Deck 4: Exponential and Logarithmic Functions

Full screen (f)
exit full mode
Question
Evaluate the expression using the graphs of y = f(x) and y = g(x).
Evaluate (fg)(-1). <strong>Evaluate the expression using the graphs of y = f(x) and y = g(x). Evaluate (fg)(-1).  </strong> A) 0 B) -2 C) 3 D) -1 <div style=padding-top: 35px>

A) 0
B) -2
C) 3
D) -1
Use Space or
up arrow
down arrow
to flip the card.
Question
Evaluate the expression using the values given in the table.

- (gf)(1)x161012f(x)210312x5213g(x)15610\begin{array}{l}( g f ) ( 1 )\\\begin{array} { c | r | r | r | r } x & 1 & 6 & 10 & 12 \\\hline f ( x ) & - 2 & 10 & 3 & 12\end{array}\\\begin{array} { c | r | r | r | r } \mathrm { x } & - 5 & - 2 & 1 & 3 \\\hline \mathrm { g } ( \mathrm { x } ) & 1 & - 5 & 6 & 10\end{array}\end{array}

A) 10
B) -2
C) 6
D) -5
Question
For the given functions f and g, find the requested composite function value.

- f(x)=4x+6,g(x)=4x2+3;f ( x ) = 4 x + 6 , \quad g ( x ) = 4 x ^ { 2 } + 3 ; \quad Find (gf)(3)( g \circ f ) ( 3 )

A) 6,087
B) 78
C) 162
D) 1,299
Question
For the given functions f and g, find the requested composite function.

- f(x)=5x1,g(x)=16x;f ( x ) = \frac { 5 } { x - 1 } , \quad g ( x ) = \frac { 1 } { 6 x } ; \quad Find (fg)(x)( f \circ g ) ( x )

A) 5x16x\frac { 5 x } { 1 - 6 x }

B) 1x130x\frac { 1 \mathrm { x } - 1 } { 30 \mathrm { x } }

C) 30x1+6x\frac { 30 x } { 1 + 6 x }

D) 30x16x\frac { 30 x } { 1 - 6 x }
Question
For the given functions f and g, find the requested composite function.

- f(x)=7x3,g(x)=25x; Find (fg)(x)f ( x ) = \frac { 7 } { x - 3 } , g ( x ) = \frac { 2 } { 5 x } ; \quad \text { Find } ( f \circ g ) ( x )

A) 35x215x\frac { 35 x } { 2 - 15 x }

B) 7x215x\frac { 7 x } { 2 - 15 x }

C) 2x635x\frac { 2 x - 6 } { 35 x }

D) 35x2+15x\frac { 35 x } { 2 + 15 x }
Question
For the given functions f and g, find the requested composite function.

- f(x)=x102,g(x)=2x+10; Find (gf)(x)f ( x ) = \frac { x - 10 } { 2 } , \quad g ( x ) = 2 x + 10 ; \quad \text { Find } ( g \circ f ) ( x )

A) x
B) 2x + 10
C) x - 5
D) x + 20
Question
For the given functions f and g, find the requested composite function value.

- f(t)=t4+18t2+81,g(t)=t+33; Find (fg)(9)f ( t ) = \sqrt { t 4 + 18 t ^ { 2 } + 81 } , \quad g ( t ) = \frac { t + 3 } { 3 } ; \quad \text { Find } ( f \circ g ) ( 9 )

A) 25
B) 360
C) 31
D) 625
Question
For the given functions f and g, find the requested composite function value.

- f(x)=2x+2,g(x)=2x2+1; Find (ff)(0)f ( x ) = 2 x + 2 , \quad g ( x ) = 2 x ^ { 2 } + 1 ; \quad \text { Find } ( f \circ f ) ( 0 )

A) 4
B) 3
C) 9
D) 6
Question
For the given functions f and g, find the requested composite function value.

- f(x)=2x+2,g(x)=2x2+3; Find (ff)(0)f ( x ) = 2 x + 2 , \quad g ( x ) = 2 x ^ { 2 } + 3 ; \quad \text { Find } ( f \circ f ) ( 0 )

A) 21
B) 8
C) 6
D) 11
Question
For the given functions f and g, find the requested composite function value.

- f(x)=x+2,g(x)=3x;f ( x ) = \sqrt { x + 2 } , \quad g ( x ) = 3 x ; \quad Find (fg)(0)( f \circ g ) ( 0 ) .

A) 363 \sqrt { 6 }
B) 323 \sqrt { 2 }
C) 6\sqrt { 6 }
D) 2\sqrt { 2 }
Question
For the given functions f and g, find the requested composite function.

- f(x)=x+2,g(x)=8x6;f ( x ) = \sqrt { x + 2 } , \quad g ( x ) = 8 x - 6 ; \quad Find (fg)(x)( f \circ g ) ( x )

A) 8x48 \sqrt { x - 4 }
B) 22x12 \sqrt { 2 x - 1 }
C) 8x+268 \sqrt { x + 2 } - 6
D) 22x+12 \sqrt { 2 x + 1 }
Question
For the given functions f and g, find the requested composite function.
f(x) = -2x + 3, g(x) = 6x + 4; Find (g °f)(x).

A) -12x + 22
B) -12x + 11
C) -12x - 14
D) 12x + 22
Question
For the given functions f and g, find the requested composite function value.

- f(x)=13x24x,g(x)=16x10;f ( x ) = 13 x ^ { 2 } - 4 x , \quad g ( x ) = 16 x - 10 ; \quad Find (fg)(9)( f \circ g ) ( 9 ) .

A) 16,262
B) 136,278
C) 232,892
D) 216,630
Question
For the given functions f and g, find the requested composite function.

- f(x)=4x2+6x+3,g(x)=6x7;f ( x ) = 4 x ^ { 2 } + 6 x + 3 , \quad g ( x ) = 6 x - 7 ; \quad Find (gf)(x)( g \circ f ) ( x )

A) 4x2+36x+114 x ^ { 2 } + 36 x + 11
B) 24x2+36x+2524 x ^ { 2 } + 36 x + 25
C) 4x2+6x44 x ^ { 2 } + 6 x - 4
D) 24x2+36x+1124 x ^ { 2 } + 36 x + 11
Question
Evaluate the expression using the values given in the table.

- (fg)(3)x171012f(x)210012x5213g(x)17710\begin{array}{l}( \mathrm { f } \mathrm { g } ) ( 3 )\\\begin{array} { c | r | r | r | r } \mathrm { x } & 1 & 7 & 10 & 12 \\\hline \mathrm { f } ( \mathrm { x } ) & - 2 & 10 & 0 & 12\end{array}\\\begin{array} { c | r | r | r | r } x & - 5 & - 2 & 1 & 3 \\\hline g ( x ) & 1 & - 7 & 7 & 10\end{array}\end{array}

A) Undefined
B) 10
C) 7
D) 0
Question
For the given functions f and g, find the requested composite function.
f(x) = 5x + 10, g(x) = 5x - 1; Find (f °g)(x).

A) 25x + 9
B) 25x + 15
C) 25x + 49
D) 25x + 5
Question
For the given functions f and g, find the requested composite function.

- f(x)=x23,g(x)=3x+2;f ( x ) = \frac { x - 2 } { 3 } , g ( x ) = 3 x + 2 ; \quad Find (gf)(x)( g \circ f ) ( x )

A) 3x+43 x + 4
B) x+4x + 4
C) x23x - \frac { 2 } { 3 }
D) xx
Question
For the given functions f and g, find the requested composite function value.

- f(x)=5x+8,g(x)=1/x;f ( x ) = 5 x + 8 , \quad g ( x ) = - 1 / x ; \quad Find (gf)(3)( g \circ f ) ( 3 ) .

A) 123- \frac { 1 } { 23 }
B) 193\frac { 19 } { 3 }
C) 683\frac { 68 } { 3 }
D) 233- \frac { 23 } { 3 }
Question
For the given functions f and g, find the requested composite function value.

- f(x)=20x24x,g(x)=12x4;f ( x ) = \left| 20 x ^ { 2 } - 4 x \right| , \quad g ( x ) = 12 x - 4 ; \quad Find (fg)(4)( f \circ g ) ( 4 )

A) 34,900
B) 38,544
C) 3,644
D) 13,376
Question
For the given functions f and g, find the requested composite function value.

- f(x)=x6x,g(x)=x2+9;f ( x ) = \frac { x - 6 } { x } , g ( x ) = x ^ { 2 } + 9 ; \quad Find (gf)(2)( g \circ f ) ( - 2 )

A) 713\frac { 7 } { 13 }
B) 13
C) 14516\frac { 145 } { 16 }
D) 25
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=69x+10H ( x ) = \frac { 6 } { \sqrt { 9 x + 10 } }

A) f(x)=6;g(x)=9+10f ( x ) = 6 ; \quad g ( x ) = \sqrt { 9 + 10 }
B) f(x)=6x;g(x)=9x+10f ( x ) = \frac { 6 } { x } ; \quad g ( x ) = 9 x + 10
C) f(x)=6x;g(x)=9x+10f ( x ) = \frac { 6 } { \sqrt { x } } ; \quad g ( x ) = 9 x + 10
D) f(x)=9x+10;g(x)=6f ( x ) = \sqrt { 9 x + 10 } ; g ( x ) = 6
Question
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=1x,g(x)=xf ( x ) = \frac { 1 } { x } , g ( x ) = x

A) Yes, no
B) No, no
C) Yes, yes
D) No, yes
Question
Solve the problem.

-An oil well off the Gulf Coast is leaking, with the leak spreading oil over the surface of the gulf as a circle. At any time t, in minutes, after the beginning of the leak, the radius of the oil slick on the surface is r(t) = 3t ft. Find
The area A of the oil slick as a function of time.

A) A(r(t))=9πt2\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 9 \pi \mathrm { t } ^ { 2 }
B) A(r(t))=9t2A ( r ( t ) ) = 9 t ^ { 2 }
C) A(r(t))=9πt\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 9 \pi \mathrm { t }
D) A(r(t))=3πt2\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 3 \pi \mathrm { t } ^ { 2 }
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=1x2\mathrm { H } ( \mathrm { x } ) = \sqrt { \frac { 1 } { \mathrm { x } - 2 } }

A) g(x)=x;f(x)=1x2g ( x ) = \sqrt { x } ; f ( x ) = \frac { 1 } { x - 2 }

B) f(x)=x2;g(x)=1xf ( x ) = x - 2 ; g ( x ) = \frac { 1 } { \sqrt { x } }

C) f(x)=1x2;g(x)=xf ( x ) = \frac { 1 } { x - 2 } ; g ( x ) = \sqrt { x }

D) f(x)=1x2;g(x)=1xf ( x ) = \frac { 1 } { x - 2 } ; g ( x ) = \frac { 1 } { \sqrt { x } }
Question
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x2+1,g(x)=x1f ( x ) = x ^ { 2 } + 1 , g ( x ) = \sqrt { x } - 1

A) No, yes
B) No, no
C) Yes, yes
D) Yes, no
Question
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x64,g(x)=4x+6f ( x ) = \frac { x - 6 } { 4 } , \quad g ( x ) = 4 x + 6

A) Yes, yes
B) No, yes
C) No, no
D) Yes, no
Question
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x+1,g(x)=x2f ( x ) = \sqrt { x + 1 } , g ( x ) = x ^ { 2 }

A) Yes, yes
B) No, yes
C) Yes, no
D) No, no
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=43x2H ( x ) = \left| 4 - 3 x ^ { 2 } \right|

A) f(x)=43x2;g(x)=xf ( x ) = 4 - 3 x ^ { 2 } ; g ( x ) = | x |
B) f(x)=x2;g(x)=43xf ( x ) = x ^ { 2 } ; g ( x ) = 4 - 3 | x |
C) f(x)=43x;g(x)=x2f ( x ) = 4 - 3 | x | ; g ( x ) = x ^ { 2 }
D) f(x)=x;g(x)=43x2f ( x ) = | x | ; g ( x ) = 4 - 3 x ^ { 2 }
Question
For the given functions f and g, find the requested composite function.

- f(x)=x25,g(x)=x28;f ( x ) = x ^ { 2 } - 5 , \quad g ( x ) = x ^ { 2 } - 8 ; \quad Find (fg)(x)( f \circ g ) ( x )

A) x416x2+59x ^ { 4 } - 16 x ^ { 2 } + 59
B) x4+17x ^ { 4 } + 17
C) x4+59x ^ { 4 } + 59
D) x410x2+17x ^ { 4 } - 10 x ^ { 2 } + 17
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=1x25H ( x ) = \frac { 1 } { x ^ { 2 } - 5 }

A) f(x)=1x2;g(x)=1/5f ( x ) = \frac { 1 } { x ^ { 2 } } ; \quad g ( x ) = - 1 / 5
B) f(x)=1x;g(x)=x25f ( x ) = \frac { 1 } { x } ; \quad g ( x ) = x ^ { 2 } - 5
C) f(x)=x25;g(x)=1xf ( x ) = x ^ { 2 } - 5 ; \quad g ( x ) = \frac { 1 } { x }
D) f(x)=1x2;g(x)=x5f ( x ) = \frac { 1 } { x ^ { 2 } } ; \quad g ( x ) = x - 5
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=1x26H ( x ) = \frac { 1 } { x ^ { 2 } - 6 }

A) f(x)=1x;g(x)=1x29f ( x ) = \frac { 1 } { x } ; g ( x ) = \frac { 1 } { x ^ { 2 } } - 9
B) f(x)=1x29;g(x)=1xf ( x ) = \frac { 1 } { x ^ { 2 } } - 9 ; g ( x ) = \frac { 1 } { x }
C) f(x)=x26;g(x)=1xf ( x ) = x ^ { 2 } - 6 ; g ( x ) = \frac { 1 } { x }
D) f(x)=1x,g(x)=x26f ( x ) = \frac { 1 } { x } , g ( x ) = x ^ { 2 } - 6
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=(52x3)2H ( x ) = \left( 5 - 2 x ^ { 3 } \right) ^ { 2 }

A) f(x)=52x3;g(x)=x2f ( x ) = 5 - 2 x ^ { 3 } ; g ( x ) = x ^ { 2 }
B) f(x)=x2;g(x)=52x3f ( x ) = x ^ { 2 } ; g ( x ) = 5 - 2 x ^ { 3 }
C) f(x)=(52x)3;g(x)=x2f ( x ) = ( 5 - 2 x ) ^ { 3 } ; g ( x ) = x ^ { 2 }
D) f(x)=x3;g(x)=(52x)2f ( x ) = x ^ { 3 } ; g ( x ) = ( 5 - 2 x ) ^ { 2 }
Question
Solve the problem.

-The population P of a predator mammal depends upon the number x of a smaller animal that is its primary food source. The population s of the smaller animal depends upon the amount a of a certain plant that is its
Primary food source. If P(x)=3x2+2P ( x ) = 3 x ^ { 2 } + 2 and s(a) = 2a + 5, what is the relationship between the predator mammal
And the plant food source?

A) P(s(a))=4a2+20a+27\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 4 \mathrm { a } ^ { 2 } + 20 \mathrm { a } + 27
B) P(s(a))=6a+7\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 6 \mathrm { a } + 7
C) P(s(a))=12a2+30a+77P ( s ( a ) ) = 12 a ^ { 2 } + 30 a + 77
D) P(s(a))=12a2+60a+77\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 12 \mathrm { a } ^ { 2 } + 60 \mathrm { a } + 77
Question
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x85,g(x)=x5+8f ( x ) = \sqrt [ 5 ] { x - 8 } , g ( x ) = x ^ { 5 } + 8

A) Yes, yes
B) Yes, no
C) No, no
D) No, yes
Question
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x,g(x)=x2f ( x ) = \sqrt { x } , g ( x ) = x ^ { 2 }

A) No, no
B) Yes, yes
C) Yes, no
D) No, yes
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=x+13\mathrm { H } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 1 }

A) f(x)=x;g(x)=x+1f ( x ) = \sqrt { x } ; g ( x ) = x + 1
B) f(x)=x3;g(x)=x+1f ( x ) = \sqrt [ 3 ] { x } ; g ( x ) = x + 1
C) f(x)=x+1;g(x)=x3f ( x ) = x + 1 ; g ( x ) = \sqrt [ 3 ] { x }
D) f(x)=x3;g(x)=1f ( x ) = \sqrt [ 3 ] { x } ; g ( x ) = 1
Question
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=2x,g(x)=x2f ( x ) = 2 x , \quad g ( x ) = \frac { x } { 2 }

A) No, no
B) No, yes
C) Yes, no
D) Yes, yes
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=9x+3H ( x ) = | 9 x + 3 |

A) f(x)=x;g(x)=9x3f ( x ) = | - x | ; \quad g ( x ) = 9 x - 3
B) f(x)=xf ( x ) = - | x | ; g(x)=9x+3g ( x ) = 9 x + 3
C) f(x)=x;g(x)=9x+3f ( x ) = x ; g ( x ) = 9 x + 3
D) f(x)=x;g(x)=9x+3f ( x ) = | x | ; \quad g ( x ) = 9 x + 3
Question
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x3+1,g(x)=x13f ( x ) = x ^ { 3 } + 1 , g ( x ) = \sqrt [ 3 ] { x - 1 }

A) No, yes
B) No, no
C) Yes, yes
D) Yes, no
Question
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=3x+7\mathrm { H } ( \mathrm { x } ) = | 3 \mathrm { x } + 7 |

A) f(x)=x;g(x)=3x+7f ( x ) = x ; g ( x ) = 3 x + 7
B) f(x)=xf ( x ) = | x | ;
g(x)=3x+7g ( x ) = 3 x + 7
C) f(x)=x;g(x)=3x7f ( x ) = | - x | ; \quad g ( x ) = 3 x - 7
D) f(x)=x;g(x)=3x+7f ( x ) = - | x | ; \quad g ( x ) = 3 x + 7
Question
Solve the problem.
Solve the problem.  <div style=padding-top: 35px>
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=1x7;g(x)=x1f ( x ) = \frac { 1 } { x - 7 } ; \quad g ( x ) = \sqrt { x - 1 }

A) {xx1,x7}\{ x \mid x \geq 1 , x \neq 7 \}
B) {xx1,x7,x50}\{ x \mid x \geq 1 , x \neq 7 , x \neq 50 \}
C) {xx\{ x \mid x is any real number }\}
D) {xx1,x50}\{ x \mid x \geq 1 , x \neq 50 \}
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=x;g(x)=5x+10f ( x ) = \sqrt { x } ; \quad g ( x ) = 5 x + 10

A) {xx0}\{ x \mid x \geq 0 \}
B) {xx2\{ x \mid x \leq - 2 or x0}x \geq 0 \}
C) {xx2}\{ x \mid x \geq - 2 \}
D) {xx\{ x \mid x is any real number }\}
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=xx+7;g(x)=7x+5f ( x ) = \frac { x } { x + 7 } ; \quad g ( x ) = \frac { 7 } { x + 5 }

A) {xx5,x6}\{ x \mid x \neq - 5 , x \neq - 6 \}
B) {xx0,x5,x6}\{ x \mid x \neq 0 , x \neq - 5 , x \neq - 6 \}
C) {xx\{ x \mid x is any real number }\}
D) {xx5,x7}\{ x \mid x \neq - 5 , x \neq - 7 \}
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=7x;g(x)=2x+1f ( x ) = \frac { - 7 } { x } ; \quad g ( x ) = \frac { - 2 } { x + 1 }

A) {xx1}\{ x \mid x \neq - 1 \}
B) {xx1,x0}\{ x \mid x \neq - 1 , x \neq 0 \}
C) {xx\{ x \mid x is any real number }\}
D) {xx0,x1,x7}\{ x \mid x \neq 0 , x \neq - 1 , x \neq 7 \}
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=6x+1;g(x)=x+2f ( x ) = \frac { 6 } { x + 1 } ; \quad g ( x ) = x + 2

A) {xx3}\{ x \mid x \neq - 3 \}
B) {xx\{ x \mid x is any real number }\}
C) {xx1}\{ x \mid x \neq - 1 \}
D) {xx1,x2}\{ x \mid x \neq - 1 , x \neq - 2 \}
Question
Solve the problem.
Solve the problem.  <div style=padding-top: 35px>
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=x1;g(x)=1x8f ( x ) = \sqrt { x - 1 } ; \quad g ( x ) = \frac { 1 } { x - 8 }

A) {xx8,x1}\{ x \mid x \neq 8 , x \neq 1 \}
B) {xx1,x8}\{ x \mid x \geq 1 , x \neq 8 \}
C) {xx\{ x \mid x is any real number }\}
D) {x8<x9}\{ x \mid 8 < x \leq 9 \}
Question
Solve the problem.

-The surface area of a balloon is given by S(r)=4πr2\mathrm { S } ( \mathrm { r } ) = 4 \pi \mathrm { r } ^ { 2 } , where r\mathrm { r } is the radius of the balloon. If the radius is increasing with time tt , as the balloon is being blown up, according to the formula r(t)=23t3,t0r ( t ) = \frac { 2 } { 3 } t { } ^ { 3 } , t \geq 0 , find the surface area SS as a function of the time t.t .

A) S(r(t))=169πt6S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 6 }
B) S(r(t))=169πt9S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 9 }
C) S(r(t))=49πt6S ( r ( t ) ) = \frac { 4 } { 9 } \pi t ^ { 6 }
D) S(r(t))=169πt3S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 3 }
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=x+8;g(x)=4x+6f ( x ) = x + 8 ; \quad g ( x ) = \frac { 4 } { x + 6 }

A) {xx14}\{ x \mid x \neq - 14 \}
B) {xx6}\{ x \mid x \neq - 6 \}
C) {xx6,x8}\{ x \mid x \neq - 6 , x \neq - 8 \}
D) {xx\{ x \mid x is any real number }\}
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=2x+2;g(x)=xf ( x ) = 2 x + 2 ; \quad g ( x ) = \sqrt { x }

A) {xx\{ x \mid x is any real number }\}
B) {xx1}\{ x \mid x \geq - 1 \}
C) {xx0}\{ x \mid x \geq 0 \}
D) {xx1\{ x \mid x \leq - 1 or x0}x \geq 0 \}
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=7x+14;g(x)=x+7\mathrm { f } ( \mathrm { x } ) = 7 \mathrm { x } + 14 ; \quad \mathrm { g } ( \mathrm { x } ) = \mathrm { x } + 7

A) {xx\{ x \mid x is any real number }\}
B) {xx9}\{ x \mid x \neq 9 \}
C) {xx7,x2}\{ x \mid x \neq - 7 , x \neq - 2 \}
D) {xx9}\{ x \mid x \neq - 9 \}
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=2x;g(x)=2x1f ( x ) = \sqrt { 2 - x } ; \quad g ( x ) = | 2 x - 1 |

A) {xx2}\{ x \mid x \leq 2 \}
B) {xx2}\{ x \mid x \geq 2 \}
C) {x12x32}\left\{ x \mid - \frac { 1 } { 2 } \leq x \leq \frac { 3 } { 2 } \right\}
D) all real numbers
Question
Solve the problem.
Solve the problem.  <div style=padding-top: 35px>
Question
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=2x+7;g(x)=14xf ( x ) = \frac { - 2 } { x + 7 } ; \quad g ( x ) = \frac { - 14 } { x }

A) {xx0,x7,x2}\{ x \mid x \neq 0 , x \neq - 7 , x \neq 2 \}
B) {xx\{ x \mid x is any real number }\}
C) {xx0,x7}\{ x \mid x \neq 0 , x \neq - 7 \}
D) {xx0,x2}\{ x \mid x \neq 0 , x \neq 2 \}
Question
Solve the problem.
Solve the problem.  <div style=padding-top: 35px>
Question
Indicate whether the function is one-to-one.
{(12, -18), (-12, -18), (20, -8)}

A) Yes
B) No
Question
Solve the problem.
Solve the problem.  <div style=padding-top: 35px>
Question
Solve the problem.

-An airline charter service charges a fare per person of $350 plus $20 for each unsold seat. The airplane holds 125 passengers. Let x represent the number of unsold seats and write an expression for the total revenue R for a
Charter flight.

A) R(x)=(125x)(350+20x)R ( x ) = ( 125 - x ) ( 350 + 20 x ) or 43,750+2,150x20x243,750 + 2,150 x - 20 x ^ { 2 }
B) R(x)=125(350+20x)R ( x ) = 125 ( 350 + 20 x ) or 43,750+2,500x43,750 + 2,500 x
C) R(x)=x(350+20x)R ( x ) = x ( 350 + 20 x ) or 350x+20x2350 x + 20 x ^ { 2 }
D) R(x)=(125x)(350+20x)R ( x ) = ( 125 - x ) ( 350 + 20 x ) or 43,750+2,500x20x243,750 + 2,500 x - 20 x ^ { 2 }
Question
Indicate whether the function is one-to-one.
{(3, -12), (7, 4), (12, -8)}

A) Yes
B) No
Question
The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.

- f(x)=4xf ( x ) = \frac { 4 } { x }
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \frac { 4 } { x }   </strong> A) Function is its own inverse    B)   <div style=padding-top: 35px>

A) Function is its own inverse
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \frac { 4 } { x }   </strong> A) Function is its own inverse    B)   <div style=padding-top: 35px>

B)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \frac { 4 } { x }   </strong> A) Function is its own inverse    B)   <div style=padding-top: 35px>

Question
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes <div style=padding-top: 35px>

A) No
B) Yes
Question
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes <div style=padding-top: 35px>

A) No
B) Yes
Question
Find the inverse of the function and state its domain and range .

- {(3,4),(1,5),(0,2),(2,6),(5,7)}\{ ( - 3,4 ) , ( - 1,5 ) , ( 0,2 ) , ( 2,6 ) , ( 5,7 ) \}

A) {(3,4),(1,5),(0,2),(2,6),(5,7)};D={3,1,0,2,5};R={2,4,5,6,7}\{ ( 3,4 ) , ( 1,5 ) , ( 0,2 ) , ( - 2,6 ) , ( - 5,7 ) \} ; \mathrm { D } = \{ 3,1,0 , - 2 , - 5 \} ; \mathrm { R } = \{ 2,4,5,6,7 \}

B) {(3,4),(1,5),(0,2),(2,6),(5,7)};D={3,1,0,2,5};R={7,6,5,4,2}\{ ( 3 , - 4 ) , ( 1 , - 5 ) , ( 0 , - 2 ) , ( - 2 , - 6 ) , ( - 5 , - 7 ) \} ; \mathrm { D } = \{ 3,1,0 , - 2 , - 5 \} ; \mathrm { R } = \{ - 7 , - 6 , - 5 , - 4 , - 2 \}

C) {(4,3),(5,1),(2,0),(6,2),(7,5)}D={2,4,5,6,7};R={3,1,0,2,5}\{ ( 4 , - 3 ) , ( 5 , - 1 ) , ( 2,0 ) , ( 6,2 ) , ( 7,5 ) \} \mathrm { D } = \{ 2,4,5,6,7 \} ; \mathrm { R } = \{ - 3 , - 1,0,2,5 \}

D) {(3,4),(1,5),(0,2),(2,6),(5,7)};D={3,1,0,2,5};R={7,6,5,4,2}\{ ( - 3 , - 4 ) , ( - 1 , - 5 ) , ( 0 , - 2 ) , ( 2 , - 6 ) , ( 5 , - 7 ) \} ; \mathrm { D } = \{ - 3 , - 1,0,2,5 \} ; \mathrm { R } = \{ - 7 , - 6 , - 5 , - 4 , - 2 \}
Question
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes <div style=padding-top: 35px>

A) No
B) Yes
Question
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.

- f(x)=2xf(x)=2 x

 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f(x)=2 x    </strong> A)    B)   <div style=padding-top: 35px>

A)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f(x)=2 x    </strong> A)    B)   <div style=padding-top: 35px>

B)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f(x)=2 x    </strong> A)    B)   <div style=padding-top: 35px>
Question
Find the inverse. Determine whether the inverse represents a function.

- {(6,5),(1,6),(3,7),(5,8)}\{ ( 6,5 ) , ( - 1,6 ) , ( - 3,7 ) , ( - 5,8 ) \}

A) {(3,6),(4,10),(5,8),(6,6)};\{ ( 3,6 ) , ( 4,10 ) , ( 5,8 ) , ( 6,6 ) \} ; not a function
B) {(4,3),(3,8),(6,10),(4,5)}\{ ( 4,3 ) , ( 3,8 ) , ( 6,10 ) , ( 4,5 ) \} ; not a function
C) {(4,3),(6,8),(6,8),(4,5)};\{ ( 4,3 ) , ( 6,8 ) , ( 6,8 ) , ( 4,5 ) \} ; a function
D) {(3,6),(4,10),(5,8),(6,6)}\{ ( 3,6 ) , ( 4,10 ) , ( 5,8 ) , ( 6,6 ) \} ; a function
Question
The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.

- f(x)=x3+4f ( x ) = x ^ { 3 } + 4
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = x ^ { 3 } + 4   </strong> A)    B)   <div style=padding-top: 35px>

A)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = x ^ { 3 } + 4   </strong> A)    B)   <div style=padding-top: 35px>

B)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = x ^ { 3 } + 4   </strong> A)    B)   <div style=padding-top: 35px>
Question
Find the inverse of the function and state its domain and range .

- {(9,8),(7,7),(5,6),(3,5)}\{ ( 9 , - 8 ) , ( 7 , - 7 ) , ( 5 , - 6 ) , ( 3 , - 5 ) \}

A) {(7,8),(8,5),(9,7),(7,6)};D={(7,8,9};R={(8,57,6}\{ ( - 7 , - 8 ) , ( - 8,5 ) , ( 9,7 ) , ( - 7 , - 6 ) \} ; \mathrm { D } = \{ ( - 7 , - 8,9 \} ; \mathrm { R } = \{ ( - 8,57 , - 6 \}

B) {(8,9),(7,7),(6,5),(5,3)};D={8,7,6,5};R={9,7,5,3}\{ ( - 8,9 ) , ( - 7,7 ) , ( - 6,5 ) , ( - 5,3 ) \} ; \mathrm { D } = \{ - 8 , - 7 , - 6 , - 5 \} ; \mathrm { R } = \{ 9,7,5,3 \}

C) {(7,8),(5,5),(9,5),(7,6)};D={7,5,9};R={8,5,6}\{ ( - 7 , - 8 ) , ( - 5,5 ) , ( 9,5 ) , ( - 7 , - 6 ) \} ; \mathrm { D } = \{ - 7 , - 5,9 \} ; \mathrm { R } = \{ - 8,5 , - 6 \}

D) {(9,18),(7,17),(5,16),(3,15)};D={9,7,5,3},R={18,17,16,15}\left\{ \left( 9 , - \frac { 1 } { 8 } \right) , \left( 7 , - \frac { 1 } { 7 } \right) , \left( 5 , - \frac { 1 } { 6 } \right) , \left( 3 , - \frac { 1 } { 5 } \right) \right\} ; \mathrm { D } = \{ 9,7,5,3 \} , \mathrm { R } = \left\{ - \frac { 1 } { 8 } , - \frac { 1 } { 7 } , - \frac { 1 } { 6 } , - \frac { 1 } { 5 } \right\}
Question
Decide whether or not the functions are inverses of each other.

- f(x)=4x+16,g(x)=14x4f ( x ) = 4 x + 16 , g ( x ) = \frac { 1 } { 4 } x - 4

A) Yes
B) No
Question
Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of
y = x is also given.

-<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

A)
<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
Question
The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.

- f(x)=x+2f ( x ) = \sqrt { x + 2 }
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \sqrt { x + 2 }   </strong> A)    B)   <div style=padding-top: 35px>

A)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \sqrt { x + 2 }   </strong> A)    B)   <div style=padding-top: 35px>

B)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \sqrt { x + 2 }   </strong> A)    B)   <div style=padding-top: 35px>

Question
Indicate whether the function is one-to-one.
{(6, -6), (12, -5), (10, -4), (8, -3)}

A) No
B) Yes
Question
Indicate whether the function is one-to-one.
{(5, 4), (6, 4), (7, 3), (8, -9)}

A) Yes
B) No
Question
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes <div style=padding-top: 35px>

A) No
B) Yes
Question
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes <div style=padding-top: 35px>

A) No
B) Yes
Question
Decide whether or not the functions are inverses of each other.

- f(x)=8x9,g(x)=x+89f ( x ) = 8 x - 9 , g ( x ) = \frac { x + 8 } { 9 }

A) No
B) Yes
Question
Indicate whether the function is one-to-one.
{(7, -3), (3, -7), (-2, 9), (2, -9)}

A) No
B) Yes
Question
Find the inverse of the function and state its domain and range .

- {(5,3),(3,5),(1,1),(1,1)}\{ ( - 5 , - 3 ) , ( 3,5 ) , ( 1,1 ) , ( - 1 , - 1 ) \}

A) {(3,5),(5,3),(1,1),(1,1)}D={3,5,1,1};R={5,3,1,1}\{ ( - 3 , - 5 ) , ( 5,3 ) , ( 1,1 ) , ( - 1 , - 1 ) \} \mathrm { D } = \{ - 3,5,1 , - 1 \} ; \mathrm { R } = \{ - 5,3,1 , - 1 \}

B) {(5,13),(3,15),(1,1),(1,1)}D={5,3,1,1},R={13,15,1,1}\left\{ \left( - 5 , - \frac { 1 } { 3 } \right) , \left( 3 , \frac { 1 } { 5 } \right) , ( 1,1 ) , ( - 1 , - 1 ) \right\} \mathrm { D } = \{ - 5,3,1 , - 1 \} , \mathrm { R } = \left\{ - \frac { 1 } { 3 } , \frac { 1 } { 5 } , 1 , - 1 \right\}

C) {(1,1),(5,3),(3,3),(1,1)};D={(1,5,3,1};R={1,3,1}\{ ( - 1,1 ) , ( 5,3 ) , ( - 3,3 ) , ( 1 , - 1 ) \} ; \mathrm { D } = \{ ( - 1,5 , - 3,1 \} ; \mathrm { R } = \{ 1,3 , - 1 \}

D) {(1,1),(1,3),(3,5),(1,1)};D={1,1,3,1};R={1,3,5,1}\{ ( - 1,1 ) , ( 1,3 ) , ( - 3 , - 5 ) , ( 1 , - 1 ) \} ; \mathrm { D } = \{ - 1,1 , - 3,1 \} ; \mathrm { R } = \{ 1,3 , - 5 , - 1 \}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/518
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Exponential and Logarithmic Functions
1
Evaluate the expression using the graphs of y = f(x) and y = g(x).
Evaluate (fg)(-1). <strong>Evaluate the expression using the graphs of y = f(x) and y = g(x). Evaluate (fg)(-1).  </strong> A) 0 B) -2 C) 3 D) -1

A) 0
B) -2
C) 3
D) -1
B
2
Evaluate the expression using the values given in the table.

- (gf)(1)x161012f(x)210312x5213g(x)15610\begin{array}{l}( g f ) ( 1 )\\\begin{array} { c | r | r | r | r } x & 1 & 6 & 10 & 12 \\\hline f ( x ) & - 2 & 10 & 3 & 12\end{array}\\\begin{array} { c | r | r | r | r } \mathrm { x } & - 5 & - 2 & 1 & 3 \\\hline \mathrm { g } ( \mathrm { x } ) & 1 & - 5 & 6 & 10\end{array}\end{array}

A) 10
B) -2
C) 6
D) -5
-5
3
For the given functions f and g, find the requested composite function value.

- f(x)=4x+6,g(x)=4x2+3;f ( x ) = 4 x + 6 , \quad g ( x ) = 4 x ^ { 2 } + 3 ; \quad Find (gf)(3)( g \circ f ) ( 3 )

A) 6,087
B) 78
C) 162
D) 1,299
1,299
4
For the given functions f and g, find the requested composite function.

- f(x)=5x1,g(x)=16x;f ( x ) = \frac { 5 } { x - 1 } , \quad g ( x ) = \frac { 1 } { 6 x } ; \quad Find (fg)(x)( f \circ g ) ( x )

A) 5x16x\frac { 5 x } { 1 - 6 x }

B) 1x130x\frac { 1 \mathrm { x } - 1 } { 30 \mathrm { x } }

C) 30x1+6x\frac { 30 x } { 1 + 6 x }

D) 30x16x\frac { 30 x } { 1 - 6 x }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
5
For the given functions f and g, find the requested composite function.

- f(x)=7x3,g(x)=25x; Find (fg)(x)f ( x ) = \frac { 7 } { x - 3 } , g ( x ) = \frac { 2 } { 5 x } ; \quad \text { Find } ( f \circ g ) ( x )

A) 35x215x\frac { 35 x } { 2 - 15 x }

B) 7x215x\frac { 7 x } { 2 - 15 x }

C) 2x635x\frac { 2 x - 6 } { 35 x }

D) 35x2+15x\frac { 35 x } { 2 + 15 x }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
6
For the given functions f and g, find the requested composite function.

- f(x)=x102,g(x)=2x+10; Find (gf)(x)f ( x ) = \frac { x - 10 } { 2 } , \quad g ( x ) = 2 x + 10 ; \quad \text { Find } ( g \circ f ) ( x )

A) x
B) 2x + 10
C) x - 5
D) x + 20
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
7
For the given functions f and g, find the requested composite function value.

- f(t)=t4+18t2+81,g(t)=t+33; Find (fg)(9)f ( t ) = \sqrt { t 4 + 18 t ^ { 2 } + 81 } , \quad g ( t ) = \frac { t + 3 } { 3 } ; \quad \text { Find } ( f \circ g ) ( 9 )

A) 25
B) 360
C) 31
D) 625
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
8
For the given functions f and g, find the requested composite function value.

- f(x)=2x+2,g(x)=2x2+1; Find (ff)(0)f ( x ) = 2 x + 2 , \quad g ( x ) = 2 x ^ { 2 } + 1 ; \quad \text { Find } ( f \circ f ) ( 0 )

A) 4
B) 3
C) 9
D) 6
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
9
For the given functions f and g, find the requested composite function value.

- f(x)=2x+2,g(x)=2x2+3; Find (ff)(0)f ( x ) = 2 x + 2 , \quad g ( x ) = 2 x ^ { 2 } + 3 ; \quad \text { Find } ( f \circ f ) ( 0 )

A) 21
B) 8
C) 6
D) 11
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
10
For the given functions f and g, find the requested composite function value.

- f(x)=x+2,g(x)=3x;f ( x ) = \sqrt { x + 2 } , \quad g ( x ) = 3 x ; \quad Find (fg)(0)( f \circ g ) ( 0 ) .

A) 363 \sqrt { 6 }
B) 323 \sqrt { 2 }
C) 6\sqrt { 6 }
D) 2\sqrt { 2 }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
11
For the given functions f and g, find the requested composite function.

- f(x)=x+2,g(x)=8x6;f ( x ) = \sqrt { x + 2 } , \quad g ( x ) = 8 x - 6 ; \quad Find (fg)(x)( f \circ g ) ( x )

A) 8x48 \sqrt { x - 4 }
B) 22x12 \sqrt { 2 x - 1 }
C) 8x+268 \sqrt { x + 2 } - 6
D) 22x+12 \sqrt { 2 x + 1 }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
12
For the given functions f and g, find the requested composite function.
f(x) = -2x + 3, g(x) = 6x + 4; Find (g °f)(x).

A) -12x + 22
B) -12x + 11
C) -12x - 14
D) 12x + 22
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
13
For the given functions f and g, find the requested composite function value.

- f(x)=13x24x,g(x)=16x10;f ( x ) = 13 x ^ { 2 } - 4 x , \quad g ( x ) = 16 x - 10 ; \quad Find (fg)(9)( f \circ g ) ( 9 ) .

A) 16,262
B) 136,278
C) 232,892
D) 216,630
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
14
For the given functions f and g, find the requested composite function.

- f(x)=4x2+6x+3,g(x)=6x7;f ( x ) = 4 x ^ { 2 } + 6 x + 3 , \quad g ( x ) = 6 x - 7 ; \quad Find (gf)(x)( g \circ f ) ( x )

A) 4x2+36x+114 x ^ { 2 } + 36 x + 11
B) 24x2+36x+2524 x ^ { 2 } + 36 x + 25
C) 4x2+6x44 x ^ { 2 } + 6 x - 4
D) 24x2+36x+1124 x ^ { 2 } + 36 x + 11
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate the expression using the values given in the table.

- (fg)(3)x171012f(x)210012x5213g(x)17710\begin{array}{l}( \mathrm { f } \mathrm { g } ) ( 3 )\\\begin{array} { c | r | r | r | r } \mathrm { x } & 1 & 7 & 10 & 12 \\\hline \mathrm { f } ( \mathrm { x } ) & - 2 & 10 & 0 & 12\end{array}\\\begin{array} { c | r | r | r | r } x & - 5 & - 2 & 1 & 3 \\\hline g ( x ) & 1 & - 7 & 7 & 10\end{array}\end{array}

A) Undefined
B) 10
C) 7
D) 0
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
16
For the given functions f and g, find the requested composite function.
f(x) = 5x + 10, g(x) = 5x - 1; Find (f °g)(x).

A) 25x + 9
B) 25x + 15
C) 25x + 49
D) 25x + 5
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
17
For the given functions f and g, find the requested composite function.

- f(x)=x23,g(x)=3x+2;f ( x ) = \frac { x - 2 } { 3 } , g ( x ) = 3 x + 2 ; \quad Find (gf)(x)( g \circ f ) ( x )

A) 3x+43 x + 4
B) x+4x + 4
C) x23x - \frac { 2 } { 3 }
D) xx
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
18
For the given functions f and g, find the requested composite function value.

- f(x)=5x+8,g(x)=1/x;f ( x ) = 5 x + 8 , \quad g ( x ) = - 1 / x ; \quad Find (gf)(3)( g \circ f ) ( 3 ) .

A) 123- \frac { 1 } { 23 }
B) 193\frac { 19 } { 3 }
C) 683\frac { 68 } { 3 }
D) 233- \frac { 23 } { 3 }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
19
For the given functions f and g, find the requested composite function value.

- f(x)=20x24x,g(x)=12x4;f ( x ) = \left| 20 x ^ { 2 } - 4 x \right| , \quad g ( x ) = 12 x - 4 ; \quad Find (fg)(4)( f \circ g ) ( 4 )

A) 34,900
B) 38,544
C) 3,644
D) 13,376
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
20
For the given functions f and g, find the requested composite function value.

- f(x)=x6x,g(x)=x2+9;f ( x ) = \frac { x - 6 } { x } , g ( x ) = x ^ { 2 } + 9 ; \quad Find (gf)(2)( g \circ f ) ( - 2 )

A) 713\frac { 7 } { 13 }
B) 13
C) 14516\frac { 145 } { 16 }
D) 25
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
21
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=69x+10H ( x ) = \frac { 6 } { \sqrt { 9 x + 10 } }

A) f(x)=6;g(x)=9+10f ( x ) = 6 ; \quad g ( x ) = \sqrt { 9 + 10 }
B) f(x)=6x;g(x)=9x+10f ( x ) = \frac { 6 } { x } ; \quad g ( x ) = 9 x + 10
C) f(x)=6x;g(x)=9x+10f ( x ) = \frac { 6 } { \sqrt { x } } ; \quad g ( x ) = 9 x + 10
D) f(x)=9x+10;g(x)=6f ( x ) = \sqrt { 9 x + 10 } ; g ( x ) = 6
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
22
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=1x,g(x)=xf ( x ) = \frac { 1 } { x } , g ( x ) = x

A) Yes, no
B) No, no
C) Yes, yes
D) No, yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
23
Solve the problem.

-An oil well off the Gulf Coast is leaking, with the leak spreading oil over the surface of the gulf as a circle. At any time t, in minutes, after the beginning of the leak, the radius of the oil slick on the surface is r(t) = 3t ft. Find
The area A of the oil slick as a function of time.

A) A(r(t))=9πt2\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 9 \pi \mathrm { t } ^ { 2 }
B) A(r(t))=9t2A ( r ( t ) ) = 9 t ^ { 2 }
C) A(r(t))=9πt\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 9 \pi \mathrm { t }
D) A(r(t))=3πt2\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 3 \pi \mathrm { t } ^ { 2 }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
24
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=1x2\mathrm { H } ( \mathrm { x } ) = \sqrt { \frac { 1 } { \mathrm { x } - 2 } }

A) g(x)=x;f(x)=1x2g ( x ) = \sqrt { x } ; f ( x ) = \frac { 1 } { x - 2 }

B) f(x)=x2;g(x)=1xf ( x ) = x - 2 ; g ( x ) = \frac { 1 } { \sqrt { x } }

C) f(x)=1x2;g(x)=xf ( x ) = \frac { 1 } { x - 2 } ; g ( x ) = \sqrt { x }

D) f(x)=1x2;g(x)=1xf ( x ) = \frac { 1 } { x - 2 } ; g ( x ) = \frac { 1 } { \sqrt { x } }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
25
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x2+1,g(x)=x1f ( x ) = x ^ { 2 } + 1 , g ( x ) = \sqrt { x } - 1

A) No, yes
B) No, no
C) Yes, yes
D) Yes, no
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
26
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x64,g(x)=4x+6f ( x ) = \frac { x - 6 } { 4 } , \quad g ( x ) = 4 x + 6

A) Yes, yes
B) No, yes
C) No, no
D) Yes, no
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
27
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x+1,g(x)=x2f ( x ) = \sqrt { x + 1 } , g ( x ) = x ^ { 2 }

A) Yes, yes
B) No, yes
C) Yes, no
D) No, no
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
28
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=43x2H ( x ) = \left| 4 - 3 x ^ { 2 } \right|

A) f(x)=43x2;g(x)=xf ( x ) = 4 - 3 x ^ { 2 } ; g ( x ) = | x |
B) f(x)=x2;g(x)=43xf ( x ) = x ^ { 2 } ; g ( x ) = 4 - 3 | x |
C) f(x)=43x;g(x)=x2f ( x ) = 4 - 3 | x | ; g ( x ) = x ^ { 2 }
D) f(x)=x;g(x)=43x2f ( x ) = | x | ; g ( x ) = 4 - 3 x ^ { 2 }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
29
For the given functions f and g, find the requested composite function.

- f(x)=x25,g(x)=x28;f ( x ) = x ^ { 2 } - 5 , \quad g ( x ) = x ^ { 2 } - 8 ; \quad Find (fg)(x)( f \circ g ) ( x )

A) x416x2+59x ^ { 4 } - 16 x ^ { 2 } + 59
B) x4+17x ^ { 4 } + 17
C) x4+59x ^ { 4 } + 59
D) x410x2+17x ^ { 4 } - 10 x ^ { 2 } + 17
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
30
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=1x25H ( x ) = \frac { 1 } { x ^ { 2 } - 5 }

A) f(x)=1x2;g(x)=1/5f ( x ) = \frac { 1 } { x ^ { 2 } } ; \quad g ( x ) = - 1 / 5
B) f(x)=1x;g(x)=x25f ( x ) = \frac { 1 } { x } ; \quad g ( x ) = x ^ { 2 } - 5
C) f(x)=x25;g(x)=1xf ( x ) = x ^ { 2 } - 5 ; \quad g ( x ) = \frac { 1 } { x }
D) f(x)=1x2;g(x)=x5f ( x ) = \frac { 1 } { x ^ { 2 } } ; \quad g ( x ) = x - 5
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
31
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=1x26H ( x ) = \frac { 1 } { x ^ { 2 } - 6 }

A) f(x)=1x;g(x)=1x29f ( x ) = \frac { 1 } { x } ; g ( x ) = \frac { 1 } { x ^ { 2 } } - 9
B) f(x)=1x29;g(x)=1xf ( x ) = \frac { 1 } { x ^ { 2 } } - 9 ; g ( x ) = \frac { 1 } { x }
C) f(x)=x26;g(x)=1xf ( x ) = x ^ { 2 } - 6 ; g ( x ) = \frac { 1 } { x }
D) f(x)=1x,g(x)=x26f ( x ) = \frac { 1 } { x } , g ( x ) = x ^ { 2 } - 6
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
32
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=(52x3)2H ( x ) = \left( 5 - 2 x ^ { 3 } \right) ^ { 2 }

A) f(x)=52x3;g(x)=x2f ( x ) = 5 - 2 x ^ { 3 } ; g ( x ) = x ^ { 2 }
B) f(x)=x2;g(x)=52x3f ( x ) = x ^ { 2 } ; g ( x ) = 5 - 2 x ^ { 3 }
C) f(x)=(52x)3;g(x)=x2f ( x ) = ( 5 - 2 x ) ^ { 3 } ; g ( x ) = x ^ { 2 }
D) f(x)=x3;g(x)=(52x)2f ( x ) = x ^ { 3 } ; g ( x ) = ( 5 - 2 x ) ^ { 2 }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
33
Solve the problem.

-The population P of a predator mammal depends upon the number x of a smaller animal that is its primary food source. The population s of the smaller animal depends upon the amount a of a certain plant that is its
Primary food source. If P(x)=3x2+2P ( x ) = 3 x ^ { 2 } + 2 and s(a) = 2a + 5, what is the relationship between the predator mammal
And the plant food source?

A) P(s(a))=4a2+20a+27\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 4 \mathrm { a } ^ { 2 } + 20 \mathrm { a } + 27
B) P(s(a))=6a+7\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 6 \mathrm { a } + 7
C) P(s(a))=12a2+30a+77P ( s ( a ) ) = 12 a ^ { 2 } + 30 a + 77
D) P(s(a))=12a2+60a+77\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 12 \mathrm { a } ^ { 2 } + 60 \mathrm { a } + 77
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
34
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x85,g(x)=x5+8f ( x ) = \sqrt [ 5 ] { x - 8 } , g ( x ) = x ^ { 5 } + 8

A) Yes, yes
B) Yes, no
C) No, no
D) No, yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
35
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x,g(x)=x2f ( x ) = \sqrt { x } , g ( x ) = x ^ { 2 }

A) No, no
B) Yes, yes
C) Yes, no
D) No, yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
36
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=x+13\mathrm { H } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 1 }

A) f(x)=x;g(x)=x+1f ( x ) = \sqrt { x } ; g ( x ) = x + 1
B) f(x)=x3;g(x)=x+1f ( x ) = \sqrt [ 3 ] { x } ; g ( x ) = x + 1
C) f(x)=x+1;g(x)=x3f ( x ) = x + 1 ; g ( x ) = \sqrt [ 3 ] { x }
D) f(x)=x3;g(x)=1f ( x ) = \sqrt [ 3 ] { x } ; g ( x ) = 1
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
37
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=2x,g(x)=x2f ( x ) = 2 x , \quad g ( x ) = \frac { x } { 2 }

A) No, no
B) No, yes
C) Yes, no
D) Yes, yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
38
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=9x+3H ( x ) = | 9 x + 3 |

A) f(x)=x;g(x)=9x3f ( x ) = | - x | ; \quad g ( x ) = 9 x - 3
B) f(x)=xf ( x ) = - | x | ; g(x)=9x+3g ( x ) = 9 x + 3
C) f(x)=x;g(x)=9x+3f ( x ) = x ; g ( x ) = 9 x + 3
D) f(x)=x;g(x)=9x+3f ( x ) = | x | ; \quad g ( x ) = 9 x + 3
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
39
Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x.

- f(x)=x3+1,g(x)=x13f ( x ) = x ^ { 3 } + 1 , g ( x ) = \sqrt [ 3 ] { x - 1 }

A) No, yes
B) No, no
C) Yes, yes
D) Yes, no
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
40
Find functions f and g so that f fg=Hf \circ g = H

- H(x)=3x+7\mathrm { H } ( \mathrm { x } ) = | 3 \mathrm { x } + 7 |

A) f(x)=x;g(x)=3x+7f ( x ) = x ; g ( x ) = 3 x + 7
B) f(x)=xf ( x ) = | x | ;
g(x)=3x+7g ( x ) = 3 x + 7
C) f(x)=x;g(x)=3x7f ( x ) = | - x | ; \quad g ( x ) = 3 x - 7
D) f(x)=x;g(x)=3x+7f ( x ) = - | x | ; \quad g ( x ) = 3 x + 7
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
41
Solve the problem.
Solve the problem.
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
42
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=1x7;g(x)=x1f ( x ) = \frac { 1 } { x - 7 } ; \quad g ( x ) = \sqrt { x - 1 }

A) {xx1,x7}\{ x \mid x \geq 1 , x \neq 7 \}
B) {xx1,x7,x50}\{ x \mid x \geq 1 , x \neq 7 , x \neq 50 \}
C) {xx\{ x \mid x is any real number }\}
D) {xx1,x50}\{ x \mid x \geq 1 , x \neq 50 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
43
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=x;g(x)=5x+10f ( x ) = \sqrt { x } ; \quad g ( x ) = 5 x + 10

A) {xx0}\{ x \mid x \geq 0 \}
B) {xx2\{ x \mid x \leq - 2 or x0}x \geq 0 \}
C) {xx2}\{ x \mid x \geq - 2 \}
D) {xx\{ x \mid x is any real number }\}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
44
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=xx+7;g(x)=7x+5f ( x ) = \frac { x } { x + 7 } ; \quad g ( x ) = \frac { 7 } { x + 5 }

A) {xx5,x6}\{ x \mid x \neq - 5 , x \neq - 6 \}
B) {xx0,x5,x6}\{ x \mid x \neq 0 , x \neq - 5 , x \neq - 6 \}
C) {xx\{ x \mid x is any real number }\}
D) {xx5,x7}\{ x \mid x \neq - 5 , x \neq - 7 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
45
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=7x;g(x)=2x+1f ( x ) = \frac { - 7 } { x } ; \quad g ( x ) = \frac { - 2 } { x + 1 }

A) {xx1}\{ x \mid x \neq - 1 \}
B) {xx1,x0}\{ x \mid x \neq - 1 , x \neq 0 \}
C) {xx\{ x \mid x is any real number }\}
D) {xx0,x1,x7}\{ x \mid x \neq 0 , x \neq - 1 , x \neq 7 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
46
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=6x+1;g(x)=x+2f ( x ) = \frac { 6 } { x + 1 } ; \quad g ( x ) = x + 2

A) {xx3}\{ x \mid x \neq - 3 \}
B) {xx\{ x \mid x is any real number }\}
C) {xx1}\{ x \mid x \neq - 1 \}
D) {xx1,x2}\{ x \mid x \neq - 1 , x \neq - 2 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
47
Solve the problem.
Solve the problem.
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
48
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=x1;g(x)=1x8f ( x ) = \sqrt { x - 1 } ; \quad g ( x ) = \frac { 1 } { x - 8 }

A) {xx8,x1}\{ x \mid x \neq 8 , x \neq 1 \}
B) {xx1,x8}\{ x \mid x \geq 1 , x \neq 8 \}
C) {xx\{ x \mid x is any real number }\}
D) {x8<x9}\{ x \mid 8 < x \leq 9 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
49
Solve the problem.

-The surface area of a balloon is given by S(r)=4πr2\mathrm { S } ( \mathrm { r } ) = 4 \pi \mathrm { r } ^ { 2 } , where r\mathrm { r } is the radius of the balloon. If the radius is increasing with time tt , as the balloon is being blown up, according to the formula r(t)=23t3,t0r ( t ) = \frac { 2 } { 3 } t { } ^ { 3 } , t \geq 0 , find the surface area SS as a function of the time t.t .

A) S(r(t))=169πt6S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 6 }
B) S(r(t))=169πt9S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 9 }
C) S(r(t))=49πt6S ( r ( t ) ) = \frac { 4 } { 9 } \pi t ^ { 6 }
D) S(r(t))=169πt3S ( r ( t ) ) = \frac { 16 } { 9 } \pi t ^ { 3 }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
50
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=x+8;g(x)=4x+6f ( x ) = x + 8 ; \quad g ( x ) = \frac { 4 } { x + 6 }

A) {xx14}\{ x \mid x \neq - 14 \}
B) {xx6}\{ x \mid x \neq - 6 \}
C) {xx6,x8}\{ x \mid x \neq - 6 , x \neq - 8 \}
D) {xx\{ x \mid x is any real number }\}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
51
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=2x+2;g(x)=xf ( x ) = 2 x + 2 ; \quad g ( x ) = \sqrt { x }

A) {xx\{ x \mid x is any real number }\}
B) {xx1}\{ x \mid x \geq - 1 \}
C) {xx0}\{ x \mid x \geq 0 \}
D) {xx1\{ x \mid x \leq - 1 or x0}x \geq 0 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
52
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=7x+14;g(x)=x+7\mathrm { f } ( \mathrm { x } ) = 7 \mathrm { x } + 14 ; \quad \mathrm { g } ( \mathrm { x } ) = \mathrm { x } + 7

A) {xx\{ x \mid x is any real number }\}
B) {xx9}\{ x \mid x \neq 9 \}
C) {xx7,x2}\{ x \mid x \neq - 7 , x \neq - 2 \}
D) {xx9}\{ x \mid x \neq - 9 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
53
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=2x;g(x)=2x1f ( x ) = \sqrt { 2 - x } ; \quad g ( x ) = | 2 x - 1 |

A) {xx2}\{ x \mid x \leq 2 \}
B) {xx2}\{ x \mid x \geq 2 \}
C) {x12x32}\left\{ x \mid - \frac { 1 } { 2 } \leq x \leq \frac { 3 } { 2 } \right\}
D) all real numbers
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
54
Solve the problem.
Solve the problem.
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
55
Find the domain of the composite function f fgf ^ { \circ } g

- f(x)=2x+7;g(x)=14xf ( x ) = \frac { - 2 } { x + 7 } ; \quad g ( x ) = \frac { - 14 } { x }

A) {xx0,x7,x2}\{ x \mid x \neq 0 , x \neq - 7 , x \neq 2 \}
B) {xx\{ x \mid x is any real number }\}
C) {xx0,x7}\{ x \mid x \neq 0 , x \neq - 7 \}
D) {xx0,x2}\{ x \mid x \neq 0 , x \neq 2 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
56
Solve the problem.
Solve the problem.
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
57
Indicate whether the function is one-to-one.
{(12, -18), (-12, -18), (20, -8)}

A) Yes
B) No
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
58
Solve the problem.
Solve the problem.
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
59
Solve the problem.

-An airline charter service charges a fare per person of $350 plus $20 for each unsold seat. The airplane holds 125 passengers. Let x represent the number of unsold seats and write an expression for the total revenue R for a
Charter flight.

A) R(x)=(125x)(350+20x)R ( x ) = ( 125 - x ) ( 350 + 20 x ) or 43,750+2,150x20x243,750 + 2,150 x - 20 x ^ { 2 }
B) R(x)=125(350+20x)R ( x ) = 125 ( 350 + 20 x ) or 43,750+2,500x43,750 + 2,500 x
C) R(x)=x(350+20x)R ( x ) = x ( 350 + 20 x ) or 350x+20x2350 x + 20 x ^ { 2 }
D) R(x)=(125x)(350+20x)R ( x ) = ( 125 - x ) ( 350 + 20 x ) or 43,750+2,500x20x243,750 + 2,500 x - 20 x ^ { 2 }
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
60
Indicate whether the function is one-to-one.
{(3, -12), (7, 4), (12, -8)}

A) Yes
B) No
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
61
The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.

- f(x)=4xf ( x ) = \frac { 4 } { x }
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \frac { 4 } { x }   </strong> A) Function is its own inverse    B)

A) Function is its own inverse
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \frac { 4 } { x }   </strong> A) Function is its own inverse    B)

B)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \frac { 4 } { x }   </strong> A) Function is its own inverse    B)

Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
62
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes

A) No
B) Yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
63
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes

A) No
B) Yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
64
Find the inverse of the function and state its domain and range .

- {(3,4),(1,5),(0,2),(2,6),(5,7)}\{ ( - 3,4 ) , ( - 1,5 ) , ( 0,2 ) , ( 2,6 ) , ( 5,7 ) \}

A) {(3,4),(1,5),(0,2),(2,6),(5,7)};D={3,1,0,2,5};R={2,4,5,6,7}\{ ( 3,4 ) , ( 1,5 ) , ( 0,2 ) , ( - 2,6 ) , ( - 5,7 ) \} ; \mathrm { D } = \{ 3,1,0 , - 2 , - 5 \} ; \mathrm { R } = \{ 2,4,5,6,7 \}

B) {(3,4),(1,5),(0,2),(2,6),(5,7)};D={3,1,0,2,5};R={7,6,5,4,2}\{ ( 3 , - 4 ) , ( 1 , - 5 ) , ( 0 , - 2 ) , ( - 2 , - 6 ) , ( - 5 , - 7 ) \} ; \mathrm { D } = \{ 3,1,0 , - 2 , - 5 \} ; \mathrm { R } = \{ - 7 , - 6 , - 5 , - 4 , - 2 \}

C) {(4,3),(5,1),(2,0),(6,2),(7,5)}D={2,4,5,6,7};R={3,1,0,2,5}\{ ( 4 , - 3 ) , ( 5 , - 1 ) , ( 2,0 ) , ( 6,2 ) , ( 7,5 ) \} \mathrm { D } = \{ 2,4,5,6,7 \} ; \mathrm { R } = \{ - 3 , - 1,0,2,5 \}

D) {(3,4),(1,5),(0,2),(2,6),(5,7)};D={3,1,0,2,5};R={7,6,5,4,2}\{ ( - 3 , - 4 ) , ( - 1 , - 5 ) , ( 0 , - 2 ) , ( 2 , - 6 ) , ( 5 , - 7 ) \} ; \mathrm { D } = \{ - 3 , - 1,0,2,5 \} ; \mathrm { R } = \{ - 7 , - 6 , - 5 , - 4 , - 2 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
65
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes

A) No
B) Yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
66
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
67
The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.

- f(x)=2xf(x)=2 x

 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f(x)=2 x    </strong> A)    B)

A)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f(x)=2 x    </strong> A)    B)

B)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f(x)=2 x    </strong> A)    B)
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
68
Find the inverse. Determine whether the inverse represents a function.

- {(6,5),(1,6),(3,7),(5,8)}\{ ( 6,5 ) , ( - 1,6 ) , ( - 3,7 ) , ( - 5,8 ) \}

A) {(3,6),(4,10),(5,8),(6,6)};\{ ( 3,6 ) , ( 4,10 ) , ( 5,8 ) , ( 6,6 ) \} ; not a function
B) {(4,3),(3,8),(6,10),(4,5)}\{ ( 4,3 ) , ( 3,8 ) , ( 6,10 ) , ( 4,5 ) \} ; not a function
C) {(4,3),(6,8),(6,8),(4,5)};\{ ( 4,3 ) , ( 6,8 ) , ( 6,8 ) , ( 4,5 ) \} ; a function
D) {(3,6),(4,10),(5,8),(6,6)}\{ ( 3,6 ) , ( 4,10 ) , ( 5,8 ) , ( 6,6 ) \} ; a function
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
69
The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.

- f(x)=x3+4f ( x ) = x ^ { 3 } + 4
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = x ^ { 3 } + 4   </strong> A)    B)

A)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = x ^ { 3 } + 4   </strong> A)    B)

B)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = x ^ { 3 } + 4   </strong> A)    B)
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
70
Find the inverse of the function and state its domain and range .

- {(9,8),(7,7),(5,6),(3,5)}\{ ( 9 , - 8 ) , ( 7 , - 7 ) , ( 5 , - 6 ) , ( 3 , - 5 ) \}

A) {(7,8),(8,5),(9,7),(7,6)};D={(7,8,9};R={(8,57,6}\{ ( - 7 , - 8 ) , ( - 8,5 ) , ( 9,7 ) , ( - 7 , - 6 ) \} ; \mathrm { D } = \{ ( - 7 , - 8,9 \} ; \mathrm { R } = \{ ( - 8,57 , - 6 \}

B) {(8,9),(7,7),(6,5),(5,3)};D={8,7,6,5};R={9,7,5,3}\{ ( - 8,9 ) , ( - 7,7 ) , ( - 6,5 ) , ( - 5,3 ) \} ; \mathrm { D } = \{ - 8 , - 7 , - 6 , - 5 \} ; \mathrm { R } = \{ 9,7,5,3 \}

C) {(7,8),(5,5),(9,5),(7,6)};D={7,5,9};R={8,5,6}\{ ( - 7 , - 8 ) , ( - 5,5 ) , ( 9,5 ) , ( - 7 , - 6 ) \} ; \mathrm { D } = \{ - 7 , - 5,9 \} ; \mathrm { R } = \{ - 8,5 , - 6 \}

D) {(9,18),(7,17),(5,16),(3,15)};D={9,7,5,3},R={18,17,16,15}\left\{ \left( 9 , - \frac { 1 } { 8 } \right) , \left( 7 , - \frac { 1 } { 7 } \right) , \left( 5 , - \frac { 1 } { 6 } \right) , \left( 3 , - \frac { 1 } { 5 } \right) \right\} ; \mathrm { D } = \{ 9,7,5,3 \} , \mathrm { R } = \left\{ - \frac { 1 } { 8 } , - \frac { 1 } { 7 } , - \frac { 1 } { 6 } , - \frac { 1 } { 5 } \right\}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
71
Decide whether or not the functions are inverses of each other.

- f(x)=4x+16,g(x)=14x4f ( x ) = 4 x + 16 , g ( x ) = \frac { 1 } { 4 } x - 4

A) Yes
B) No
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
72
Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of
y = x is also given.

-<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)

A)
<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)

B)
<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)

C)
<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)

D)
<strong>Use the graph of the given one-to-one function to sketch the graph of the inverse function. For convenience, the graph of y = x is also given.  -  </strong> A)    B)    C)    D)
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
73
The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.

- f(x)=x+2f ( x ) = \sqrt { x + 2 }
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \sqrt { x + 2 }   </strong> A)    B)

A)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \sqrt { x + 2 }   </strong> A)    B)

B)
 <strong>The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve.  - f ( x ) = \sqrt { x + 2 }   </strong> A)    B)

Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
74
Indicate whether the function is one-to-one.
{(6, -6), (12, -5), (10, -4), (8, -3)}

A) No
B) Yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
75
Indicate whether the function is one-to-one.
{(5, 4), (6, 4), (7, 3), (8, -9)}

A) Yes
B) No
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
76
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes

A) No
B) Yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
77
Use the horizontal line test to determine whether the function is one-to-one.
<strong>Use the horizontal line test to determine whether the function is one-to-one.  </strong> A) No B) Yes

A) No
B) Yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
78
Decide whether or not the functions are inverses of each other.

- f(x)=8x9,g(x)=x+89f ( x ) = 8 x - 9 , g ( x ) = \frac { x + 8 } { 9 }

A) No
B) Yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
79
Indicate whether the function is one-to-one.
{(7, -3), (3, -7), (-2, 9), (2, -9)}

A) No
B) Yes
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
80
Find the inverse of the function and state its domain and range .

- {(5,3),(3,5),(1,1),(1,1)}\{ ( - 5 , - 3 ) , ( 3,5 ) , ( 1,1 ) , ( - 1 , - 1 ) \}

A) {(3,5),(5,3),(1,1),(1,1)}D={3,5,1,1};R={5,3,1,1}\{ ( - 3 , - 5 ) , ( 5,3 ) , ( 1,1 ) , ( - 1 , - 1 ) \} \mathrm { D } = \{ - 3,5,1 , - 1 \} ; \mathrm { R } = \{ - 5,3,1 , - 1 \}

B) {(5,13),(3,15),(1,1),(1,1)}D={5,3,1,1},R={13,15,1,1}\left\{ \left( - 5 , - \frac { 1 } { 3 } \right) , \left( 3 , \frac { 1 } { 5 } \right) , ( 1,1 ) , ( - 1 , - 1 ) \right\} \mathrm { D } = \{ - 5,3,1 , - 1 \} , \mathrm { R } = \left\{ - \frac { 1 } { 3 } , \frac { 1 } { 5 } , 1 , - 1 \right\}

C) {(1,1),(5,3),(3,3),(1,1)};D={(1,5,3,1};R={1,3,1}\{ ( - 1,1 ) , ( 5,3 ) , ( - 3,3 ) , ( 1 , - 1 ) \} ; \mathrm { D } = \{ ( - 1,5 , - 3,1 \} ; \mathrm { R } = \{ 1,3 , - 1 \}

D) {(1,1),(1,3),(3,5),(1,1)};D={1,1,3,1};R={1,3,5,1}\{ ( - 1,1 ) , ( 1,3 ) , ( - 3 , - 5 ) , ( 1 , - 1 ) \} ; \mathrm { D } = \{ - 1,1 , - 3,1 \} ; \mathrm { R } = \{ 1,3 , - 5 , - 1 \}
Unlock Deck
Unlock for access to all 518 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 518 flashcards in this deck.