a job as a manager that pays a salary of $34,000 the first year. During the next 39 years, you receive a 4% raise each year. What would your total salary be over the 40 year period? Round answer to the nearest cent.

A)$3,740,420.98
B)$3,230,867.53
C)$3,394,102.24
D)$2,922,991.43
E)$2,638,342.67
Question
Find the sum. n=0(14)n\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}

A) 45\frac{4}{5}
B) 54\frac{5}{4}
C) 15\frac{1}{5}
D) 43\frac{4}{3}
E) 16\frac{1}{6}
Question
A company buys a machine for $400,000. During the next 8 years, the machine depreciates at the rate of 25% per year. That is, at the end of each year, the depreciated value is 75% of what it was at the beginning of the year. Find the depreciated value of the machine at the end of the 8 full years. Round answer to the nearest cent.

A)24.41
B)30,033.87
C)6.10
D)53,393.55
E)40,045.17
Question
Find the balance of an increasing annuity in which a principal of $20 is invested each month for 40 years, compounded monthly at a rate of 8%.

A)$939.44
B)$11,878.94
C)$5,744.14
D)$70,305.62
E)$3,703.31
Question
Find the n th partial sum of the geometric sequence. 1,4,16,64,256,,n=71,-4,16,-64,256, \ldots, \quad n=7

A)3326
B)3277
C)-819
D)3620
E)-51
Question
Find the n th partial sum of the geometric sequence. 64,16,4,1,14,,n=6-64,16,-4,1,-\frac{1}{4}, \ldots, \quad n=6

A) 81916-\frac{819}{16}
B) 316-\frac{3}{16}
C) 116\frac{1}{16}
D) 327716\frac{3277}{16}
E) 5116-\frac{51}{16}
Question
A city of 700,000 people is growing at the rate of 2% per year. That is, at the end of each year, the population is 1.02 times the population at the beginning of the year. Estimate the population years 19 from now. Round to the nearest integer.

A)1,243,091
B)1,019,768
C)1,103,829
D)1,082,186
E)1,194,821
Question
Find the sum. n=0(38)n\sum_{n=0}^{\infty}\left(-\frac{3}{8}\right)^{n}

A) 811\frac{8}{11}
B) 314\frac{3}{14}
C) 58\frac{5}{8}
D) 85\frac{8}{5}
E) 35\frac{3}{5}
Question
Evaluate the binomial coefficient 20C20{ } _ { 20 } C _ { 20 } .

A)1
B) 00
C) 1919
D) 2020
E) 22
Question
Find a5a_{5} of the geometric sequence, given a1=9a_{1}=9 and a2=8a_{2}=8

A) 65614096\frac{6561}{4096}
B) 40966561\frac{4096}{6561}
C) 729512\frac{729}{512}
D) 4096729\frac { 4096 } { 729 }
E) 6561512\frac { 6561 } { 512 }
Question
Evaluate the binomial coefficient 7C3{ } _ { 7 } C _ { 3 } .

A) 66
B) 5,0345,034
C) 840840
D) 3535
E) 210210
Question
Find the sum. 21+9+277+8149+21+9+\frac{27}{7}+\frac{81}{49}+\ldots

A) 44110\frac{441}{10}
B) 1474\frac{147}{4}
C) 214\frac{21}{4}
D) 13234\frac{1323}{4}
E) 34\frac{3}{4}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/98
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: Sequences, Series, and the Binomial Theorem
1
Find S1,S2S _ { 1 } , S _ { 2 } and S6S _ { 6 } for an=8n+9a _ { n } = 8 n + 9 .

A) S1=17;S2=34;S6=102S _ { 1 } = 17 ; S _ { 2 } = 34 ; S _ { 6 } = 102
B) S1=17;S2=25;S6=57S _ { 1 } = 17 ; S _ { 2 } = 25 ; S _ { 6 } = 57
C) S1=17;S2=25;S6=177S _ { 1 } = 17 ; S _ { 2 } = 25 ; S _ { 6 } = 177
D) S1=17;S2=33;S6=177S _ { 1 } = 17 ; S _ { 2 } = 33 ; S _ { 6 } = 177
E) S1=17;S2=42;S6=222S _ { 1 } = 17 ; S _ { 2 } = 42 ; S _ { 6 } = 222
S1=17;S2=42;S6=222S _ { 1 } = 17 ; S _ { 2 } = 42 ; S _ { 6 } = 222
2
Write the first five terms of the sequence (14)n+2\left( - \frac { 1 } { 4 } \right) ^ { n + 2 } . Assume that n begins with 1.

A) a1=164,a2=1256,a3=11024,a4=14096,a5=116384a _ { 1 } = - \frac { 1 } { 64 } , a _ { 2 } = \frac { 1 } { 256 } , a _ { 3 } = - \frac { 1 } { 1024 } , a _ { 4 } = \frac { 1 } { 4096 } , a _ { 5 } = - \frac { 1 } { 16384 }
B) a1=116,a2=164,a3=1256,a4=11024,a5=14096a _ { 1 } = \frac { 1 } { 16 } , a _ { 2 } = \frac { 1 } { 64 } , a _ { 3 } = \frac { 1 } { 256 } , a _ { 4 } = \frac { 1 } { 1024 } , a _ { 5 } = \frac { 1 } { 4096 }
C) a1=116,a2=164,a3=1256,a4=11024,a5=14096a _ { 1 } = - \frac { 1 } { 16 } , a _ { 2 } = \frac { 1 } { 64 } , a _ { 3 } = - \frac { 1 } { 256 } , a _ { 4 } = \frac { 1 } { 1024 } , a _ { 5 } = - \frac { 1 } { 4096 }
D) a1=116,a2=164,a3=1256,a4=11024,a5=14096a _ { 1 } = \frac { 1 } { 16 } , a _ { 2 } = - \frac { 1 } { 64 } , a _ { 3 } = \frac { 1 } { 256 } , a _ { 4 } = - \frac { 1 } { 1024 } , a _ { 5 } = \frac { 1 } { 4096 }
E) a1=164,a2=1256,a3=11024,a4=14096,a5=116384a _ { 1 } = \frac { 1 } { 64 } , a _ { 2 } = \frac { 1 } { 256 } , a _ { 3 } = \frac { 1 } { 1024 } , a _ { 4 } = \frac { 1 } { 4096 } , a _ { 5 } = \frac { 1 } { 16384 }
a1=164,a2=1256,a3=11024,a4=14096,a5=116384a _ { 1 } = - \frac { 1 } { 64 } , a _ { 2 } = \frac { 1 } { 256 } , a _ { 3 } = - \frac { 1 } { 1024 } , a _ { 4 } = \frac { 1 } { 4096 } , a _ { 5 } = - \frac { 1 } { 16384 }
3
Write an expression for the n th term of the sequence 3,8,13,18,23,3,8,13,18,23 , \ldots Assume that n begins with 1.

A) an=3+5na _ { n } = 3 + 5 n
B) an=3+6na _ { n } = 3 + 6 n
C) an=3+6(n+1)a _ { n } = 3 + 6 ( n + 1 )
D) an=3+5(n1)a _ { n } = 3 + 5 ( n - 1 )
E) an=3+5(n+1)a _ { n } = 3 + 5 ( n + 1 )
an=3+5(n1)a _ { n } = 3 + 5 ( n - 1 )
4
Write the first five terms of the sequence an=(n+6)!(n+3)!a _ { n } = \frac { ( n + 6 ) ! } { ( n + 3 ) ! } . Assume that n begins with 1.

A) a1=120,a2=210,a3=336,a4=504,a5=720a _ { 1 } = 120 , a _ { 2 } = 210 , a _ { 3 } = 336 , a _ { 4 } = 504 , a _ { 5 } = 720
B) a1=202,a2=330,a3=502,a4=719,a5=990a _ { 1 } = 202 , a _ { 2 } = 330 , a _ { 3 } = 502 , a _ { 4 } = 719 , a _ { 5 } = 990
C) a1=210,a2=336,a3=504,a4=720,a5=990a _ { 1 } = 210 , a _ { 2 } = 336 , a _ { 3 } = 504 , a _ { 4 } = 720 , a _ { 5 } = 990
D) a1=103,a2=194,a3=328,a4=501,a5=719a _ { 1 } = 103 , a _ { 2 } = 194 , a _ { 3 } = 328 , a _ { 4 } = 501 , a _ { 5 } = 719
E) a1=336,a2=504,a3=720,a4=990,a5=1320a _ { 1 } = 336 , a _ { 2 } = 504 , a _ { 3 } = 720 , a _ { 4 } = 990 , a _ { 5 } = 1320
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
5
Write the first five terms of the sequence an=3+(5n)n!a _ { n } = \frac { - 3 + \left( - 5 ^ { n } \right) } { n ! } . Assume that n begins with 1.

A) a1=2,a2=14,a3=613,a4=1576,a5=156160a _ { 1 } = - 2 , a _ { 2 } = 14 , a _ { 3 } = - \frac { 61 } { 3 } , a _ { 4 } = \frac { 157 } { 6 } , a _ { 5 } = - \frac { 1561 } { 60 }
B) a1=8,a2=11,a3=643,a4=31112,a5=39115a _ { 1 } = 8 , a _ { 2 } = - 11 , a _ { 3 } = \frac { 64 } { 3 } , a _ { 4 } = - \frac { 311 } { 12 } , a _ { 5 } = \frac { 391 } { 15 }
C) a1=2,a2=14,a3=613,a4=3116,a5=39115a _ { 1 } = - 2 , a _ { 2 } = 14 , a _ { 3 } = \frac { 61 } { 3 } , a _ { 4 } = - \frac { 311 } { 6 } , a _ { 5 } = - \frac { 391 } { 15 }
D) a1=2,a2=14,a3=613,a4=1576,a5=156160a _ { 1 } = 2 , a _ { 2 } = - 14 , a _ { 3 } = \frac { 61 } { 3 } , a _ { 4 } = - \frac { 157 } { 6 } , a _ { 5 } = \frac { 1561 } { 60 }
E) a1=8,a2=11,a3=643,a4=31112,a5=39115a _ { 1 } = - 8 , a _ { 2 } = 11 , a _ { 3 } = - \frac { 64 } { 3 } , a _ { 4 } = \frac { 311 } { 12 } , a _ { 5 } = - \frac { 391 } { 15 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
6
Write an expression for the n th term of the sequence 2,5,10,17,26,....2,5,10,17,26,.... Assume that n begins with 1.

A) an=n+4a _ { n } = n + 4
B) an=n2+1a _ { n } = n ^ { 2 } + 1
C) an=n3+1a _ { n } = n ^ { 3 } + 1
D) an=n32a _ { n } = n ^ { 3 } - 2
E) an=n22a _ { n } = n ^ { 2 } - 2
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
7
Simplify the expression 8!11!\frac { 8 ! } { 11 ! } .

A) 1729\frac { 1 } { 729 }
B) 1990\frac { 1 } { 990 }
C) 1720\frac { 1 } { 720 }
D) 990
E) 720
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
8
Write an expression for the n th term of the sequence 16,136,1216,11296,\frac { 1 } { 6 } , - \frac { 1 } { 36 } , \frac { 1 } { 216 } , - \frac { 1 } { 1296 } , \ldots Assume that n begins with 1.

A) an=(1)n6n+2a _ { n } = \frac { ( - 1 ) ^ { n } } { 6 ^ { n + 2 } }
B) an=(1)n+16n+1a _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { 6 ^ { n + 1 } }
C) an=(1)n6n+1a _ { n } = \frac { ( - 1 ) ^ { n } } { 6 ^ { n + 1 } }
D) an=(1)n+16na _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { 6 ^ { n } }
E) an=(1)n6na _ { n } = \frac { ( - 1 ) ^ { n } } { 6 ^ { n } }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
9
Write the first five terms of the sequence (1)n9n( - 1 ) ^ { n } 9 n . Assume that n begins with 1.

A) a1=0,a2=9,a3=18,a4=27,a5=36a _ { 1 } = 0 , a _ { 2 } = - 9 , a _ { 3 } = 18 , a _ { 4 } = - 27 , a _ { 5 } = 36
B) a1=9,a2=18,a3=27,a4=36,a5=45a _ { 1 } = 9 , a _ { 2 } = 18 , a _ { 3 } = 27 , a _ { 4 } = 36 , a _ { 5 } = 45
C) a1=0,a2=18,a3=27,a4=36,a5=45a _ { 1 } = 0 , a _ { 2 } = - 18 , a _ { 3 } = 27 , a _ { 4 } = - 36 , a _ { 5 } = 45
D) a1=9,a2=18,a3=27,a4=36,a5=45a _ { 1 } = - 9 , a _ { 2 } = 18 , a _ { 3 } = - 27 , a _ { 4 } = 36 , a _ { 5 } = - 45
E) a1=9,a2=18,a3=27,a4=36,a5=45a _ { 1 } = 9 , a _ { 2 } = - 18 , a _ { 3 } = 27 , a _ { 4 } = - 36 , a _ { 5 } = 45
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
10
Write an expression for the n th term of the sequence 89,910,1011,1112,1213,....\frac { 8 } { 9 } , \frac { 9 } { 10 } , \frac { 10 } { 11 } , \frac { 11 } { 12 } , \frac { 12 } { 13 } ,.... Assume that n begins with 1.

A) an=n+7n+8a _ { n } = \frac { n + 7 } { n + 8 }
B) an=n+8n+9a _ { n } = \frac { n + 8 } { n + 9 }
C) an=(n+8)!(n+9)!a _ { n } = \frac { ( n + 8 ) ! } { ( n + 9 ) ! }
D) an=n+9n+10a _ { n } = \frac { n + 9 } { n + 10 }
E) an=(n+7)!(n+8)!a _ { n } = \frac { ( n + 7 ) ! } { ( n + 8 ) ! }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
11
Write an expression for the n th term of the sequence 4,42,46,424,4120,4 , \frac { 4 } { 2 } , \frac { 4 } { 6 } , \frac { 4 } { 24 } , \frac { 4 } { 120 } , \ldots Assume that n begins with 1.

A) an=4+1n!a _ { n } = 4 + \frac { 1 } { n ! }
B) an=4(n+1)a _ { n } = \frac { 4 } { ( n + 1 ) }
C) an=4n(n+1)a _ { n } = \frac { 4 } { n ( n + 1 ) }
D) an=4n!a _ { n } = \frac { 4 } { n ! }
E) an=4+1(n+1)!a _ { n } = 4 + \frac { 1 } { ( n + 1 ) ! }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
12
Write the first five terms of the sequence an=n9n+1a _ { n } = \frac { n } { 9 n + 1 } . Assume that n begins with 1.

A) a1=110,a2=219,a3=328,a4=437,a5=546a _ { 1 } = - \frac { 1 } { 10 } , a _ { 2 } = - \frac { 2 } { 19 } , a _ { 3 } = - \frac { 3 } { 28 } , a _ { 4 } = - \frac { 4 } { 37 } , a _ { 5 } = - \frac { 5 } { 46 }
B) a1=110,a2=219,a3=328,a4=437,a5=546a _ { 1 } = \frac { 1 } { 10 } , a _ { 2 } = \frac { 2 } { 19 } , a _ { 3 } = \frac { 3 } { 28 } , a _ { 4 } = \frac { 4 } { 37 } , a _ { 5 } = \frac { 5 } { 46 }
C) a1=0,a2=110,a3=219,a4=328,a5=437a _ { 1 } = 0 , a _ { 2 } = - \frac { 1 } { 10 } , a _ { 3 } = \frac { 2 } { 19 } , a _ { 4 } = - \frac { 3 } { 28 } , a _ { 5 } = \frac { 4 } { 37 }
D) a1=110,a2=219,a3=328,a4=437,a5=546a _ { 1 } = - \frac { 1 } { 10 } , a _ { 2 } = \frac { 2 } { 19 } , a _ { 3 } = - \frac { 3 } { 28 } , a _ { 4 } = \frac { 4 } { 37 } , a _ { 5 } = - \frac { 5 } { 46 }
E) a1=0,a2=110,a3=219,a4=328,a5=437a _ { 1 } = 0 , a _ { 2 } = \frac { 1 } { 10 } , a _ { 3 } = \frac { 2 } { 19 } , a _ { 4 } = \frac { 3 } { 28 } , a _ { 5 } = \frac { 4 } { 37 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
13
Write an expression for the n th term of the sequence 1,3,322,336,3424,35120,1,3 , \frac { 3 ^ { 2 } } { 2 } , \frac { 3 ^ { 3 } } { 6 } , \frac { 3 ^ { 4 } } { 24 } , \frac { 3 ^ { 5 } } { 120 } , \ldots Assume that n begins with 1.

A) an=3n1n!a _ { n } = \frac { 3 ^ { n - 1 } } { n ! }
B) an=3n+1(n1)!a _ { n } = \frac { 3 ^ { n + 1 } } { ( n - 1 ) ! }
C) αn=3n(n1)!\alpha _ { n } = \frac { 3 ^ { n } } { ( n - 1 ) ! }
D) an=3nn!a _ { n } = \frac { 3 ^ { n } } { n ! }
E) αn=3n1(n1)!\alpha _ { n } = \frac { 3 ^ { n - 1 } } { ( n - 1 ) ! }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
14
Find the partial sum i=056i+2\sum _ { i = 0 } ^ { 5 } 6 i + 2 .

A) 104
B) 140
C) 102
D) 142
E) 120
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
15
Find a8a _ { 8 } of the sequence an=n27(n2)!a _ { n } = \frac { n ^ { 2 } - 7 } { ( n - 2 ) ! } .

A) a8=32361a _ { 8 } = \frac { 32 } { 361 }
B) a8=32361a _ { 8 } = - \frac { 32 } { 361 }
C) a8=191680a _ { 8 } = - \frac { 19 } { 1680 }
D) a8=191680a _ { 8 } = \frac { 19 } { 1680 }
E) a8=19240a _ { 8 } = \frac { 19 } { 240 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
16
Write the first five terms of the sequence an=(1)n+4n2+1a _ { n } = \frac { ( - 1 ) ^ { n + 4 } } { n ^ { 2 } + 1 } . Assume that n begins with 1.

A) a1=12,a2=15,a3=110,a4=117,a5=126a _ { 1 } = - \frac { 1 } { 2 } , a _ { 2 } = \frac { 1 } { 5 } , a _ { 3 } = - \frac { 1 } { 10 } , a _ { 4 } = \frac { 1 } { 17 } , a _ { 5 } = - \frac { 1 } { 26 }
B) a1=12,a2=15,a3=110,a4=117,a5=126a _ { 1 } = \frac { 1 } { 2 } , a _ { 2 } = \frac { 1 } { 5 } , a _ { 3 } = \frac { 1 } { 10 } , a _ { 4 } = \frac { 1 } { 17 } , a _ { 5 } = \frac { 1 } { 26 }
C) a1=1,a2=14,a3=19,a4=116,a5=125a _ { 1 } = - 1 , a _ { 2 } = \frac { 1 } { 4 } , a _ { 3 } = - \frac { 1 } { 9 } , a _ { 4 } = \frac { 1 } { 16 } , a _ { 5 } = - \frac { 1 } { 25 }
D) a1=12,a2=15,a3=110,a4=117,a5=126a _ { 1 } = \frac { 1 } { 2 } , a _ { 2 } = - \frac { 1 } { 5 } , a _ { 3 } = \frac { 1 } { 10 } , a _ { 4 } = - \frac { 1 } { 17 } , a _ { 5 } = \frac { 1 } { 26 }
E) a1=1,a2=14,a3=19,a4=116,a5=125a _ { 1 } = 1 , a _ { 2 } = - \frac { 1 } { 4 } , a _ { 3 } = \frac { 1 } { 9 } , a _ { 4 } = - \frac { 1 } { 16 } , a _ { 5 } = \frac { 1 } { 25 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
17
Write an expression for the n th term of the sequence 7+21,7+22,7+23,7+24,7+25,7 + \frac { 2 } { 1 } , 7 + \frac { 2 } { 2 } , 7 + \frac { 2 } { 3 } , 7 + \frac { 2 } { 4 } , 7 + \frac { 2 } { 5 } , \cdots Assume that n begins with 1.

A) an=8n+3na _ { n } = \frac { 8 n + 3 } { n }
B) an=3n+8na _ { n } = \frac { 3 n + 8 } { n }
C) an=7n+2na _ { n } = \frac { 7 n + 2 } { n }
D) an=2n+7na _ { n } = \frac { 2 n + 7 } { n }
E) an=9na _ { n } = \frac { 9 } { n }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
18
Match the sequence an=20n+1a _ { n } = \frac { 20 } { n + 1 } with the graph of its first 10 terms.

A)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)
B)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)
C)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)
D)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)
E)  <strong>Match the sequence  a _ { n } = \frac { 20 } { n + 1 }  with the graph of its first 10 terms.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
19
Write the first five terms of the sequence an=413na _ { n } = - 4 - \frac { 1 } { 3 ^ { n } } . Assume that n begins with 1.

A) a1=113,a2=359,a3=10727,a4=32381,a5=971243a _ { 1 } = - \frac { 11 } { 3 } , a _ { 2 } = - \frac { 35 } { 9 } , a _ { 3 } = - \frac { 107 } { 27 } , a _ { 4 } = - \frac { 323 } { 81 } , a _ { 5 } = - \frac { 971 } { 243 }
B) a1=133,a2=379,a3=10927,a4=32581,a5=973243a _ { 1 } = - \frac { 13 } { 3 } , a _ { 2 } = - \frac { 37 } { 9 } , a _ { 3 } = - \frac { 109 } { 27 } , a _ { 4 } = - \frac { 325 } { 81 } , a _ { 5 } = - \frac { 973 } { 243 }
C) a1=113,a2=359,a3=10727,a4=32381,a5=971243a _ { 1 } = \frac { 11 } { 3 } , a _ { 2 } = \frac { 35 } { 9 } , a _ { 3 } = \frac { 107 } { 27 } , a _ { 4 } = \frac { 323 } { 81 } , a _ { 5 } = \frac { 971 } { 243 }
D) a1=3,a2=113,a3=359,a4=10727,a5=32381a _ { 1 } = - 3 , a _ { 2 } = \frac { 11 } { 3 } , a _ { 3 } = \frac { 35 } { 9 } , a _ { 4 } = \frac { 107 } { 27 } , a _ { 5 } = \frac { 323 } { 81 }
E) a1=5,a2=133,a3=379,a4=10927,a5=32581a _ { 1 } = - 5 , a _ { 2 } = - \frac { 13 } { 3 } , a _ { 3 } = - \frac { 37 } { 9 } , a _ { 4 } = - \frac { 109 } { 27 } , a _ { 5 } = - \frac { 325 } { 81 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
20
Write the first five terms of the sequence an=3n+4a _ { n } = - \frac { 3 } { n + 4 } . Assume that n begins with 1.

A) a1=35,a2=12,a3=37,a4=38,a5=13a _ { 1 } = \frac { 3 } { 5 } , a _ { 2 } = - \frac { 1 } { 2 } , a _ { 3 } = \frac { 3 } { 7 } , a _ { 4 } = - \frac { 3 } { 8 } , a _ { 5 } = \frac { 1 } { 3 }
B) a1=34,a2=35a3=12,a4=37,a5=38a _ { 1 } = \frac { 3 } { 4 } , a _ { 2 } = - \frac { 3 } { 5 } a _ { 3 } = \frac { 1 } { 2 } , a _ { 4 } = \frac { 3 } { 7 } , a _ { 5 } = \frac { 3 } { 8 }
C) a1=34,a2=35a3=12,a4=37,a5=38a _ { 1 } = \frac { 3 } { 4 } , a _ { 2 } = \frac { 3 } { 5 } a _ { 3 } = \frac { 1 } { 2 } , a _ { 4 } = \frac { 3 } { 7 } , a _ { 5 } = \frac { 3 } { 8 }
D) a1=34,a2=35a3=12,a4=37,a5=38a _ { 1 } = - \frac { 3 } { 4 } , a _ { 2 } = \frac { 3 } { 5 } a _ { 3 } = - \frac { 1 } { 2 } , a _ { 4 } = \frac { 3 } { 7 } , a _ { 5 } = - \frac { 3 } { 8 }
E) a1=35,a2=12,a3=37,a4=38,a5=13a _ { 1 } = - \frac { 3 } { 5 } , a _ { 2 } = - \frac { 1 } { 2 } , a _ { 3 } = - \frac { 3 } { 7 } , a _ { 4 } = - \frac { 3 } { 8 } , a _ { 5 } = - \frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
21
Find a formula for the n th term of the arithmetic sequence. a5=22,a6=29a _ { 5 } = 22 , a _ { 6 } = 29

A) 7n137 n - 13
B) 7n207 n - 20
C) 7n+157 n + 15
D) 7n+297 n + 29
E) 7n67 n - 6
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
22
Find the common difference of the arithmetic sequence 34,45,56,67,34,45,56,67 , \ldots

A) 22
B) 11
C) -22
D) 34
E) -11
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
23
Write the sum using sigma notation. Begin with k=1k = 1 . 113+123+133+143++1163\frac { 1 } { 1 ^ { 3 } } + \frac { 1 } { 2 ^ { 3 } } + \frac { 1 } { 3 ^ { 3 } } + \frac { 1 } { 4 ^ { 3 } } + \ldots + \frac { 1 } { 16 ^ { 3 } }

A) k=1151k3\sum _ { k = 1 } ^ { 15 } \frac { 1 } { k ^ { 3 } }
B) k=1151(k1)3\sum _ { k = 1 } ^ { 15 } \frac { 1 } { ( k - 1 ) ^ { 3 } }
C) k=1161(k1)3\sum _ { k = 1 } ^ { 16 } \frac { 1 } { ( k - 1 ) ^ { 3 } }
D) k=1161(k+1)3\sum _ { k = 1 } ^ { 16 } \frac { 1 } { ( k + 1 ) ^ { 3 } }
E) k=1161k3\sum _ { k = 1 } ^ { 16 } \frac { 1 } { k ^ { 3 } }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
24
Write the sum using sigma notation. Begin with k=0k = 0 . 23+26+29+32+3523 + 26 + 29 + 32 + 35

A) k=043k+23\sum _ { k = 0 } ^ { 4 } 3 k + 23
B) k=053k+23\sum _ { k = 0 } ^ { 5 } 3 k + 23
C) k=0523k+20\sum _ { k = 0 } ^ { 5 } 23 k + 20
D) k=0423k+20\sum _ { k = 0 } ^ { 4 } 23 k + 20
E) k=0423k+3\sum _ { k = 0 } ^ { 4 } 23 k + 3
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
25
Find the partial sum of k=130(k+8)\sum _ { k = 1 } ^ { 30 } ( k + 8 ) .

A) 930
B) 705
C) 255
D) 240
E) 2280
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
26
Find a formula for the n th term of the arithmetic sequence. a29=16,d=37a _ { 29 } = 16 , d = \frac { 3 } { 7 }

A) an=3n+317a _ { n } = \frac { 3 n + 31 } { 7 }
B) an=3n+47a _ { n } = \frac { 3 n + 4 } { 7 }
C) an=3n+17a _ { n } = \frac { 3 n + 1 } { 7 }
D) an=3n+287a _ { n } = \frac { 3 n + 28 } { 7 }
E) an=3n+257a _ { n } = \frac { 3 n + 25 } { 7 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
27
Find a formula for the n th term of the arithmetic sequence. a1=11,d=4a _ { 1 } = 11 , d = 4

A) αn=4n+11\alpha _ { n } = 4 n + 11
B) an=4n+15a _ { n } = 4 n + 15
C) an=4n+7a _ { n } = 4 n + 7
D) an=n2(11+4n)a _ { n } = \frac { n } { 2 } ( 11 + 4 n )
E) an=n2(11+4(n1))a _ { n } = \frac { n } { 2 } ( 11 + 4 ( n - 1 ) )
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
28
Write the first five terms of the arithmetic sequence defined recursively. a1=50,ak+1=ak5a _ { 1 } = 50 , a _ { k + 1 } = a _ { k } - 5

A) a1=70,a2=65,a3=60,a4=55,a5=50a _ { 1 } = 70 , a _ { 2 } = 65 , a _ { 3 } = 60 , a _ { 4 } = 55 , a _ { 5 } = 50
B) a1=50,a2=55,a3=60,a4=65,a5=70a _ { 1 } = 50 , a _ { 2 } = 55 , a _ { 3 } = 60 , a _ { 4 } = 65 , a _ { 5 } = 70
C) a1=50,a2=45,a3=40,a4=35,a5=30a _ { 1 } = 50 , a _ { 2 } = 45 , a _ { 3 } = 40 , a _ { 4 } = 35 , a _ { 5 } = 30
D) a1=30,a2=35,a3=40,a4=45,a5=50a _ { 1 } = 30 , a _ { 2 } = 35 , a _ { 3 } = 40 , a _ { 4 } = 45 , a _ { 5 } = 50
E) a1=50,a2=40,a3=45,a4=30,a5=35a _ { 1 } = 50 , a _ { 2 } = 40 , a _ { 3 } = 45 , a _ { 4 } = 30 , a _ { 5 } = 35
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
29
Find a formula for the n th term of the arithmetic sequence. a5=13,a9=3a _ { 5 } = 13 , a _ { 9 } = 3

A) an=5n512a _ { n } = - \frac { 5 n - 51 } { 2 }
B) an=5n512a _ { n } = \frac { 5 n - 51 } { 2 }
C) an=23n10a _ { n } = 23 n - 10
D) αn=13n+10\alpha _ { n } = 13 n + 10
E) an=5n+512a _ { n } = - \frac { 5 n + 51 } { 2 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
30
Find the partial sum n=05(15)n\sum _ { n = 0 } ^ { 5 } \left( - \frac { 1 } { 5 } \right) ^ { n }

A) 5213125\frac { 521 } { 3125 }
B) 26043125\frac { 2604 } { 3125 }
C) 1043125- \frac { 104 } { 3125 }
D) 26043125- \frac { 2604 } { 3125 }
E) 5213125\frac { 521 } { 3125 } .
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
31
Determine whether the sequence ln7,ln14,ln21,ln28,\ln 7 , \ln 14 , \ln 21 , \ln 28 , \ldots is arithmetic. If so, find the common difference.

A)arithmetic; 14
B)arithmetic; 2
C)arithmetic;7
D)arithmetic; 28
E)not arithmetic
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
32
Write the sum using sigma notation. Begin with k=0k = 0 . 190191+192193+1911\frac { 1 } { 9 ^ { 0 } } - \frac { 1 } { 9 ^ { 1 } } + \frac { 1 } { 9 ^ { 2 } } - \frac { 1 } { 9 ^ { 3 } } + \ldots - \frac { 1 } { 9 ^ { 11 } }

A) k=01019k\sum _ { k = 0 } ^ { 10 } - \frac { 1 } { 9 ^ { k } }
B) k=011(19)k+1\sum _ { k = 0 } ^ { 11 } \left( - \frac { 1 } { 9 } \right) ^ { k + 1 }
C) k=010(19)k+1\sum _ { k = 0 } ^ { 10 } \left( - \frac { 1 } { 9 } \right) ^ { k + 1 }
D) k=01119k\sum _ { k = 0 } ^ { 11 } - \frac { 1 } { 9 ^ { k } }
E) k=011(19)k\sum _ { k = 0 } ^ { 11 } \left( - \frac { 1 } { 9 } \right) ^ { k }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
33
Determine whether the sequence is arithmetic. If so, find the common difference. 15,35,95,275,815,\frac { 1 } { 5 } , \frac { 3 } { 5 } , \frac { 9 } { 5 } , \frac { 27 } { 5 } , \frac { 81 } { 5 } , \ldots

A) 35\frac { 3 } { 5 }
B) 95\frac { 9 } { 5 }
C) 2
5
D) 815\frac { 81 } { 5 }
E)The sequence is not arithmetic.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
34
Find the partial sum j=13(1)jj3\sum _ { j = 1 } ^ { 3 } \frac { ( - 1 ) ^ { j } } { j ^ { 3 } } .

A) 235216- \frac { 235 } { 216 }
B) 65216\frac { 65 } { 216 }
C) 65216- \frac { 65 } { 216 }
D) 197216- \frac { 197 } { 216 }
E) 197216\frac { 197 } { 216 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
35
Find a formula for the n th term of the arithmetic sequence. a1=75,d=8a _ { 1 } = 75 , d = - 8

A) an=8n83a _ { n } = - 8 n - 83
B) an=8n+83a _ { n } = - 8 n + 83
C) an=8n+75a _ { n } = 8 n + 75
D) an=8n+67a _ { n } = - 8 n + 67
E) an=8n+75a _ { n } = - 8 n + 75
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
36
A deposit of $3,000\$ 3,000 is made in an account that earns 4%4 \% interest compounded yearly. The balance in the account after N years is given by AN=3,000(1+0.04)NA _ { N } = 3,000 ( 1 + 0.04 ) ^ { N } , N=1,2,3,N = 1,2,3 , \ldots Find the balance in this account after 2020 years by computing A20A _ { 20 } . Round your answer to the nearest cent.

A) A20=$5,403A _ { 20 } = \$ 5,403
B) A20=$62,400A _ { 20 } = \$ 62,400
C) A20=$6,573A _ { 20 } = \$ 6,573
D) A20=$3,245A _ { 20 } = \$ 3,245
E) A20=$6,321A _ { 20 } = \$ 6,321
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
37
Write the first five terms of the arithmetic sequence defined recursively. a1=12,ak+1=ak+6a _ { 1 } = 12 , a _ { k + 1 } = a _ { k } + 6

A) a1=18,a2=30,a3=42,a4=54,a5=66a _ { 1 } = 18 , a _ { 2 } = 30 , a _ { 3 } = 42 , a _ { 4 } = 54 , a _ { 5 } = 66
B) a1=12,a2=24,a3=36,a4=48,a5=60a _ { 1 } = 12 , a _ { 2 } = 24 , a _ { 3 } = 36 , a _ { 4 } = 48 , a _ { 5 } = 60
C) a1=12,a2=24,a3=18,a4=36,a5=30a _ { 1 } = 12 , a _ { 2 } = 24 , a _ { 3 } = 18 , a _ { 4 } = 36 , a _ { 5 } = 30
D) a1=18,a2=24,a3=30,a4=36,a5=42a _ { 1 } = 18 , a _ { 2 } = 24 , a _ { 3 } = 30 , a _ { 4 } = 36 , a _ { 5 } = 42
E) a1=12,a2=18,a3=24,a4=30,a5=36a _ { 1 } = 12 , a _ { 2 } = 18 , a _ { 3 } = 24 , a _ { 4 } = 30 , a _ { 5 } = 36
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
38
Find the common difference of the arithmetic sequence with the n th term an=56na _ { n } = 5 - 6 n .

A) -5
B) -6
C) 6
D) -1
E) 5
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
39
Find the common difference of the arithmetic sequence 178,74,118,1,58,\frac { 17 } { 8 } , \frac { 7 } { 4 } , \frac { 11 } { 8 } , 1 , \frac { 5 } { 8 } , \ldots

A) 114\frac { 11 } { 4 }
B) 38- \frac { 3 } { 8 }
C) 34- \frac { 3 } { 4 }
D) 74- \frac { 7 } { 4 }
E) 118\frac { 11 } { 8 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
40
Determine whether the sequence is arithmetic. If so, find the common difference. ln4,ln8,ln12,ln16,ln20,\ln 4 , \ln 8 , \ln 12 , \ln 16 , \ln 20 , \ldots

A) 8
B) 4
C) ln8\ln 8
D) ln4\ln 4
E)The sequence is not arithmetic.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
41
Find the common ratio of the geometric sequence. 12,14,18,116,...\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16},...

A) 18-\frac{1}{8}
B) 14\frac{1}{4}
C) 12\frac{1}{2}
D) 12-\frac{1}{2}
E) 14-\frac{1}{4}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
42
Find the common ratio of the geometric sequence. 18π,1(8π)2,1(8π)3,1(8π)4,....\frac{1}{8 \pi}, \frac{1}{(8 \pi)^{2}}, \frac{1}{(8 \pi)^{3}}, \frac{1}{(8 \pi)^{4}},....

A) 1π2\frac{1}{\pi^{2}}
B) 1π\frac{1}{\pi}
C) 18π\frac{1}{8 \pi}
D) 18\frac{1}{8}
E) 1(8π)2\frac { 1 } { ( 8 \pi ) ^ { 2 } }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
43
Write the first five terms of the geometric sequence, given a1=9a_{1}=-9 and r=13r=-\frac{1}{3} .

A) 9,3,1,13,19-9,3,-1, \frac{1}{3},-\frac{1}{9}
B) 9,3,1,13,19-9,-3,1,-\frac{1}{3},-\frac{1}{9}
C) 9,27,1,19,127-9,27,-1, \frac{1}{9},-\frac{1}{27}
D) 27,9,1,19,127-27,9,1, \frac{1}{9},-\frac{1}{27}
E) 27,9,1,13,127- 27,9 , - 1 , - \frac { 1 } { 3 } , - \frac { 1 } { 27 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
44
Find a formula for the n th term of the geometric sequence. Assume that n begins with 1. a1=3,r=74a_{1}=3, r=\frac{7}{4}

A) an=3(74)n1a_{n}=3\left(\frac{7}{4}\right)^{n-1}
B) an=(214)n1a_{n}=\left(\frac{21}{4}\right)^{n-1}
C) an=(74)na_{n}=\left(\frac{7}{4}\right)^{n}
D) an=(214)na_{n}=\left(\frac{21}{4}\right)^{n}
E) an=3(74)na_{n}=3\left(\frac{7}{4}\right)^{n}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
45
Find the sum of the first <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)   positive integers.

A) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)
B) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)
C) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)
D) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)
E) <strong>Find the sum of the first   positive integers.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
46
Find the sum of the first <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)   positive even integers.

A) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)
B) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)
C) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)
D) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)
E) <strong>Find the sum of the first   positive even integers.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
47
A jogger decides to take a jog of 1212 miles. The first two miles take the jogger 88 minutes and 1010 minutes respectively to complete each mile. The jogger estimates that this pattern will continue for 1212 miles. Estimate the time required to jog 1212 miles.

A) 240240 minutes
B) 228228 minutes
C) 180180 minutes
D) 168168 minutes
E) 264264 minutes
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
48
Determine whether the sequence is geometric. If so, find the common ratio. 9,15,21,27,9,15,21,27, \ldots

A)9
B)15
C) 52\frac{5}{2}
D)6
E)not geometric
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
49
Determine whether the sequence is geometric. If so, find the common ratio. 1024,256,64,16,1024,256,64,16, \ldots

A)-4
B)4
C) 14-\frac{1}{4}
D) 14\frac{1}{4}
E)not geometric
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
50
Find the common ratio of the geometric sequence. 11,11,11,11,...-11,11,-11,11,...

A) 1
B)-11
C) -1
D) 111-\frac{1}{11}
E)11
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
51
Find a formula for the n th term of the geometric sequence. Assume that n begins with 1. a1=10,a2=2a_{1}=10, a_{2}=2

A) an=10(15)n1a_{n}=10\left(\frac{1}{5}\right)^{n-1}
B) an=2n1a_{n}=2^{n-1}
C) an=2(5)n1a_{n}=2(5)^{n-1}
D) an=2(5)na_{n}=2(5)^{n}
E) an=10(15)xa_{n}=10\left(\frac{1}{5}\right)^{x}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
52
Find the n th partial sum of the arithmetic sequence. 8,13,18,23,28,,n=128,13,18,23,28 , \ldots , n = 12

A) 390
B) 438
C) 426
D) 354
E) 402
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
53
Find the partial sum of k=15n10\sum _ { k = 1 } ^ { 5 } \frac { n } { 10 } .

A) -13.75
B) 0.25
C) 2.5
D) 1.5
E) 3
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
54
Find the n th partial sum of the arithmetic sequence. 9,16,23,30,37,,n=109,16,23,30,37 , \ldots , n = 10

A) 440
B) 790
C) 405
D) 395
E) 880
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
55
Determine whether the sequence is geometric. If so, find the common ratio. 1,72,494,3438,240116,..1,-\frac{7}{2}, \frac{49}{4},-\frac{343}{8}, \frac{2401}{16},..

A) 27\frac{2}{7}
B) - 27\frac{2}{7}
C) 72\frac{7}{2}
D) - 72\frac{7}{2}
E)not geometric
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
56
A museum only allows patrons to enter at fifteen minute intervals. An observer notices that every weekday at 2:00 there are 88 people waiting at the entrance and at 3:00 there are 2020 people waiting. In addition, there are 1010 people waiting at the entrance at all 15-minute intervals that are not on the hour. This pattern continues through 6:00. How many people wait to enter the museum in the interval from 2:00 to 6:00?

A) 280280
B) 232232
C) 291291
D) 248248
E) 208208
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
57
In section 112 of Hammer Stadium there are 2525 rows of seats: 1616 in the first row, 1717 seats in the second row, 1818 seats in the third row, and so on. What is the cost of each ticket if the total cost of all the seats in section 112 is $29,400\$ 29,400 ? Round the answer to two decimal places.

A) $42.00\$ 42.00
B) $43.25\$ 43.25
C) $48.75\$ 48.75
D) $45.75\$ 45.75
E) $39.50\$ 39.50
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
58
Find the n th partial sum of the arithmetic sequence. a1=0.8,a5=2.8,,n=13a _ { 1 } = 0.8 , a _ { 5 } = 2.8 , \ldots , n = 13

A) 52.65
B) 92.30
C) 105.30
D) 46.15
E) 49.40
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
59
In your new job as an accountant you are told that your starting salary will be $36,000\$ 36,000 with an increase of $2500\$ 2500 at the end of each of the first 44 years. How much will you be paid through the end of your first 5 years of employment with the company?

A)$ 211,250211,250
B)$ 164,000164,000
C)$ 159,000159,000
D)$ 205,000205,000
E)$ 198,750198,750
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
60
Find the n th partial sum of the arithmetic sequence. 300,257,214,171,128,n=9300,257,214,171,128 \ldots , n = 9

A) 1926
B) 2304
C) -198
D) 958.5
E) 1152
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
61
Find the n th partial sum of the geometric sequence. 5,15,45,135,405,,n=75,15,45,135,405, \ldots, \quad n=7

A)1,820
B)5,465
C)200
D)5,514
E)5,808
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
62
Find the balance of an increasing annuity in which a principal of $300 is invested each month for 33 years, compounded monthly at a rate of 8%.

A)$42,454.33
B)$583,960.90
C)$63,895.28
D)$123,835.77
E)$11,406.08
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
63
Find the partial sum. i=142(32)i1\sum_{i=1}^{4} 2\left(\frac{3}{2}\right)^{i-1}

A) 1054\frac{105}{4}
B) 174\frac{17}{4}
C) 654\frac{65}{4}
D) 894\frac{89}{4}
E) 794\frac{79}{4}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
64
Evaluate the binomial coefficient 15C13{ } _ { 15 } C _ { 13 } .

A) 120120
B) 300300
C) 118118
D) 317317
E) 105105
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
65
Find the partial sum. i183(14)i1\sum_{i-1}^{8} 3\left(-\frac{1}{4}\right)^{i-1}

A) 916,384\frac{9}{16,384}
B) 29116,384\frac{291}{16,384}
C) 39,32116,384\frac{39,321}{16,384}
D) 316,384\frac{3}{16,384}
E) 9916,384\frac{99}{16,384}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
66
A ball is dropped from a height of 10 feet. Each time it drops h feet, it rebounds 0.79 h feet. Find the total distance traveled by the ball. Round your answer to two decimal places.

A)75.24
B)37.62
C)47.62
D)85.24
E)22.66
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
67
Find the n th partial sum of the geometric sequence. Round your answer to 2 decimal places. 22,22(1.04),22(1.04)2,22(1.04)3,,n=922,22(1.04), 22(1.04)^{2}, 22(1.04)^{3}, \ldots, \quad n=9

A)330.57
B)173.76
C)752.71
D)232.82
E)296.70
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
68
Find a formula for the n th term of the geometric sequence. Assume that n begins with 1. 4,10,25,1252,4,-10,25,-\frac{125}{2}, \ldots

A) an=2(52)n1a_{n}=2\left(-\frac{5}{2}\right)^{n-1}
B) an=2(52)n2a_{n}=2\left(-\frac{5}{2}\right)^{n-2}
C) an=4(52)n1a_{n}=4\left(-\frac{5}{2}\right)^{n-1}
D) an=2(52)na_{n}=-2\left(-\frac{5}{2}\right)^{n}
E) an=4(52)na_{n}=-4\left(-\frac{5}{2}\right)^{n}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
69
You accept a job as a manager that pays a salary of $34,000 the first year. During the next 39 years, you receive a 4% raise each year. What would your total salary be over the 40 year period? Round answer to the nearest cent.

A)$3,740,420.98
B)$3,230,867.53
C)$3,394,102.24
D)$2,922,991.43
E)$2,638,342.67
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
70
Find the sum. n=0(14)n\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}

A) 45\frac{4}{5}
B) 54\frac{5}{4}
C) 15\frac{1}{5}
D) 43\frac{4}{3}
E) 16\frac{1}{6}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
71
A company buys a machine for $400,000. During the next 8 years, the machine depreciates at the rate of 25% per year. That is, at the end of each year, the depreciated value is 75% of what it was at the beginning of the year. Find the depreciated value of the machine at the end of the 8 full years. Round answer to the nearest cent.

A)24.41
B)30,033.87
C)6.10
D)53,393.55
E)40,045.17
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
72
Find the balance of an increasing annuity in which a principal of $20 is invested each month for 40 years, compounded monthly at a rate of 8%.

A)$939.44
B)$11,878.94
C)$5,744.14
D)$70,305.62
E)$3,703.31
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
73
Find the n th partial sum of the geometric sequence. 1,4,16,64,256,,n=71,-4,16,-64,256, \ldots, \quad n=7

A)3326
B)3277
C)-819
D)3620
E)-51
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
74
Find the n th partial sum of the geometric sequence. 64,16,4,1,14,,n=6-64,16,-4,1,-\frac{1}{4}, \ldots, \quad n=6

A) 81916-\frac{819}{16}
B) 316-\frac{3}{16}
C) 116\frac{1}{16}
D) 327716\frac{3277}{16}
E) 5116-\frac{51}{16}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
75
A city of 700,000 people is growing at the rate of 2% per year. That is, at the end of each year, the population is 1.02 times the population at the beginning of the year. Estimate the population years 19 from now. Round to the nearest integer.

A)1,243,091
B)1,019,768
C)1,103,829
D)1,082,186
E)1,194,821
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
76
Find the sum. n=0(38)n\sum_{n=0}^{\infty}\left(-\frac{3}{8}\right)^{n}

A) 811\frac{8}{11}
B) 314\frac{3}{14}
C) 58\frac{5}{8}
D) 85\frac{8}{5}
E) 35\frac{3}{5}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
77
Evaluate the binomial coefficient 20C20{ } _ { 20 } C _ { 20 } .

A)1
B) 00
C) 1919
D) 2020
E) 22
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
78
Find a5a_{5} of the geometric sequence, given a1=9a_{1}=9 and a2=8a_{2}=8

A) 65614096\frac{6561}{4096}
B) 40966561\frac{4096}{6561}
C) 729512\frac{729}{512}
D) 4096729\frac { 4096 } { 729 }
E) 6561512\frac { 6561 } { 512 }
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
79
Evaluate the binomial coefficient 7C3{ } _ { 7 } C _ { 3 } .

A) 66
B) 5,0345,034
C) 840840
D) 3535
E) 210210
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
80
Find the sum. 21+9+277+8149+21+9+\frac{27}{7}+\frac{81}{49}+\ldots

A) 44110\frac{441}{10}
B) 1474\frac{147}{4}
C) 214\frac{21}{4}
D) 13234\frac{1323}{4}
E) 34\frac{3}{4}
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 98 flashcards in this deck.