Deck 3: Polynomial and Rational Functions

Full screen (f)
exit full mode
Question
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x)=313xf ( x ) = 3 - \frac { 1 } { 3 } x

A) Yes; degree 1
B) No; x has a fractional coefficient
C) Yes; degree 3
D) Yes; degree 0
Use Space or
up arrow
down arrow
to flip the card.
Question
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
f(x) = (x + 2)5 + 4   f(x) = (x + 2)5 + 4   A)   B)   C)   D)  <div style=padding-top: 35px> A)
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
B)
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
C)
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
D)
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
Question
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x) = 4x + 2x3

A) Yes; degree 3
B) Yes; degree 2
C) Yes; degree 1
D) Yes; degree 4
Question
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x)=2x25f ( x ) = \frac { 2 - x ^ { 2 } } { 5 }

A) No; x is a negative term
B) Yes; degree 2
C) Yes; degree 1
D) No; it is a ratio
Question
  f(x) = (x + 5)5   A)   B)   C)   D)   <div style=padding-top: 35px>
f(x) = (x + 5)5   f(x) = (x + 5)5   A)   B)   C)   D)   <div style=padding-top: 35px> A)
  f(x) = (x + 5)5   A)   B)   C)   D)   <div style=padding-top: 35px>
B)
  f(x) = (x + 5)5   A)   B)   C)   D)   <div style=padding-top: 35px>
C)
  f(x) = (x + 5)5   A)   B)   C)   D)   <div style=padding-top: 35px>
D)
  f(x) = (x + 5)5   A)   B)   C)   D)   <div style=padding-top: 35px>
Question
    A)   B)   C)   D)  <div style=padding-top: 35px>
    A)   B)   C)   D)  <div style=padding-top: 35px> A)
    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x) = 19x5 + 9x4 + 2

A) Yes; degree 9
B) No; the last term has no variable
C) Yes; degree 10
D) Yes; degree 5
Question
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)   <div style=padding-top: 35px>
f(x) = x5 + 4   f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)   <div style=padding-top: 35px> A)
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)   <div style=padding-top: 35px>
B)
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)   <div style=padding-top: 35px>
C)
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)   <div style=padding-top: 35px>
D)
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)   <div style=padding-top: 35px>
Question
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
f(x)=12(x+2)4+2f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2     f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>  A)
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
    A)   B)   C)   D)  <div style=padding-top: 35px>
    A)   B)   C)   D)  <div style=padding-top: 35px> A)
    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
    A)   B)   C)   D)   <div style=padding-top: 35px>
    A)   B)   C)   D)   <div style=padding-top: 35px> A)
    A)   B)   C)   D)   <div style=padding-top: 35px>
B)
    A)   B)   C)   D)   <div style=padding-top: 35px>
C)
    A)   B)   C)   D)   <div style=padding-top: 35px>
D)
    A)   B)   C)   D)   <div style=padding-top: 35px>
Question
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
f(x) = (x - 3)4 + 4   f(x) = (x - 3)4 + 4   A)   B)   C)   D)  <div style=padding-top: 35px> A)
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
B)
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
C)
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
D)
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)  <div style=padding-top: 35px>
Question
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
f(x)=12(x3)5+2f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
A)
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
    A)   B)   C)   D)  <div style=padding-top: 35px>
    A)   B)   C)   D)  <div style=padding-top: 35px> A)
    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x)=1+7xf ( x ) = 1 + \frac { 7 } { x }

A) Yes; degree 7
B) Yes; degree 0
C) Yes; degree 1
D) No; x is raised to a negative power
Question
    A)   B)   C)   D)  <div style=padding-top: 35px>
    A)   B)   C)   D)  <div style=padding-top: 35px> A)
    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x) = x(x - 9)

A) Yes; degree 1
B) Yes; degree 2
C) Yes; degree 0
D) No; it is a product
Question
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)   <div style=padding-top: 35px>
f(x) = 3 - (x - 4)4   f(x) = 3 - (x - 4)4   A)   B)   C)   D)   <div style=padding-top: 35px> A)
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)   <div style=padding-top: 35px>
B)
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)   <div style=padding-top: 35px>
C)
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)   <div style=padding-top: 35px>
D)
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)   <div style=padding-top: 35px>
Question
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)  <div style=padding-top: 35px>
f(x) = -2(x - 5)4 + 3   f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)  <div style=padding-top: 35px> A)
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)  <div style=padding-top: 35px>
B)
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)  <div style=padding-top: 35px>
C)
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)  <div style=padding-top: 35px>
D)
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)  <div style=padding-top: 35px>
Question
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x) = 15

A) No; it contains no variables
B) No; it is a constant
C) Yes; degree 1
D) Yes; degree 0
Question
Determine the maximum number of turning points of f.
f(x) = -x2 (x + 4)3(x2 - 1)

A) 6
B) 2
C) 5
D) 7
Question
Find the x- and y-intercepts of f.
f(x)=6xx3f ( x ) = 6 x - x ^ { 3 }

A) x-intercepts: 0,6,6;y0 , \sqrt { 6 } , - \sqrt { 6 } ; y -intercept: 0
B) x-intercepts: 0,6;y0 , - 6 ; y -intercept: 0
C) x-intercepts: 0,6;y0 , - 6 ; y -intercept: 6
D) xx -intercepts: 0,6,6;y0 , \sqrt { 6 } , - \sqrt { 6 } ; y -intercept: 6
Question
 <strong>   f ( x ) = 5 \left( x ^ { 2 } + 6 \right) \left( x ^ { 2 } + 4 \right) ^ { 2 } </strong> A)  \sqrt { 6 } , multiplicity 1 , crosses  x -axis;  - \sqrt { 6 } , multiplicity 1 , crosses  x -axis; 2 , multiplicity 2 , touches  x -axis;  - 2 , multiplicity 2 , touches  x -axis B) -6, multiplicity 1 , touches  x -axis;  - 4 , multiplicity 2, crosses  x -axis C) -6, multiplicity 1 , crosses  x -axis;  - 4 , multiplicity 2 , touches  x -axis D) No real zeros <div style=padding-top: 35px>
f(x)=5(x2+6)(x2+4)2f ( x ) = 5 \left( x ^ { 2 } + 6 \right) \left( x ^ { 2 } + 4 \right) ^ { 2 }

A) 6\sqrt { 6 } , multiplicity 1 , crosses xx -axis; 6- \sqrt { 6 } , multiplicity 1 , crosses xx -axis; 2 , multiplicity 2 , touches xx -axis; 2- 2 , multiplicity 2 , touches xx -axis
B) -6, multiplicity 1 , touches xx -axis; 4- 4 , multiplicity 2, crosses xx -axis
C) -6, multiplicity 1 , crosses xx -axis; 4- 4 , multiplicity 2 , touches xx -axis
D) No real zeros
Question
Determine the maximum number of turning points of f.
f(x)=(x+19)4(x4)3f ( x ) = \left( x + \frac { 1 } { 9 } \right) ^ { 4 } ( x - 4 ) ^ { 3 }

A) above the xx -axis: (4,)( 4 , \infty )
below the xx -axis: (,19),(19,4)\left( - \infty , - \frac { 1 } { 9 } \right) , \left( - \frac { 1 } { 9 } , 4 \right)
B) above the xx -axis: (,19),(19,4)\left( - \infty , - \frac { 1 } { 9 } \right) , \left( - \frac { 1 } { 9 } , 4 \right)
below the xx -axis: (4,)( 4 , \infty )
C) above the xx -axis: (19,4)\left( - \frac { 1 } { 9 } , 4 \right)
below the xx -axis: (,19),(4,)\left( - \infty , - \frac { 1 } { 9 } \right) , ( 4 , \infty )
D) above the x-axis: (,19),(4,)\left( - \infty , - \frac { 1 } { 9 } \right) , ( 4 , \infty )
below the xx -axis: (19,4)\left( - \frac { 1 } { 9 } , 4 \right)
Question
Find the x- and y-intercepts of f.
f(x)=x2(x+6)(x21)f ( x ) = - x ^ { 2 } ( x + 6 ) \left( x ^ { 2 } - 1 \right)

A) x-intercepts: -6, 0, 1; y-intercept: -6
B) x-intercepts: -1, 0, 1, 6; y-intercept: 0
C) x-intercepts: -6, -1, 0, 1; y-intercept: 0
D) x-intercepts: -6, -1, 0, 1; y-intercept: -6
Question
Find the x- and y-intercepts of f.
f(x) = (x - 3)(x - 1)

A) x-intercepts: 3, 1; y-intercept: -4
B) x-intercepts: -3, -1; y-intercept: -4
C) x-intercepts: 3, 1; y-intercept: 3
D) x-intercepts: -3, -1; y-intercept: 3
Question
Determine the maximum number of turning points of f.
f(x) = 8x - x3

A) 1
B) 3
C) 2
D) 4
Question
 <strong>   f ( x ) = \frac { 1 } { 3 } x ^ { 2 } \left( x ^ { 2 } - 5 \right) ( x - 3 ) </strong> A) 0 , multiplicity 2 , touches  x -axis; 3 , multiplicity 1 , crosses  x -axis;  \sqrt { 5 } , multiplicity 1 , crosses  x -axis  - \sqrt { 5 } , multiplicity 1 , crosses  x -axis B) 0 , multiplicity 2 , crosses  x -axis; 3 , multiplicity 1 , touches  x -axis;  \sqrt { 5 } , multiplicity 1 , touches  x -axis;  - \sqrt { 5 } , multiplicity 1 , touches  x -axis C) 0 , multiplicity 2, crosses x-axis; 3 , multiplicity 1 , touches  x -axis D) 0 , multiplicity 2 , touches  x -axis; 3 , multiplicity 1 , crosses  x -axis <div style=padding-top: 35px>
f(x)=13x2(x25)(x3)f ( x ) = \frac { 1 } { 3 } x ^ { 2 } \left( x ^ { 2 } - 5 \right) ( x - 3 )

A) 0 , multiplicity 2 , touches xx -axis;
3 , multiplicity 1 , crosses xx -axis;
5\sqrt { 5 } , multiplicity 1 , crosses xx -axis
5- \sqrt { 5 } , multiplicity 1 , crosses xx -axis
B) 0 , multiplicity 2 , crosses xx -axis;
3 , multiplicity 1 , touches xx -axis;
5\sqrt { 5 } , multiplicity 1 , touches xx -axis;
5- \sqrt { 5 } , multiplicity 1 , touches xx -axis
C) 0 , multiplicity 2, crosses x-axis;
3 , multiplicity 1 , touches xx -axis
D) 0 , multiplicity 2 , touches xx -axis;
3 , multiplicity 1 , crosses xx -axis
Question
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)  <div style=padding-top: 35px>
f(x)=4(x+4)5f ( x ) = 4 - ( x + 4 ) ^ { 5 }
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)  <div style=padding-top: 35px>
A)
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)  <div style=padding-top: 35px>
f(x)=2(x5)5+3f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)  <div style=padding-top: 35px>
A)
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)  <div style=padding-top: 35px>
Question
Find the x- and y-intercepts of f.
f(x)=2x4(x5)5f ( x ) = 2 x ^ { 4 } ( x - 5 ) ^ { 5 }

A) x-intercepts: 0, -5; y-intercept: 2
B) x-intercepts: 0, 5; y-intercept: 2
C) x-intercepts: 0, -5; y-intercept: 0
D) x-intercepts: 0, 5; y-intercept: 0
Question
Determine the maximum number of turning points of f.
f(x) = (x - 3)2(x + 5)2

A) 3
B) 1
C) 4
D) 2
Question
Find the x- and y-intercepts of f.
f(x)=x2(x+6)(x2+1)f ( x ) = - x ^ { 2 } ( x + 6 ) \left( x ^ { 2 } + 1 \right) (x)=x2(x+6)(x2+1)( x ) = - x ^ { 2 } ( x + 6 ) \left( x ^ { 2 } + 1 \right)

A) x-intercepts: -6, -1, 0; y-intercept: 6
B) x-intercepts: -6, -1, 0; y-intercept: -6
C) x-intercepts: -6, -1, 0, 1; y-intercept: 0
D) x-intercepts: -6, 0; y-intercept: 0
Question
Determine the maximum number of turning points of f.
f(x)=x2(x+2)f ( x ) = x ^ { 2 } ( x + 2 )
Answer: (a) For large values of x| x | , the graph of f(x)f ( x ) will resemble the graph of y=x3y = x ^ { 3 } .
(b) yy -intercept: (0,0)( 0,0 ) , xx -intercepts: (0,0)( 0,0 ) and (2,0)( - 2,0 )
(c) The graph of ff crosses the xx -axis at (2,0)( - 2,0 ) and touches the xx -axis at (0,0)( 0,0 ) .
(e) Local minimum at (0,0)( 0,0 ) , Local maximum at (1.33,1.19)( - 1.33,1.19 )
(f)
 Determine the maximum number of turning points of f.  f ( x ) = x ^ { 2 } ( x + 2 )  Answer: (a) For large values of  | x | , the graph of  f ( x )  will resemble the graph of  y = x ^ { 3 } . (b)  y -intercept:  ( 0,0 ) ,  x -intercepts:  ( 0,0 )  and  ( - 2,0 )  (c) The graph of  f  crosses the  x -axis at  ( - 2,0 )  and touches the  x -axis at  ( 0,0 ) . (e) Local minimum at  ( 0,0 ) , Local maximum at  ( - 1.33,1.19 )  (f)   (g) Domain of f: all real numbers; range of f: all real numbers (h) f is increasing on (-, -1.33) and (0, ); f is decreasing on (-1.33, 0)<div style=padding-top: 35px>
(g) Domain of f: all real numbers; range of f: all real numbers
(h) f is increasing on (-, -1.33) and (0, ); f is decreasing on (-1.33, 0)
Question
 <strong>   f ( x ) = \frac { 1 } { 5 } x ^ { 4 } \left( x ^ { 2 } - 5 \right) </strong> A) 0 , multiplicity 4 , touches  x -axis;  \sqrt { 5 } , multiplicity 1 , crosses  x -axis;  - \sqrt { 5 } , multiplicity 1 , crosses  x -axis B) 0 , multiplicity 4 , crosses  x -axis C) 0 , multiplicity 4 , crosses  x -axis;  \sqrt { 5 } , multiplicity 1 , touches  x -axis; D) 0 , multiplicity 4 , touches  x -axis  - \sqrt { 5 } , multiplicity 1 , touches  x -axis <div style=padding-top: 35px>
f(x)=15x4(x25)f ( x ) = \frac { 1 } { 5 } x ^ { 4 } \left( x ^ { 2 } - 5 \right)

A) 0 , multiplicity 4 , touches xx -axis;
5\sqrt { 5 } , multiplicity 1 , crosses xx -axis;
5- \sqrt { 5 } , multiplicity 1 , crosses xx -axis
B) 0 , multiplicity 4 , crosses xx -axis
C) 0 , multiplicity 4 , crosses xx -axis;
5\sqrt { 5 } , multiplicity 1 , touches xx -axis;
D) 0 , multiplicity 4 , touches xx -axis
5- \sqrt { 5 } , multiplicity 1 , touches xx -axis
Question
Determine the maximum number of turning points of f.
f(x)=(x4)3f ( x ) = ( x - 4 ) ^ { 3 }

A) above the xx -axis: (4,)( 4 , \infty )
below the xx -axis: (,4)( - \infty , 4 )
B) above the xx -axis: (,4),(4,)( - \infty , 4 ) , ( 4 , \infty )
below the xx -axis: no intervals
C) above the x-axis: no intervals
below the xx -axis: (,4),(4,)( - \infty , 4 ) , ( 4 , \infty )
D) above the xx -axis: (,4)( - \infty , 4 )
below the xx -axis: (4,)( 4 , \infty )
Question
Find the x- and y-intercepts of f.
f(x)=(x+5)(x3)(x+3)f ( x ) = ( x + 5 ) ( x - 3 ) ( x + 3 )

A) x-intercepts: -3, 3, 5; y-intercept: -45
B) x-intercepts: -5, -3, 3; y-intercept: -45
C) x-intercepts: -5, -3, 3; y-intercept: 45
D) x-intercepts: -3, 3, 5; y-intercept: 45
Question
Find the x- and y-intercepts of f.
f(x)=(x+1)(x2)(x1)2f ( x ) = ( x + 1 ) ( x - 2 ) ( x - 1 ) ^ { 2 }

A) x-intercepts: -1, 1, -2; y-intercept: 2
B) x-intercepts: -1, 1, 2; y-intercept: 2
C) x-intercepts: -1, 1, -2; y-intercept: -2
D) x-intercepts: -1, 1, 2; y-intercept: -2
Question
Find the x- and y-intercepts of f.
f(x)=(x+6)2f ( x ) = ( x + 6 ) ^ { 2 }

A) x-intercept: -6; y-intercept: 36
B) x-intercept: -6; y-intercept: 0
C) x-intercept: 6; y-intercept: 36
D) x-intercept: 6; y-intercept: 0
Question
Determine the maximum number of turning points of f.
f(x)=(x3)2(x+5)2f ( x ) = ( x - 3 ) ^ { 2 } ( x + 5 ) ^ { 2 }

A) above the xx -axis: (,5),(3,)( - \infty , - 5 ) , ( 3 , \infty )
below the x-axis: (5,3)( - 5,3 )
B) above the x-axis: (5,3)( - 5,3 )
below the xx -axis: (,5),(3,)( - \infty , - 5 ) , ( 3 , \infty )
C) above the xx -axis: (,5),(5,3),(3,)( - \infty , - 5 ) , ( - 5,3 ) , ( 3 , \infty )
below the xx -axis: no intervals
D) above the xx -axis: no intervals
below the xx -axis: (,5),(5,3),(3,)( - \infty , - 5 ) , ( - 5,3 ) , ( 3 , \infty )
Question
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=x3+3x24x12f ( x ) = x ^ { 3 } + 3 x ^ { 2 } - 4 x - 12

A) 3;f(x)=(x+3)(x2x4)- 3 ; f ( x ) = ( x + 3 ) \left( x ^ { 2 } - x - 4 \right)
B) 3,2,2;f(x)=(x+3)(x+2)(x2)- 3 , - 2,2 ; f ( x ) = ( x + 3 ) ( x + 2 ) ( x - 2 )
C) 2;f(x)=(x+2)(x2+x6)- 2 ; f ( x ) = ( x + 2 ) \left( x ^ { 2 } + x - 6 \right)
D) 2,2,3;f(x)=(x+2)(x2)(x3)- 2,2,3 ; f ( x ) = ( x + 2 ) ( x - 2 ) ( x - 3 )
Question
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=x54x2+3x+14f ( x ) = x ^ { 5 } - 4 x ^ { 2 } + 3 x + 14

A) ±1,±7,±2,±14\pm 1 , \pm 7 , \pm 2 , \pm 14
B) ±1,±17,±12,±114\pm 1 , \pm \frac { 1 } { 7 } , \pm \frac { 1 } { 2 } , \pm \frac { 1 } { 14 }
C) ±1,±7,±2\pm 1 , \pm 7 , \pm 2
D) ±1,±17,±12,±114,±7,±2,±14\pm 1 , \pm \frac { 1 } { 7 } , \pm \frac { 1 } { 2 } , \pm \frac { 1 } { 14 } , \pm 7 , \pm 2 , \pm 14
Question
Find the x- and y-intercepts of f.
f(x)=(x+13)2f ( x ) = ( x + 13 ) ^ { 2 }

A) x-intercept: 13; y-intercept: 169
B) x-intercept: -13; y-intercept: 0
C) x-intercept: -13; y-intercept: 169
D) x-intercept: 13; y-intercept: 0
Question
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=6x4+4x32x2+2f ( x ) = 6 x ^ { 4 } + 4 x ^ { 3 } - 2 x ^ { 2 } + 2

A) ±12,±32,±1,±2,±3,±6\pm \frac { 1 } { 2 } , \pm \frac { 3 } { 2 } , \pm 1 , \pm 2 , \pm 3 , \pm 6
B) ±16,±13,±12,±23,±1,±2\pm \frac { 1 } { 6 } , \pm \frac { 1 } { 3 } , \pm \frac { 1 } { 2 } , \pm \frac { 2 } { 3 } , \pm 1 , \pm 2
C) ±16,±13,±12,±23,±1,±2,±3\pm \frac { 1 } { 6 } , \pm \frac { 1 } { 3 } , \pm \frac { 1 } { 2 } , \pm \frac { 2 } { 3 } , \pm 1 , \pm 2 , \pm 3
D) ±16,±13,±12,±1,±2\pm \frac { 1 } { 6 } , \pm \frac { 1 } { 3 } , \pm \frac { 1 } { 2 } , \pm 1 , \pm 2
Question
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=x55x2+2x+7f ( x ) = x ^ { 5 } - 5 x ^ { 2 } + 2 x + 7

A) ±1,±17\pm 1 , \pm \frac { 1 } { 7 }
B) ±7,±17\pm 7 , \pm \frac { 1 } { 7 }
C) ±15,±75,±7\pm \frac { 1 } { 5 } , \pm \frac { 7 } { 5 } , \pm 7
D) ±1,±7\pm 1 , \pm 7
Question
Solve the problem.
The profits (in millions) for a company for 8 years was as follows:  Year, x Profits 1993,11.11994,21.71995,32.01996,41.41997,51.31998,61.51999,71.82000,82.1\begin{array} { c | c } \text { Year, } x & \text { Profits } \\\hline 1993,1 & 1.1 \\1994,2 & 1.7 \\1995,3 & 2.0 \\1996,4 & 1.4 \\1997,5 & 1.3 \\1998,6 & 1.5 \\1999,7 & 1.8 \\2000,8 & 2.1\end{array} Find the cubic function of best fit to the data.
Question
Solve the problem.
For the polynomial funct f(x)=2x47x3+11x4f ( x ) = 2 x ^ { 4 } - 7 x ^ { 3 } + 11 x - 4 a) Find the x- and y-intercepts of the graph of f. Round to two decimal places, if necessary.
b) Determine whether the graph crosses or touches the x-axis at each x-intercept.
c) End behavior: find the power function that the graph of f resembles for large values of |x|.
d) Use a graphing utility to graph the function.Approximate the local maxima rounded to two decimal places,
if necessary. Approximate the local minima rounded to two decimal places, if necessary.
e) Determine the number of turning points on the graph.
f) Put all the information together, and connect the points with a smooth, continuous curve to obtain the
graph of f.  Solve the problem. For the polynomial funct  f ( x ) = 2 x ^ { 4 } - 7 x ^ { 3 } + 11 x - 4  a) Find the x- and y-intercepts of the graph of f. Round to two decimal places, if necessary. b) Determine whether the graph crosses or touches the x-axis at each x-intercept. c) End behavior: find the power function that the graph of f resembles for large values of |x|. d) Use a graphing utility to graph the function.Approximate the local maxima rounded to two decimal places, if necessary. Approximate the local minima rounded to two decimal places, if necessary. e) Determine the number of turning points on the graph. f) Put all the information together, and connect the points with a smooth, continuous curve to obtain the graph of f.  <div style=padding-top: 35px>
Question
Find the x- and y-intercepts of f.
f(x) = (x + 6)(x - 2)(x + 2)

A) x-intercepts: -6, -2, 2; y-intercept: -24
B) x-intercepts: -2, 2, 6; y-intercept: 24
C) x-intercepts: -2, 2, 6; y-intercept: -24
D) x-intercepts: -6, -2, 2; y-intercept: 24
Question
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=3x32x2+9x6f ( x ) = 3 x ^ { 3 } - 2 x ^ { 2 } + 9 x - 6

A) 6;f(x)=(x6)(3x2+1)6 ; f ( x ) = ( x - 6 ) \left( 3 x ^ { 2 } + 1 \right)
B) 3,23,1;f(x)=(3x2)(x1)(x3)3 , \frac { 2 } { 3 } , 1 ; f ( x ) = ( 3 x - 2 ) ( x - 1 ) ( x - 3 )
C) 23;f(x)=(3x2)(x2+3)\frac { 2 } { 3 } ; f ( x ) = ( 3 x - 2 ) \left( x ^ { 2 } + 3 \right)
D) 3,1,23;f(x)=(3x2)(x+1)(x+3)- 3 , - 1 , \frac { 2 } { 3 } ; f ( x ) = ( 3 x - 2 ) ( x + 1 ) ( x + 3 )
Question
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=x415x216f ( x ) = x ^ { 4 } - 15 x ^ { 2 } - 16

A) 4,4;f(x)=(x4)(x+4)(x2+1)- 4,4 ; f ( x ) = ( x - 4 ) ( x + 4 ) \left( x ^ { 2 } + 1 \right)
B) 4;f(x)=(x4)2(x2+1)4 ; f ( x ) = ( x - 4 ) ^ { 2 } \left( x ^ { 2 } + 1 \right)
C) 1,1;f(x)=(x1)(x+1)(x2+16)- 1,1 ; f ( x ) = ( x - 1 ) ( x + 1 ) \left( x ^ { 2 } + 16 \right)
D) 4,1,4,1;f(x)=(x4)(x+4)(x1)(x+1)- 4 , - 1,4,1 ; f ( x ) = ( x - 4 ) ( x + 4 ) ( x - 1 ) ( x + 1 )
Question
Find the x- and y-intercepts of f.
f(x) = 4x2 (x - 4)5

A) x-intercepts: 0, -4; y-intercept: 0
B) x-intercepts: 0, 4; y-intercept: 4
C) x-intercepts: 0, -4; y-intercept: 4
D) x-intercepts: 0, 4; y-intercept: 0
Question
Solve the problem.
The amount of water (in gallons) in a leaky bathtub is given in the table below. Using a graphing utility, fit the data to a third degree polynomial (or a cubic). Then approximate the time at which there is maximum amount
Of water in the tub, and estimate the time when the water runs out of the tub. Express all your answers rounded
To two decimal places. t (in minutes) 01234567V (in gallons) 2026456386949067\begin{array} { c | c c c c c c c c } \mathrm { t } \text { (in minutes) } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \mathrm { V } \text { (in gallons) } & 20 & 26 & 45 & 63 & 86 & 94 & 90 & 67\end{array}

A) maximum amount of water after 8.23 minutes; water runs out after 19.73 minutes
B) maximum amount of water after 5.31 minutes; water runs out after 8.23 minutes
C) maximum amount of water after 5.37 minutes; water runs out after 11.06 minutes
D) maximum amount of water after 5.31 minutes; water never runs out
Question
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=4x4+2x23x+6f ( x ) = - 4 x ^ { 4 } + 2 x ^ { 2 } - 3 x + 6

A) ±16,±12,±13,±23,±43,±1,±2,±4\pm \frac { 1 } { 6 } , \pm \frac { 1 } { 2 } , \pm \frac { 1 } { 3 } , \pm \frac { 2 } { 3 } , \pm \frac { 4 } { 3 } , \pm 1 , \pm 2 , \pm 4
B) ±14,±12,±34,±32,±1,±2,±3,±4,±6\pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm \frac { 3 } { 4 } , \pm \frac { 3 } { 2 } , \pm 1 , \pm 2 , \pm 3 , \pm 4 , \pm 6
C) ±14,±12,±34,±32,±1,±2,±3,±6\pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm \frac { 3 } { 4 } , \pm \frac { 3 } { 2 } , \pm 1 , \pm 2 , \pm 3 , \pm 6
D) ±14,±12,±23,±34,±32,±1,±2,±3,±6\pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm \frac { 2 } { 3 } , \pm \frac { 3 } { 4 } , \pm \frac { 3 } { 2 } , \pm 1 , \pm 2 , \pm 3 , \pm 6
Question
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=2x55x2+3x1f ( x ) = 2 x ^ { 5 } - 5 x ^ { 2 } + 3 x - 1

A) ±1,±2,±12\pm 1 , \pm 2 , \pm \frac { 1 } { 2 }
B) ±1\pm 1 , ±2\pm 2
C) ±2,±12\pm 2 , \pm \frac { 1 } { 2 }
D) ±1,±12\pm 1 , \pm \frac { 1 } { 2 }
Question
Solve the problem.
Which of the following polynomial functions might have the graph shown in the illustration below?  <strong>Solve the problem. Which of the following polynomial functions might have the graph shown in the illustration below?  </strong> A)  f ( x ) = x ( x - 2 ) ^ { 2 } ( x - 1 )  B)  f ( x ) = x ^ { 2 } ( x - 2 ) ^ { 2 } ( x - 1 ) ^ { 2 }  C)  f ( x ) = x ^ { 2 } ( x - 2 ) ( x - 1 )  D)  f ( x ) = x ( x - 2 ) ( x - 1 ) ^ { 2 }  <div style=padding-top: 35px>

A) f(x)=x(x2)2(x1)f ( x ) = x ( x - 2 ) ^ { 2 } ( x - 1 )
B) f(x)=x2(x2)2(x1)2f ( x ) = x ^ { 2 } ( x - 2 ) ^ { 2 } ( x - 1 ) ^ { 2 }
C) f(x)=x2(x2)(x1)f ( x ) = x ^ { 2 } ( x - 2 ) ( x - 1 )
D) f(x)=x(x2)(x1)2f ( x ) = x ( x - 2 ) ( x - 1 ) ^ { 2 }
Question
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=5x47x3+22x228x+8f ( x ) = 5 x ^ { 4 } - 7 x ^ { 3 } + 22 x ^ { 2 } - 28 x + 8

A) 4,1,1,25;f(x)=(x1)(5x+2)(x+1)(x+4)- 4 , - 1,1 , - \frac { 2 } { 5 } ; f ( x ) = ( x - 1 ) ( 5 x + 2 ) ( x + 1 ) ( x + 4 )
B) 4,1,1,25;f(x)=(x1)(5x2)(x+1)(x+4)- 4 , - 1,1 , \frac { 2 } { 5 } ; f ( x ) = ( x - 1 ) ( 5 x - 2 ) ( x + 1 ) ( x + 4 )
C) 4,25;f(x)=(x4)(5x2)(x2+1)4 , \frac { 2 } { 5 } ; f ( x ) = ( x - 4 ) ( 5 x - 2 ) \left( x ^ { 2 } + 1 \right)
D) 1,25;f(x)=(x1)(5x2)(x2+4)1 , \frac { 2 } { 5 } ; f ( x ) = ( x - 1 ) ( 5 x - 2 ) \left( x ^ { 2 } + 4 \right)
Question
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=11x3x2+3f ( x ) = 11 x ^ { 3 } - x ^ { 2 } + 3

A) ±111,±311,±1,±3,±11\pm \frac { 1 } { 11 } , \pm \frac { 3 } { 11 } , \pm 1 , \pm 3 , \pm 11
B) ±111,±311,±1,±3\pm \frac { 1 } { 11 } , \pm \frac { 3 } { 11 } , \pm 1 , \pm 3
C) ±111,±13,±1,±3,±11\pm \frac { 1 } { 11 } , \pm \frac { 1 } { 3 } , \pm 1 , \pm 3 , \pm 11
D) ±13,±113,±1,±11\pm \frac { 1 } { 3 } , \pm \frac { 11 } { 3 } , \pm 1 , \pm 11
Question
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=2x3+2x23x+8f ( x ) = - 2 x ^ { 3 } + 2 x ^ { 2 } - 3 x + 8

A) ±18,±14,±12,±1,±2,±4,±8\pm \frac { 1 } { 8 } , \pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm 1 , \pm 2 , \pm 4 , \pm 8
B) ±12,±1,±2,±4\pm \frac { 1 } { 2 } , \pm 1 , \pm 2 , \pm 4
C) ±14,±12,±1,±2,±4,±8\pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm 1 , \pm 2 , \pm 4 , \pm 8
D) ±12,±1,±2,±4,±8\pm \frac { 1 } { 2 } , \pm 1 , \pm 2 , \pm 4 , \pm 8
Question
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=2x412x3+19x26x+9f ( x ) = 2 x ^ { 4 } - 12 x ^ { 3 } + 19 x ^ { 2 } - 6 x + 9

A) 3,3;f(x)=(x3)(x+3)(2x2+1)- 3,3 ; f ( x ) = ( x - 3 ) ( x + 3 ) \left( 2 x ^ { 2 } + 1 \right)
B) no real roots; f(x)=(x2+9)(2x2+1)f ( x ) = \left( x ^ { 2 } + 9 \right) \left( 2 x ^ { 2 } + 1 \right)
C) 3 , multiplicity 2;f(x)=(x3)2(2x2+1)2 ; f ( x ) = ( x - 3 ) ^ { 2 } \left( 2 x ^ { 2 } + 1 \right)
D) 3- 3 , multiplicity 2;f(x)=(x+3)2(2x2+1)2 ; f ( x ) = ( x + 3 ) ^ { 2 } \left( 2 x ^ { 2 } + 1 \right)
Question
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=2x3+13x2+10x+25f ( x ) = 2 x ^ { 3 } + 13 x ^ { 2 } + 10 x + 25

A) 1,52,5;f(x)=(2x5)(x5)(x+1)- 1 , \frac { 5 } { 2 } , 5 ; f ( x ) = ( 2 x - 5 ) ( x - 5 ) ( x + 1 )
B) 5,52,1;f(x)=(2x5)(x1)(x+5)- 5 , \frac { 5 } { 2 } , 1 ; f ( x ) = ( 2 x - 5 ) ( x - 1 ) ( x + 5 )
C) 1,25,5;f(x)=(2x5)(x1)(x+5)1 , \frac { 2 } { 5 } , - 5 ; f ( x ) = ( 2 x - 5 ) ( x - 1 ) ( x + 5 )
D) 1,25,5;f(x)=(2x5)(x5)(x+1)- 1 , \frac { 2 } { 5 } , - 5 ; f ( x ) = ( 2 x - 5 ) ( x - 5 ) ( x + 1 )
Question
The equation has a solution r in the interval indicated. Approximate this solution correct to two decimal places.
x3 - 8x - 3 = 0; -1 ≤ r ≤ 0
Question
Find the x- and y-intercepts of f.
f(x) = 6x - x3

A) x-intercepts: 0, -6; y-intercept: 0
B) x-intercepts: 0, 6, -6; y-intercept: 0
C) x-intercepts: 0, 6, - 6; y-intercept: 6
D) x-intercepts: 0, -6; y-intercept: 6
Question
Find the x- and y-intercepts of f.
f(x) = (x - 2)2(x2 - 9)

A) x-intercepts: -3, 2, 3; y-intercept: 36
B) x-intercepts: -2, -9; y-intercept: 18
C) x-intercepts: 2, 9; y-intercept: 18
D) x-intercepts: -3, 2, 3; y-intercept: -36
Question
Solve the equation in the real number system.
2x3x2+2x1=02 x ^ { 3 } - x ^ { 2 } + 2 x - 1 = 0

A) {2,12,1}\left\{ - 2 , - \frac { 1 } { 2 } , - 1 \right\}
B) {12}\left\{ \frac { 1 } { 2 } \right\}
C) {2,12,1}\left\{ - 2 , \frac { 1 } { 2 } , - 1 \right\}
D) {12,1}\left\{ \frac { 1 } { 2 } , - 1 \right\}
Question
Solve the equation in the real number system.
x3+3x210x24=0x ^ { 3 } + 3 x ^ { 2 } - 10 x - 24 = 0

A) {-4, -2}
B) {2, 4}
C) {-3, 2, 4}
D) {-4, -2, 3}
Question
Find the x- and y-intercepts of f.
f(x) = -x2 (x + 7)(x2 + 1)

A) x-intercepts: -7, 0; y-intercept: 0
B) x-intercepts: -7, -1, 0; y-intercept: 7
C) x-intercepts: -7, -1, 0, 1; y-intercept: 0
D) x-intercepts: -7, -1, 0; y-intercept: -7
Question
Solve the equation in the real number system.
x3+8x218x+20=0x ^ { 3 } + 8 x ^ { 2 } - 18 x + 20 = 0

A) {1}
B) {10}
C) {-10, 10}
D) {-10}
Question
The equation has a solution r in the interval indicated. Approximate this solution correct to two decimal places.
x3 - 8x - 3 = 0; -3 ≤ r ≤-2
Question
Solve the equation in the real number system.
2x42x3+x25x10=02 x ^ { 4 } - 2 x ^ { 3 } + x ^ { 2 } - 5 x - 10 = 0

A) {102,102}\left\{ - \frac { \sqrt { 10 } } { 2 } , \frac { \sqrt { 10 } } { 2 } \right\}
B) {1,2}\{ 1 , - 2 \}
C) {1,2}\{ - 1,2 \}
D) {52,52}\left\{ - \frac { 5 } { 2 } , \frac { 5 } { 2 } \right\}
Question
Solve the equation in the real number system.
3x429x3+111x2179x+78=03 x ^ { 4 } - 29 x ^ { 3 } + 111 x ^ { 2 } - 179 x + 78 = 0

A) {3,23}\left\{ - 3 , - \frac { 2 } { 3 } \right\}
B) {3,23}\left\{ - 3 , \frac { 2 } { 3 } \right\}
C) {3,23}\left\{ 3 , - \frac { 2 } { 3 } \right\}
D) {3,23}\left\{ 3 , \frac { 2 } { 3 } \right\}
Question
Solve the equation in the real number system.
x412x264=0x ^ { 4 } - 12 x ^ { 2 } - 64 = 0

A) {-8, 8}
B) {-4, 4}
C) {-2, 2}
D) {-4, -2, 2, 4}
Question
Find the x- and y-intercepts of f.
f(x) = x2 (x - 1)(x - 3)

A) x-intercepts: 0, -1, -3; y-intercept: 3
B) x-intercepts: 0, 1, 3; y-intercept: 3
C) x-intercepts: 0, 1, 3; y-intercept: 0
D) x-intercepts: 0, -1, -3; y-intercept: 0
Question
Solve the equation in the real number system.
x43x3+5x2x10=0x ^ { 4 } - 3 x ^ { 3 } + 5 x ^ { 2 } - x - 10 = 0

A) {-1, 2}
B) {-1, -2}
C) {1, 2}
D) {-2, 1}
Question
The equation has a solution r in the interval indicated. Approximate this solution correct to two decimal places.
x4 - x3 - 7x2 + 5x + 10 = 0; -3 ≤ r ≤-2
Question
Find the x- and y-intercepts of f.
f(x) = (x + 1)(x - 4)(x - 1)2

A) x-intercepts: -1, 1, -4; y-intercept: -4
B) x-intercepts: -1, 1, 4; y-intercept: 4
C) x-intercepts: -1, 1, 4; y-intercept: -4
D) x-intercepts: -1, 1, -4; y-intercept: 4
Question
Find the x- and y-intercepts of f.
f(x) = -x2 (x + 2)(x2 - 1)

A) x-intercepts: -2, 0, 1; y-intercept: -2
B) x-intercepts: -2, -1, 0, 1; y-intercept: -2
C) x-intercepts: -1, 0, 1, 2; y-intercept: 0
D) x-intercepts: -2, -1, 0, 1; y-intercept: 0
Question
Find the x- and y-intercepts of f.
f(x) = (x - 2)(x - 5)

A) x-intercepts: -2, -5; y-intercept: 10
B) x-intercepts: 2, 5; y-intercept: -7
C) x-intercepts: 2, 5; y-intercept: 10
D) x-intercepts: -2, -5; y-intercept: -7
Question
Solve the equation in the real number system.
2x313x2+22x8=02 x ^ { 3 } - 13 x ^ { 2 } + 22 x - 8 = 0

A) {12,2,4}\left\{ \frac { 1 } { 2 } , 2,4 \right\}
B) {2,1,2\{ - 2,1 , - 2 \rangle
C) {2,1,2}\{ 2,1,2 \}
D) {12,2,4}\left\{ - \frac { 1 } { 2 } , 2 , - 4 \right\}
Question
Solve the equation in the real number system.
x48x3+16x2+8x17=0x ^ { 4 } - 8 x ^ { 3 } + 16 x ^ { 2 } + 8 x - 17 = 0

A) {-1, 4}
B) {-1, 1}
C) {-4, 4}
D) {-4, 1}
Question
Solve the equation in the real number system.
2x3x26x+3=02 x ^ { 3 } - x ^ { 2 } - 6 x + 3 = 0

A) {2,3,3}\{ 2 , \sqrt { 3 } , - \sqrt { 3 } \}
B) {12,3,3}\left\{ - \frac { 1 } { 2 } , \sqrt { 3 } , - \sqrt { 3 } \right\}
C) {12,3,3}\left\{ \frac { 1 } { 2 } , \sqrt { 3 } , - \sqrt { 3 } \right\}
D) {2,3,3}\{ - 2 , \sqrt { 3 } , - \sqrt { 3 } \}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/96
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 3: Polynomial and Rational Functions
1
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x)=313xf ( x ) = 3 - \frac { 1 } { 3 } x

A) Yes; degree 1
B) No; x has a fractional coefficient
C) Yes; degree 3
D) Yes; degree 0
A
2
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)
f(x) = (x + 2)5 + 4   f(x) = (x + 2)5 + 4   A)   B)   C)   D)  A)
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)
B)
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)
C)
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)
D)
  f(x) = (x + 2)5 + 4   A)   B)   C)   D)
C
3
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x) = 4x + 2x3

A) Yes; degree 3
B) Yes; degree 2
C) Yes; degree 1
D) Yes; degree 4
A
4
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x)=2x25f ( x ) = \frac { 2 - x ^ { 2 } } { 5 }

A) No; x is a negative term
B) Yes; degree 2
C) Yes; degree 1
D) No; it is a ratio
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
5
  f(x) = (x + 5)5   A)   B)   C)   D)
f(x) = (x + 5)5   f(x) = (x + 5)5   A)   B)   C)   D)   A)
  f(x) = (x + 5)5   A)   B)   C)   D)
B)
  f(x) = (x + 5)5   A)   B)   C)   D)
C)
  f(x) = (x + 5)5   A)   B)   C)   D)
D)
  f(x) = (x + 5)5   A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
6
    A)   B)   C)   D)
    A)   B)   C)   D)  A)
    A)   B)   C)   D)
B)
    A)   B)   C)   D)
C)
    A)   B)   C)   D)
D)
    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
7
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x) = 19x5 + 9x4 + 2

A) Yes; degree 9
B) No; the last term has no variable
C) Yes; degree 10
D) Yes; degree 5
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
8
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)
f(x) = x5 + 4   f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)   A)
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)
B)
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)
C)
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)
D)
  f(x) = x<sup>5</sup> + 4   A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
9
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)
f(x)=12(x+2)4+2f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2     f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)   A)
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)
B)
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)
C)
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)
D)
    f ( x ) = \frac { 1 } { 2 } ( x + 2 ) ^ { 4 } + 2    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
10
    A)   B)   C)   D)
    A)   B)   C)   D)  A)
    A)   B)   C)   D)
B)
    A)   B)   C)   D)
C)
    A)   B)   C)   D)
D)
    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
11
    A)   B)   C)   D)
    A)   B)   C)   D)   A)
    A)   B)   C)   D)
B)
    A)   B)   C)   D)
C)
    A)   B)   C)   D)
D)
    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
12
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)
f(x) = (x - 3)4 + 4   f(x) = (x - 3)4 + 4   A)   B)   C)   D)  A)
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)
B)
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)
C)
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)
D)
  f(x) = (x - 3)4 + 4   A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
13
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)
f(x)=12(x3)5+2f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)
A)
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)
B)
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)
C)
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)
D)
    f ( x ) = \frac { 1 } { 2 } ( x - 3 ) ^ { 5 } + 2    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
14
    A)   B)   C)   D)
    A)   B)   C)   D)  A)
    A)   B)   C)   D)
B)
    A)   B)   C)   D)
C)
    A)   B)   C)   D)
D)
    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
15
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x)=1+7xf ( x ) = 1 + \frac { 7 } { x }

A) Yes; degree 7
B) Yes; degree 0
C) Yes; degree 1
D) No; x is raised to a negative power
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
16
    A)   B)   C)   D)
    A)   B)   C)   D)  A)
    A)   B)   C)   D)
B)
    A)   B)   C)   D)
C)
    A)   B)   C)   D)
D)
    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
17
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x) = x(x - 9)

A) Yes; degree 1
B) Yes; degree 2
C) Yes; degree 0
D) No; it is a product
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
18
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)
f(x) = 3 - (x - 4)4   f(x) = 3 - (x - 4)4   A)   B)   C)   D)   A)
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)
B)
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)
C)
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)
D)
  f(x) = 3 - (x - 4)4   A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
19
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)
f(x) = -2(x - 5)4 + 3   f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)  A)
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)
B)
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)
C)
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)
D)
  f(x) = -2(x - 5)4 + 3   A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
20
State whether the function is a polynomial function or not. If it is, give its degree. If it is not, tell why not.
f(x) = 15

A) No; it contains no variables
B) No; it is a constant
C) Yes; degree 1
D) Yes; degree 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
21
Determine the maximum number of turning points of f.
f(x) = -x2 (x + 4)3(x2 - 1)

A) 6
B) 2
C) 5
D) 7
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
22
Find the x- and y-intercepts of f.
f(x)=6xx3f ( x ) = 6 x - x ^ { 3 }

A) x-intercepts: 0,6,6;y0 , \sqrt { 6 } , - \sqrt { 6 } ; y -intercept: 0
B) x-intercepts: 0,6;y0 , - 6 ; y -intercept: 0
C) x-intercepts: 0,6;y0 , - 6 ; y -intercept: 6
D) xx -intercepts: 0,6,6;y0 , \sqrt { 6 } , - \sqrt { 6 } ; y -intercept: 6
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
23
 <strong>   f ( x ) = 5 \left( x ^ { 2 } + 6 \right) \left( x ^ { 2 } + 4 \right) ^ { 2 } </strong> A)  \sqrt { 6 } , multiplicity 1 , crosses  x -axis;  - \sqrt { 6 } , multiplicity 1 , crosses  x -axis; 2 , multiplicity 2 , touches  x -axis;  - 2 , multiplicity 2 , touches  x -axis B) -6, multiplicity 1 , touches  x -axis;  - 4 , multiplicity 2, crosses  x -axis C) -6, multiplicity 1 , crosses  x -axis;  - 4 , multiplicity 2 , touches  x -axis D) No real zeros
f(x)=5(x2+6)(x2+4)2f ( x ) = 5 \left( x ^ { 2 } + 6 \right) \left( x ^ { 2 } + 4 \right) ^ { 2 }

A) 6\sqrt { 6 } , multiplicity 1 , crosses xx -axis; 6- \sqrt { 6 } , multiplicity 1 , crosses xx -axis; 2 , multiplicity 2 , touches xx -axis; 2- 2 , multiplicity 2 , touches xx -axis
B) -6, multiplicity 1 , touches xx -axis; 4- 4 , multiplicity 2, crosses xx -axis
C) -6, multiplicity 1 , crosses xx -axis; 4- 4 , multiplicity 2 , touches xx -axis
D) No real zeros
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
24
Determine the maximum number of turning points of f.
f(x)=(x+19)4(x4)3f ( x ) = \left( x + \frac { 1 } { 9 } \right) ^ { 4 } ( x - 4 ) ^ { 3 }

A) above the xx -axis: (4,)( 4 , \infty )
below the xx -axis: (,19),(19,4)\left( - \infty , - \frac { 1 } { 9 } \right) , \left( - \frac { 1 } { 9 } , 4 \right)
B) above the xx -axis: (,19),(19,4)\left( - \infty , - \frac { 1 } { 9 } \right) , \left( - \frac { 1 } { 9 } , 4 \right)
below the xx -axis: (4,)( 4 , \infty )
C) above the xx -axis: (19,4)\left( - \frac { 1 } { 9 } , 4 \right)
below the xx -axis: (,19),(4,)\left( - \infty , - \frac { 1 } { 9 } \right) , ( 4 , \infty )
D) above the x-axis: (,19),(4,)\left( - \infty , - \frac { 1 } { 9 } \right) , ( 4 , \infty )
below the xx -axis: (19,4)\left( - \frac { 1 } { 9 } , 4 \right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
25
Find the x- and y-intercepts of f.
f(x)=x2(x+6)(x21)f ( x ) = - x ^ { 2 } ( x + 6 ) \left( x ^ { 2 } - 1 \right)

A) x-intercepts: -6, 0, 1; y-intercept: -6
B) x-intercepts: -1, 0, 1, 6; y-intercept: 0
C) x-intercepts: -6, -1, 0, 1; y-intercept: 0
D) x-intercepts: -6, -1, 0, 1; y-intercept: -6
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
26
Find the x- and y-intercepts of f.
f(x) = (x - 3)(x - 1)

A) x-intercepts: 3, 1; y-intercept: -4
B) x-intercepts: -3, -1; y-intercept: -4
C) x-intercepts: 3, 1; y-intercept: 3
D) x-intercepts: -3, -1; y-intercept: 3
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
27
Determine the maximum number of turning points of f.
f(x) = 8x - x3

A) 1
B) 3
C) 2
D) 4
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
28
 <strong>   f ( x ) = \frac { 1 } { 3 } x ^ { 2 } \left( x ^ { 2 } - 5 \right) ( x - 3 ) </strong> A) 0 , multiplicity 2 , touches  x -axis; 3 , multiplicity 1 , crosses  x -axis;  \sqrt { 5 } , multiplicity 1 , crosses  x -axis  - \sqrt { 5 } , multiplicity 1 , crosses  x -axis B) 0 , multiplicity 2 , crosses  x -axis; 3 , multiplicity 1 , touches  x -axis;  \sqrt { 5 } , multiplicity 1 , touches  x -axis;  - \sqrt { 5 } , multiplicity 1 , touches  x -axis C) 0 , multiplicity 2, crosses x-axis; 3 , multiplicity 1 , touches  x -axis D) 0 , multiplicity 2 , touches  x -axis; 3 , multiplicity 1 , crosses  x -axis
f(x)=13x2(x25)(x3)f ( x ) = \frac { 1 } { 3 } x ^ { 2 } \left( x ^ { 2 } - 5 \right) ( x - 3 )

A) 0 , multiplicity 2 , touches xx -axis;
3 , multiplicity 1 , crosses xx -axis;
5\sqrt { 5 } , multiplicity 1 , crosses xx -axis
5- \sqrt { 5 } , multiplicity 1 , crosses xx -axis
B) 0 , multiplicity 2 , crosses xx -axis;
3 , multiplicity 1 , touches xx -axis;
5\sqrt { 5 } , multiplicity 1 , touches xx -axis;
5- \sqrt { 5 } , multiplicity 1 , touches xx -axis
C) 0 , multiplicity 2, crosses x-axis;
3 , multiplicity 1 , touches xx -axis
D) 0 , multiplicity 2 , touches xx -axis;
3 , multiplicity 1 , crosses xx -axis
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
29
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)
f(x)=4(x+4)5f ( x ) = 4 - ( x + 4 ) ^ { 5 }
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)
A)
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)
B)
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)
C)
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)
D)
    f ( x ) = 4 - ( x + 4 ) ^ { 5 }    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
30
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)
f(x)=2(x5)5+3f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)
A)
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)
B)
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)
C)
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)
D)
    f ( x ) = - 2 ( x - 5 ) ^ { 5 } + 3    A)   B)   C)   D)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
31
Find the x- and y-intercepts of f.
f(x)=2x4(x5)5f ( x ) = 2 x ^ { 4 } ( x - 5 ) ^ { 5 }

A) x-intercepts: 0, -5; y-intercept: 2
B) x-intercepts: 0, 5; y-intercept: 2
C) x-intercepts: 0, -5; y-intercept: 0
D) x-intercepts: 0, 5; y-intercept: 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
32
Determine the maximum number of turning points of f.
f(x) = (x - 3)2(x + 5)2

A) 3
B) 1
C) 4
D) 2
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
33
Find the x- and y-intercepts of f.
f(x)=x2(x+6)(x2+1)f ( x ) = - x ^ { 2 } ( x + 6 ) \left( x ^ { 2 } + 1 \right) (x)=x2(x+6)(x2+1)( x ) = - x ^ { 2 } ( x + 6 ) \left( x ^ { 2 } + 1 \right)

A) x-intercepts: -6, -1, 0; y-intercept: 6
B) x-intercepts: -6, -1, 0; y-intercept: -6
C) x-intercepts: -6, -1, 0, 1; y-intercept: 0
D) x-intercepts: -6, 0; y-intercept: 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
34
Determine the maximum number of turning points of f.
f(x)=x2(x+2)f ( x ) = x ^ { 2 } ( x + 2 )
Answer: (a) For large values of x| x | , the graph of f(x)f ( x ) will resemble the graph of y=x3y = x ^ { 3 } .
(b) yy -intercept: (0,0)( 0,0 ) , xx -intercepts: (0,0)( 0,0 ) and (2,0)( - 2,0 )
(c) The graph of ff crosses the xx -axis at (2,0)( - 2,0 ) and touches the xx -axis at (0,0)( 0,0 ) .
(e) Local minimum at (0,0)( 0,0 ) , Local maximum at (1.33,1.19)( - 1.33,1.19 )
(f)
 Determine the maximum number of turning points of f.  f ( x ) = x ^ { 2 } ( x + 2 )  Answer: (a) For large values of  | x | , the graph of  f ( x )  will resemble the graph of  y = x ^ { 3 } . (b)  y -intercept:  ( 0,0 ) ,  x -intercepts:  ( 0,0 )  and  ( - 2,0 )  (c) The graph of  f  crosses the  x -axis at  ( - 2,0 )  and touches the  x -axis at  ( 0,0 ) . (e) Local minimum at  ( 0,0 ) , Local maximum at  ( - 1.33,1.19 )  (f)   (g) Domain of f: all real numbers; range of f: all real numbers (h) f is increasing on (-, -1.33) and (0, ); f is decreasing on (-1.33, 0)
(g) Domain of f: all real numbers; range of f: all real numbers
(h) f is increasing on (-, -1.33) and (0, ); f is decreasing on (-1.33, 0)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
35
 <strong>   f ( x ) = \frac { 1 } { 5 } x ^ { 4 } \left( x ^ { 2 } - 5 \right) </strong> A) 0 , multiplicity 4 , touches  x -axis;  \sqrt { 5 } , multiplicity 1 , crosses  x -axis;  - \sqrt { 5 } , multiplicity 1 , crosses  x -axis B) 0 , multiplicity 4 , crosses  x -axis C) 0 , multiplicity 4 , crosses  x -axis;  \sqrt { 5 } , multiplicity 1 , touches  x -axis; D) 0 , multiplicity 4 , touches  x -axis  - \sqrt { 5 } , multiplicity 1 , touches  x -axis
f(x)=15x4(x25)f ( x ) = \frac { 1 } { 5 } x ^ { 4 } \left( x ^ { 2 } - 5 \right)

A) 0 , multiplicity 4 , touches xx -axis;
5\sqrt { 5 } , multiplicity 1 , crosses xx -axis;
5- \sqrt { 5 } , multiplicity 1 , crosses xx -axis
B) 0 , multiplicity 4 , crosses xx -axis
C) 0 , multiplicity 4 , crosses xx -axis;
5\sqrt { 5 } , multiplicity 1 , touches xx -axis;
D) 0 , multiplicity 4 , touches xx -axis
5- \sqrt { 5 } , multiplicity 1 , touches xx -axis
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
36
Determine the maximum number of turning points of f.
f(x)=(x4)3f ( x ) = ( x - 4 ) ^ { 3 }

A) above the xx -axis: (4,)( 4 , \infty )
below the xx -axis: (,4)( - \infty , 4 )
B) above the xx -axis: (,4),(4,)( - \infty , 4 ) , ( 4 , \infty )
below the xx -axis: no intervals
C) above the x-axis: no intervals
below the xx -axis: (,4),(4,)( - \infty , 4 ) , ( 4 , \infty )
D) above the xx -axis: (,4)( - \infty , 4 )
below the xx -axis: (4,)( 4 , \infty )
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
37
Find the x- and y-intercepts of f.
f(x)=(x+5)(x3)(x+3)f ( x ) = ( x + 5 ) ( x - 3 ) ( x + 3 )

A) x-intercepts: -3, 3, 5; y-intercept: -45
B) x-intercepts: -5, -3, 3; y-intercept: -45
C) x-intercepts: -5, -3, 3; y-intercept: 45
D) x-intercepts: -3, 3, 5; y-intercept: 45
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
38
Find the x- and y-intercepts of f.
f(x)=(x+1)(x2)(x1)2f ( x ) = ( x + 1 ) ( x - 2 ) ( x - 1 ) ^ { 2 }

A) x-intercepts: -1, 1, -2; y-intercept: 2
B) x-intercepts: -1, 1, 2; y-intercept: 2
C) x-intercepts: -1, 1, -2; y-intercept: -2
D) x-intercepts: -1, 1, 2; y-intercept: -2
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
39
Find the x- and y-intercepts of f.
f(x)=(x+6)2f ( x ) = ( x + 6 ) ^ { 2 }

A) x-intercept: -6; y-intercept: 36
B) x-intercept: -6; y-intercept: 0
C) x-intercept: 6; y-intercept: 36
D) x-intercept: 6; y-intercept: 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
40
Determine the maximum number of turning points of f.
f(x)=(x3)2(x+5)2f ( x ) = ( x - 3 ) ^ { 2 } ( x + 5 ) ^ { 2 }

A) above the xx -axis: (,5),(3,)( - \infty , - 5 ) , ( 3 , \infty )
below the x-axis: (5,3)( - 5,3 )
B) above the x-axis: (5,3)( - 5,3 )
below the xx -axis: (,5),(3,)( - \infty , - 5 ) , ( 3 , \infty )
C) above the xx -axis: (,5),(5,3),(3,)( - \infty , - 5 ) , ( - 5,3 ) , ( 3 , \infty )
below the xx -axis: no intervals
D) above the xx -axis: no intervals
below the xx -axis: (,5),(5,3),(3,)( - \infty , - 5 ) , ( - 5,3 ) , ( 3 , \infty )
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
41
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=x3+3x24x12f ( x ) = x ^ { 3 } + 3 x ^ { 2 } - 4 x - 12

A) 3;f(x)=(x+3)(x2x4)- 3 ; f ( x ) = ( x + 3 ) \left( x ^ { 2 } - x - 4 \right)
B) 3,2,2;f(x)=(x+3)(x+2)(x2)- 3 , - 2,2 ; f ( x ) = ( x + 3 ) ( x + 2 ) ( x - 2 )
C) 2;f(x)=(x+2)(x2+x6)- 2 ; f ( x ) = ( x + 2 ) \left( x ^ { 2 } + x - 6 \right)
D) 2,2,3;f(x)=(x+2)(x2)(x3)- 2,2,3 ; f ( x ) = ( x + 2 ) ( x - 2 ) ( x - 3 )
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
42
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=x54x2+3x+14f ( x ) = x ^ { 5 } - 4 x ^ { 2 } + 3 x + 14

A) ±1,±7,±2,±14\pm 1 , \pm 7 , \pm 2 , \pm 14
B) ±1,±17,±12,±114\pm 1 , \pm \frac { 1 } { 7 } , \pm \frac { 1 } { 2 } , \pm \frac { 1 } { 14 }
C) ±1,±7,±2\pm 1 , \pm 7 , \pm 2
D) ±1,±17,±12,±114,±7,±2,±14\pm 1 , \pm \frac { 1 } { 7 } , \pm \frac { 1 } { 2 } , \pm \frac { 1 } { 14 } , \pm 7 , \pm 2 , \pm 14
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
43
Find the x- and y-intercepts of f.
f(x)=(x+13)2f ( x ) = ( x + 13 ) ^ { 2 }

A) x-intercept: 13; y-intercept: 169
B) x-intercept: -13; y-intercept: 0
C) x-intercept: -13; y-intercept: 169
D) x-intercept: 13; y-intercept: 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
44
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=6x4+4x32x2+2f ( x ) = 6 x ^ { 4 } + 4 x ^ { 3 } - 2 x ^ { 2 } + 2

A) ±12,±32,±1,±2,±3,±6\pm \frac { 1 } { 2 } , \pm \frac { 3 } { 2 } , \pm 1 , \pm 2 , \pm 3 , \pm 6
B) ±16,±13,±12,±23,±1,±2\pm \frac { 1 } { 6 } , \pm \frac { 1 } { 3 } , \pm \frac { 1 } { 2 } , \pm \frac { 2 } { 3 } , \pm 1 , \pm 2
C) ±16,±13,±12,±23,±1,±2,±3\pm \frac { 1 } { 6 } , \pm \frac { 1 } { 3 } , \pm \frac { 1 } { 2 } , \pm \frac { 2 } { 3 } , \pm 1 , \pm 2 , \pm 3
D) ±16,±13,±12,±1,±2\pm \frac { 1 } { 6 } , \pm \frac { 1 } { 3 } , \pm \frac { 1 } { 2 } , \pm 1 , \pm 2
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
45
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=x55x2+2x+7f ( x ) = x ^ { 5 } - 5 x ^ { 2 } + 2 x + 7

A) ±1,±17\pm 1 , \pm \frac { 1 } { 7 }
B) ±7,±17\pm 7 , \pm \frac { 1 } { 7 }
C) ±15,±75,±7\pm \frac { 1 } { 5 } , \pm \frac { 7 } { 5 } , \pm 7
D) ±1,±7\pm 1 , \pm 7
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
46
Solve the problem.
The profits (in millions) for a company for 8 years was as follows:  Year, x Profits 1993,11.11994,21.71995,32.01996,41.41997,51.31998,61.51999,71.82000,82.1\begin{array} { c | c } \text { Year, } x & \text { Profits } \\\hline 1993,1 & 1.1 \\1994,2 & 1.7 \\1995,3 & 2.0 \\1996,4 & 1.4 \\1997,5 & 1.3 \\1998,6 & 1.5 \\1999,7 & 1.8 \\2000,8 & 2.1\end{array} Find the cubic function of best fit to the data.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
47
Solve the problem.
For the polynomial funct f(x)=2x47x3+11x4f ( x ) = 2 x ^ { 4 } - 7 x ^ { 3 } + 11 x - 4 a) Find the x- and y-intercepts of the graph of f. Round to two decimal places, if necessary.
b) Determine whether the graph crosses or touches the x-axis at each x-intercept.
c) End behavior: find the power function that the graph of f resembles for large values of |x|.
d) Use a graphing utility to graph the function.Approximate the local maxima rounded to two decimal places,
if necessary. Approximate the local minima rounded to two decimal places, if necessary.
e) Determine the number of turning points on the graph.
f) Put all the information together, and connect the points with a smooth, continuous curve to obtain the
graph of f.  Solve the problem. For the polynomial funct  f ( x ) = 2 x ^ { 4 } - 7 x ^ { 3 } + 11 x - 4  a) Find the x- and y-intercepts of the graph of f. Round to two decimal places, if necessary. b) Determine whether the graph crosses or touches the x-axis at each x-intercept. c) End behavior: find the power function that the graph of f resembles for large values of |x|. d) Use a graphing utility to graph the function.Approximate the local maxima rounded to two decimal places, if necessary. Approximate the local minima rounded to two decimal places, if necessary. e) Determine the number of turning points on the graph. f) Put all the information together, and connect the points with a smooth, continuous curve to obtain the graph of f.
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
48
Find the x- and y-intercepts of f.
f(x) = (x + 6)(x - 2)(x + 2)

A) x-intercepts: -6, -2, 2; y-intercept: -24
B) x-intercepts: -2, 2, 6; y-intercept: 24
C) x-intercepts: -2, 2, 6; y-intercept: -24
D) x-intercepts: -6, -2, 2; y-intercept: 24
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
49
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=3x32x2+9x6f ( x ) = 3 x ^ { 3 } - 2 x ^ { 2 } + 9 x - 6

A) 6;f(x)=(x6)(3x2+1)6 ; f ( x ) = ( x - 6 ) \left( 3 x ^ { 2 } + 1 \right)
B) 3,23,1;f(x)=(3x2)(x1)(x3)3 , \frac { 2 } { 3 } , 1 ; f ( x ) = ( 3 x - 2 ) ( x - 1 ) ( x - 3 )
C) 23;f(x)=(3x2)(x2+3)\frac { 2 } { 3 } ; f ( x ) = ( 3 x - 2 ) \left( x ^ { 2 } + 3 \right)
D) 3,1,23;f(x)=(3x2)(x+1)(x+3)- 3 , - 1 , \frac { 2 } { 3 } ; f ( x ) = ( 3 x - 2 ) ( x + 1 ) ( x + 3 )
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
50
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=x415x216f ( x ) = x ^ { 4 } - 15 x ^ { 2 } - 16

A) 4,4;f(x)=(x4)(x+4)(x2+1)- 4,4 ; f ( x ) = ( x - 4 ) ( x + 4 ) \left( x ^ { 2 } + 1 \right)
B) 4;f(x)=(x4)2(x2+1)4 ; f ( x ) = ( x - 4 ) ^ { 2 } \left( x ^ { 2 } + 1 \right)
C) 1,1;f(x)=(x1)(x+1)(x2+16)- 1,1 ; f ( x ) = ( x - 1 ) ( x + 1 ) \left( x ^ { 2 } + 16 \right)
D) 4,1,4,1;f(x)=(x4)(x+4)(x1)(x+1)- 4 , - 1,4,1 ; f ( x ) = ( x - 4 ) ( x + 4 ) ( x - 1 ) ( x + 1 )
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
51
Find the x- and y-intercepts of f.
f(x) = 4x2 (x - 4)5

A) x-intercepts: 0, -4; y-intercept: 0
B) x-intercepts: 0, 4; y-intercept: 4
C) x-intercepts: 0, -4; y-intercept: 4
D) x-intercepts: 0, 4; y-intercept: 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
52
Solve the problem.
The amount of water (in gallons) in a leaky bathtub is given in the table below. Using a graphing utility, fit the data to a third degree polynomial (or a cubic). Then approximate the time at which there is maximum amount
Of water in the tub, and estimate the time when the water runs out of the tub. Express all your answers rounded
To two decimal places. t (in minutes) 01234567V (in gallons) 2026456386949067\begin{array} { c | c c c c c c c c } \mathrm { t } \text { (in minutes) } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\hline \mathrm { V } \text { (in gallons) } & 20 & 26 & 45 & 63 & 86 & 94 & 90 & 67\end{array}

A) maximum amount of water after 8.23 minutes; water runs out after 19.73 minutes
B) maximum amount of water after 5.31 minutes; water runs out after 8.23 minutes
C) maximum amount of water after 5.37 minutes; water runs out after 11.06 minutes
D) maximum amount of water after 5.31 minutes; water never runs out
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
53
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=4x4+2x23x+6f ( x ) = - 4 x ^ { 4 } + 2 x ^ { 2 } - 3 x + 6

A) ±16,±12,±13,±23,±43,±1,±2,±4\pm \frac { 1 } { 6 } , \pm \frac { 1 } { 2 } , \pm \frac { 1 } { 3 } , \pm \frac { 2 } { 3 } , \pm \frac { 4 } { 3 } , \pm 1 , \pm 2 , \pm 4
B) ±14,±12,±34,±32,±1,±2,±3,±4,±6\pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm \frac { 3 } { 4 } , \pm \frac { 3 } { 2 } , \pm 1 , \pm 2 , \pm 3 , \pm 4 , \pm 6
C) ±14,±12,±34,±32,±1,±2,±3,±6\pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm \frac { 3 } { 4 } , \pm \frac { 3 } { 2 } , \pm 1 , \pm 2 , \pm 3 , \pm 6
D) ±14,±12,±23,±34,±32,±1,±2,±3,±6\pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm \frac { 2 } { 3 } , \pm \frac { 3 } { 4 } , \pm \frac { 3 } { 2 } , \pm 1 , \pm 2 , \pm 3 , \pm 6
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
54
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=2x55x2+3x1f ( x ) = 2 x ^ { 5 } - 5 x ^ { 2 } + 3 x - 1

A) ±1,±2,±12\pm 1 , \pm 2 , \pm \frac { 1 } { 2 }
B) ±1\pm 1 , ±2\pm 2
C) ±2,±12\pm 2 , \pm \frac { 1 } { 2 }
D) ±1,±12\pm 1 , \pm \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
55
Solve the problem.
Which of the following polynomial functions might have the graph shown in the illustration below?  <strong>Solve the problem. Which of the following polynomial functions might have the graph shown in the illustration below?  </strong> A)  f ( x ) = x ( x - 2 ) ^ { 2 } ( x - 1 )  B)  f ( x ) = x ^ { 2 } ( x - 2 ) ^ { 2 } ( x - 1 ) ^ { 2 }  C)  f ( x ) = x ^ { 2 } ( x - 2 ) ( x - 1 )  D)  f ( x ) = x ( x - 2 ) ( x - 1 ) ^ { 2 }

A) f(x)=x(x2)2(x1)f ( x ) = x ( x - 2 ) ^ { 2 } ( x - 1 )
B) f(x)=x2(x2)2(x1)2f ( x ) = x ^ { 2 } ( x - 2 ) ^ { 2 } ( x - 1 ) ^ { 2 }
C) f(x)=x2(x2)(x1)f ( x ) = x ^ { 2 } ( x - 2 ) ( x - 1 )
D) f(x)=x(x2)(x1)2f ( x ) = x ( x - 2 ) ( x - 1 ) ^ { 2 }
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
56
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=5x47x3+22x228x+8f ( x ) = 5 x ^ { 4 } - 7 x ^ { 3 } + 22 x ^ { 2 } - 28 x + 8

A) 4,1,1,25;f(x)=(x1)(5x+2)(x+1)(x+4)- 4 , - 1,1 , - \frac { 2 } { 5 } ; f ( x ) = ( x - 1 ) ( 5 x + 2 ) ( x + 1 ) ( x + 4 )
B) 4,1,1,25;f(x)=(x1)(5x2)(x+1)(x+4)- 4 , - 1,1 , \frac { 2 } { 5 } ; f ( x ) = ( x - 1 ) ( 5 x - 2 ) ( x + 1 ) ( x + 4 )
C) 4,25;f(x)=(x4)(5x2)(x2+1)4 , \frac { 2 } { 5 } ; f ( x ) = ( x - 4 ) ( 5 x - 2 ) \left( x ^ { 2 } + 1 \right)
D) 1,25;f(x)=(x1)(5x2)(x2+4)1 , \frac { 2 } { 5 } ; f ( x ) = ( x - 1 ) ( 5 x - 2 ) \left( x ^ { 2 } + 4 \right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
57
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=11x3x2+3f ( x ) = 11 x ^ { 3 } - x ^ { 2 } + 3

A) ±111,±311,±1,±3,±11\pm \frac { 1 } { 11 } , \pm \frac { 3 } { 11 } , \pm 1 , \pm 3 , \pm 11
B) ±111,±311,±1,±3\pm \frac { 1 } { 11 } , \pm \frac { 3 } { 11 } , \pm 1 , \pm 3
C) ±111,±13,±1,±3,±11\pm \frac { 1 } { 11 } , \pm \frac { 1 } { 3 } , \pm 1 , \pm 3 , \pm 11
D) ±13,±113,±1,±11\pm \frac { 1 } { 3 } , \pm \frac { 11 } { 3 } , \pm 1 , \pm 11
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
58
List the potential rational zeros of the polynomial function. Do not find the zeros.
f(x)=2x3+2x23x+8f ( x ) = - 2 x ^ { 3 } + 2 x ^ { 2 } - 3 x + 8

A) ±18,±14,±12,±1,±2,±4,±8\pm \frac { 1 } { 8 } , \pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm 1 , \pm 2 , \pm 4 , \pm 8
B) ±12,±1,±2,±4\pm \frac { 1 } { 2 } , \pm 1 , \pm 2 , \pm 4
C) ±14,±12,±1,±2,±4,±8\pm \frac { 1 } { 4 } , \pm \frac { 1 } { 2 } , \pm 1 , \pm 2 , \pm 4 , \pm 8
D) ±12,±1,±2,±4,±8\pm \frac { 1 } { 2 } , \pm 1 , \pm 2 , \pm 4 , \pm 8
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
59
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=2x412x3+19x26x+9f ( x ) = 2 x ^ { 4 } - 12 x ^ { 3 } + 19 x ^ { 2 } - 6 x + 9

A) 3,3;f(x)=(x3)(x+3)(2x2+1)- 3,3 ; f ( x ) = ( x - 3 ) ( x + 3 ) \left( 2 x ^ { 2 } + 1 \right)
B) no real roots; f(x)=(x2+9)(2x2+1)f ( x ) = \left( x ^ { 2 } + 9 \right) \left( 2 x ^ { 2 } + 1 \right)
C) 3 , multiplicity 2;f(x)=(x3)2(2x2+1)2 ; f ( x ) = ( x - 3 ) ^ { 2 } \left( 2 x ^ { 2 } + 1 \right)
D) 3- 3 , multiplicity 2;f(x)=(x+3)2(2x2+1)2 ; f ( x ) = ( x + 3 ) ^ { 2 } \left( 2 x ^ { 2 } + 1 \right)
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
60
Use Descartes' Rule of Signs and the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the
zeros to factor f over the real numbers.
f(x)=2x3+13x2+10x+25f ( x ) = 2 x ^ { 3 } + 13 x ^ { 2 } + 10 x + 25

A) 1,52,5;f(x)=(2x5)(x5)(x+1)- 1 , \frac { 5 } { 2 } , 5 ; f ( x ) = ( 2 x - 5 ) ( x - 5 ) ( x + 1 )
B) 5,52,1;f(x)=(2x5)(x1)(x+5)- 5 , \frac { 5 } { 2 } , 1 ; f ( x ) = ( 2 x - 5 ) ( x - 1 ) ( x + 5 )
C) 1,25,5;f(x)=(2x5)(x1)(x+5)1 , \frac { 2 } { 5 } , - 5 ; f ( x ) = ( 2 x - 5 ) ( x - 1 ) ( x + 5 )
D) 1,25,5;f(x)=(2x5)(x5)(x+1)- 1 , \frac { 2 } { 5 } , - 5 ; f ( x ) = ( 2 x - 5 ) ( x - 5 ) ( x + 1 )
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
61
The equation has a solution r in the interval indicated. Approximate this solution correct to two decimal places.
x3 - 8x - 3 = 0; -1 ≤ r ≤ 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
62
Find the x- and y-intercepts of f.
f(x) = 6x - x3

A) x-intercepts: 0, -6; y-intercept: 0
B) x-intercepts: 0, 6, -6; y-intercept: 0
C) x-intercepts: 0, 6, - 6; y-intercept: 6
D) x-intercepts: 0, -6; y-intercept: 6
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
63
Find the x- and y-intercepts of f.
f(x) = (x - 2)2(x2 - 9)

A) x-intercepts: -3, 2, 3; y-intercept: 36
B) x-intercepts: -2, -9; y-intercept: 18
C) x-intercepts: 2, 9; y-intercept: 18
D) x-intercepts: -3, 2, 3; y-intercept: -36
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
64
Solve the equation in the real number system.
2x3x2+2x1=02 x ^ { 3 } - x ^ { 2 } + 2 x - 1 = 0

A) {2,12,1}\left\{ - 2 , - \frac { 1 } { 2 } , - 1 \right\}
B) {12}\left\{ \frac { 1 } { 2 } \right\}
C) {2,12,1}\left\{ - 2 , \frac { 1 } { 2 } , - 1 \right\}
D) {12,1}\left\{ \frac { 1 } { 2 } , - 1 \right\}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
65
Solve the equation in the real number system.
x3+3x210x24=0x ^ { 3 } + 3 x ^ { 2 } - 10 x - 24 = 0

A) {-4, -2}
B) {2, 4}
C) {-3, 2, 4}
D) {-4, -2, 3}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
66
Find the x- and y-intercepts of f.
f(x) = -x2 (x + 7)(x2 + 1)

A) x-intercepts: -7, 0; y-intercept: 0
B) x-intercepts: -7, -1, 0; y-intercept: 7
C) x-intercepts: -7, -1, 0, 1; y-intercept: 0
D) x-intercepts: -7, -1, 0; y-intercept: -7
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
67
Solve the equation in the real number system.
x3+8x218x+20=0x ^ { 3 } + 8 x ^ { 2 } - 18 x + 20 = 0

A) {1}
B) {10}
C) {-10, 10}
D) {-10}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
68
The equation has a solution r in the interval indicated. Approximate this solution correct to two decimal places.
x3 - 8x - 3 = 0; -3 ≤ r ≤-2
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
69
Solve the equation in the real number system.
2x42x3+x25x10=02 x ^ { 4 } - 2 x ^ { 3 } + x ^ { 2 } - 5 x - 10 = 0

A) {102,102}\left\{ - \frac { \sqrt { 10 } } { 2 } , \frac { \sqrt { 10 } } { 2 } \right\}
B) {1,2}\{ 1 , - 2 \}
C) {1,2}\{ - 1,2 \}
D) {52,52}\left\{ - \frac { 5 } { 2 } , \frac { 5 } { 2 } \right\}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
70
Solve the equation in the real number system.
3x429x3+111x2179x+78=03 x ^ { 4 } - 29 x ^ { 3 } + 111 x ^ { 2 } - 179 x + 78 = 0

A) {3,23}\left\{ - 3 , - \frac { 2 } { 3 } \right\}
B) {3,23}\left\{ - 3 , \frac { 2 } { 3 } \right\}
C) {3,23}\left\{ 3 , - \frac { 2 } { 3 } \right\}
D) {3,23}\left\{ 3 , \frac { 2 } { 3 } \right\}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
71
Solve the equation in the real number system.
x412x264=0x ^ { 4 } - 12 x ^ { 2 } - 64 = 0

A) {-8, 8}
B) {-4, 4}
C) {-2, 2}
D) {-4, -2, 2, 4}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
72
Find the x- and y-intercepts of f.
f(x) = x2 (x - 1)(x - 3)

A) x-intercepts: 0, -1, -3; y-intercept: 3
B) x-intercepts: 0, 1, 3; y-intercept: 3
C) x-intercepts: 0, 1, 3; y-intercept: 0
D) x-intercepts: 0, -1, -3; y-intercept: 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
73
Solve the equation in the real number system.
x43x3+5x2x10=0x ^ { 4 } - 3 x ^ { 3 } + 5 x ^ { 2 } - x - 10 = 0

A) {-1, 2}
B) {-1, -2}
C) {1, 2}
D) {-2, 1}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
74
The equation has a solution r in the interval indicated. Approximate this solution correct to two decimal places.
x4 - x3 - 7x2 + 5x + 10 = 0; -3 ≤ r ≤-2
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
75
Find the x- and y-intercepts of f.
f(x) = (x + 1)(x - 4)(x - 1)2

A) x-intercepts: -1, 1, -4; y-intercept: -4
B) x-intercepts: -1, 1, 4; y-intercept: 4
C) x-intercepts: -1, 1, 4; y-intercept: -4
D) x-intercepts: -1, 1, -4; y-intercept: 4
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
76
Find the x- and y-intercepts of f.
f(x) = -x2 (x + 2)(x2 - 1)

A) x-intercepts: -2, 0, 1; y-intercept: -2
B) x-intercepts: -2, -1, 0, 1; y-intercept: -2
C) x-intercepts: -1, 0, 1, 2; y-intercept: 0
D) x-intercepts: -2, -1, 0, 1; y-intercept: 0
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
77
Find the x- and y-intercepts of f.
f(x) = (x - 2)(x - 5)

A) x-intercepts: -2, -5; y-intercept: 10
B) x-intercepts: 2, 5; y-intercept: -7
C) x-intercepts: 2, 5; y-intercept: 10
D) x-intercepts: -2, -5; y-intercept: -7
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
78
Solve the equation in the real number system.
2x313x2+22x8=02 x ^ { 3 } - 13 x ^ { 2 } + 22 x - 8 = 0

A) {12,2,4}\left\{ \frac { 1 } { 2 } , 2,4 \right\}
B) {2,1,2\{ - 2,1 , - 2 \rangle
C) {2,1,2}\{ 2,1,2 \}
D) {12,2,4}\left\{ - \frac { 1 } { 2 } , 2 , - 4 \right\}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
79
Solve the equation in the real number system.
x48x3+16x2+8x17=0x ^ { 4 } - 8 x ^ { 3 } + 16 x ^ { 2 } + 8 x - 17 = 0

A) {-1, 4}
B) {-1, 1}
C) {-4, 4}
D) {-4, 1}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
80
Solve the equation in the real number system.
2x3x26x+3=02 x ^ { 3 } - x ^ { 2 } - 6 x + 3 = 0

A) {2,3,3}\{ 2 , \sqrt { 3 } , - \sqrt { 3 } \}
B) {12,3,3}\left\{ - \frac { 1 } { 2 } , \sqrt { 3 } , - \sqrt { 3 } \right\}
C) {12,3,3}\left\{ \frac { 1 } { 2 } , \sqrt { 3 } , - \sqrt { 3 } \right\}
D) {2,3,3}\{ - 2 , \sqrt { 3 } , - \sqrt { 3 } \}
Unlock Deck
Unlock for access to all 96 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 96 flashcards in this deck.