Deck 10: Topics In Analytic Geometry

Full screen (f)
exit full mode
Question
Find a polar equation of the conic with its focus at the pole.
 Conics  Eccentrity  Directrix  Parabola e=1x=4\begin{array} { l l l } \text { Conics } & \text { Eccentrity } & \text { Directrix } \\\text { Parabola } & e = 1 & x = - 4\end{array}

A) r=41sinθr = \frac { 4 } { 1 - \sin \theta }
B) r=41cosθr = \frac { 4 } { 1 - \cos \theta }
C) r=41cosθr = \frac { - 4 } { 1 - \cos \theta }
D) r=41+sinθr = \frac { 4 } { 1 + \sin \theta }
E) r=41+cosθr = \frac { 4 } { 1 + \cos \theta }
Use Space or
up arrow
down arrow
to flip the card.
Question
Select the polar equation of the conic for e = 1.0 and identify the conic for the following equation. r=2e1+ecosθr = \frac { 2 e } { 1 + e \cos \theta }

A) r=21+cosθ hyperbola r = \frac { 2 } { 1 + \cos \theta } \Rightarrow \text { hyperbola }
B) r=21+cosθ parabola r = \frac { 2 } { 1 + \cos \theta } \Rightarrow \text { parabola }
C) r=11+cosθ hyperbola r = \frac { 1 } { 1 + \cos \theta } \Rightarrow \text { hyperbola }
D) r=21cosθ parabola r = \frac { 2 } { 1 - \cos \theta } \Rightarrow \text { parabola }
E) r=11cosθ hyperbola r = \frac { 1 } { 1 - \cos \theta } \Rightarrow \text { hyperbola }
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=1y=2\quad\quad\quad e = 1 \quad\quad\quad y = -2

A) r=21cosθr = \frac { - 2 } { 1 - \cos \theta }
B) r=21+cosθr = \frac { 2 } { 1 + \cos \theta }
C) r=21cosθr = \frac { 2 } { 1 - \cos \theta }
D) r=21sinθr = \frac { 2 } { 1 - \sin \theta }
E) r=21+sinθr = \frac { 2 } { 1 + \sin \theta }
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=65x=3\quad\quad\quad e = \frac { 6 } { 5 } \quad\quad\quad x = -3

A) r=1556sinθr = \frac { 15 } { 5 - 6 \sin \theta }
B) r=1556cosθr = \frac { 15 } { 5 - 6 \cos \theta }
C) r=155+6cosθr = \frac { 15 } { 5 + 6 \cos \theta }
D) r=155+6sinθr = \frac { 15 } { 5 + 6 \sin \theta }
E) r=1556cosθr = \frac { - 15 } { 5 - 6 \cos \theta }
Question
Identify the conic and select its correct graph. r=2.92.9cosθr = \frac { 2.9 } { 2.9 - \cos \theta }

A) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  <div style=padding-top: 35px>
B) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  <div style=padding-top: 35px>
C) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  <div style=padding-top: 35px>
D) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  <div style=padding-top: 35px>
E) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  <div style=padding-top: 35px>
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=12y=3\quad\quad\quad e = \frac { 1 } { 2 } \quad\quad\quad y = 3


A) r=32+sinθr = \frac { 3 } { 2 + \sin \theta }
B) r=324sinθr = \frac { 3 } { 2 - 4 \sin \theta }
C) r=42sinθr = \frac { 4 } { 2 - \sin \theta }
D) r=32sinθr = \frac { - 3 } { 2 - \sin \theta }
E) r=32sinθr = \frac { 3 } { 2 - \sin \theta }
Question
Identify the conic and select its correct graph. r=11+2cosθr = \frac { 1 } { - 1 + 2 \cos \theta }

A) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
B) e=2>1e = 2 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
C) e=2>1e = 2 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
D) e=2>1e = 2 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
E) e=2>1e = - 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
Question
Identify the conic and select its correct graph. r=91+cosθr = \frac { 9 } { 1 + \cos \theta }

A) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
B) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
C) e=2e = 2 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
D) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
E) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
Question
Identify the conic and select its correct graph. r=81+sinθr = \frac { 8 } { 1 + \sin \theta }

A) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
B) e=1e = 1 \Rightarrow Parabola <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
C) e=2e = 2 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
D) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
E) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
Question
Select the polar equation of the conic for e = 1.0 and identify the conic for the following equation. r=2e1esinθr = \frac { 2 e } { 1 - e \sin \theta }

A) r=21sinθ parabola r = \frac { 2 } { 1 - \sin \theta } \Rightarrow \text { parabola }
B) r=11+sinθ hyperbola r = \frac { 1 } { 1 + \sin \theta } \Rightarrow \text { hyperbola }
C) r=212sinθ hyperbola r = \frac { 2 } { 1 - 2 \sin \theta } \Rightarrow \text { hyperbola }
D) r=21+sinθ parabola r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { parabola }
E) r=21+sinθ hyperbola r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { hyperbola }
Question
Identify the conic and select its correct graph. r=61cosθr = \frac { 6 } { 1 - \cos \theta }

A) e=1e = 1 \Rightarrow Parabola <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
B) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
C) e=2e = 2 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
D) e=1e = 1 \Rightarrow Parabola <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
E) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola   <div style=padding-top: 35px>
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=2x=1\quad\quad\quad e = 2\quad\quad\quad x = 1

A) r=21+cosθr = \frac { 2 } { 1 + \cos \theta }
B) r=21+2cosθr = \frac { 2 } { 1 + 2 \cos \theta }
C) r=21cosθr = \frac { - 2 } { 1 - \cos \theta }
D) r=21sinθr = \frac { 2 } { 1 - \sin \theta }
E) r=21+2sinθr = \frac { 2 } { 1 + 2 \sin \theta }
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=12y=3\quad\quad\quad e = \frac { 1 } { 2 } \quad\quad\quad y = -3

A) r=42sinθr = \frac { 4 } { 2 - \sin \theta }
B) r=32sinθr = \frac { 3 } { 2 - \sin \theta }
C) r=324sinθr = \frac { 3 } { 2 - 4 \sin \theta }
D) r=324sinθr = \frac { - 3 } { 2 - 4 \sin \theta }
E) r=32+sinθr = \frac { 3 } { 2 + \sin \theta }
Question
Identify the conic and select its correct graph. r=55+sinθr = \frac { 5 } { 5 + \sin \theta }

A) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
B) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
C) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
D) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
E) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
Question
Identify the conic and select its correct graph. r=932cosθr = \frac { 9 } { 3 - 2 \cos \theta }

A) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
B) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
C) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
D) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
E) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   <div style=padding-top: 35px>
Question
Identify the conic and select its correct graph. r=61+sinθr = \frac { 6 } { 1 + \sin \theta }

A) e=2e = 2 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola  <div style=padding-top: 35px>
B) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola  <div style=padding-top: 35px>
C) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola  <div style=padding-top: 35px>
D) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola  <div style=padding-top: 35px>
E) e=1e = 1 \Rightarrow Parabola <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola  <div style=padding-top: 35px>
Question
Select the polar equation of the conic for e = 1.0 and identify the conic for the following equation. r=2e1+esinθr = \frac { 2 e } { 1 + e \sin \theta }

A) r=11+sinθ parabola r = \frac { 1 } { 1 + \sin \theta } \Rightarrow \text { parabola }
B) r=21+sinθ parabola r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { parabola }
C) r=212sinθ ellipse r = \frac { 2 } { 1 - 2 \sin \theta } \Rightarrow \text { ellipse }
D) r=21+sinθ ellipse r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { ellipse }
E) r=21+sinθ parabola r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { parabola } .
Question
Identify the conic and select its correct graph. r=224cosθr = \frac { 2 } { 2 - 4 \cos \theta }

A) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
B) e=2>1e = 2 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
C) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
D) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
E) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
Question
Select the polar equation of the conic for e = 0.75 and identify the conic for the following equation. r=2e1ecosθr = \frac { 2 e } { 1 - e \cos \theta }

A) r=1.510.75cosθ ellipse r = \frac { 1.5 } { 1 - 0.75 \cos \theta } \Rightarrow \text { ellipse }
B) r=1.511.75cosθ parabola r = \frac { 1.5 } { 1 - 1.75 \cos \theta } \Rightarrow \text { parabola }
C) r=0.751+0.75cosθ parabola r = \frac { 0.75 } { 1 + 0.75 \cos \theta } \Rightarrow \text { parabola }
D) r=1.51+cosθ ellipse r = \frac { 1.5 } { 1 + \cos \theta } \Rightarrow \text { ellipse }
E) r=1.751+cosθ parabola r = \frac { 1.75 } { 1 + \cos \theta } \Rightarrow \text { parabola }
Question
Identify the conic and select its correct graph. r=32+6sinθr = \frac { 3 } { 2 + 6 \sin \theta }

A) e=3>1e = 3 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
B) e=3>1e = 3 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
C) e=3>1e = 3 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
D) e=3>1e = 3 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
E) e=3>1e = 3 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Vertex or vertices
Parabola \quad\quad(6,π)( 6 , \pi )

A) 121+cosθ\frac { 12 } { 1 + \cos \theta }
B) 121sinθ\frac { - 12 } { 1 - \sin \theta }
C) 121+sinθ\frac { 12 } { 1 + \sin \theta }
D) 121sinθ\frac { 12 } { 1 - \sin \theta }
E) 121cosθ\frac { 12 } { 1 - \cos \theta }
Question
Select the polar equation of graph.  <strong>Select the polar equation of graph.    </strong> A)  \frac { 8 } { 6 - \sin \theta }  B)  \frac { 8 } { 6 - \cos \theta }  C)  \frac { 1 } { 6 + \cos \theta }  D)  \frac { 8 } { 6 + \sin \theta }  E)  \frac { 8 } { 6 + \cos \theta }  <div style=padding-top: 35px>

A) 86sinθ\frac { 8 } { 6 - \sin \theta }
B) 86cosθ\frac { 8 } { 6 - \cos \theta }
C) 16+cosθ\frac { 1 } { 6 + \cos \theta }
D) 86+sinθ\frac { 8 } { 6 + \sin \theta }
E) 86+cosθ\frac { 8 } { 6 + \cos \theta }
Question
Select the polar equation of graph.  <strong>Select the polar equation of graph.    </strong> A)  \frac { 6 } { 2 - \cos \theta }  B)  \frac { 6 } { 2 - \sin \theta }  C)  \frac { 1 } { 2 - \cos \theta }  D)  \frac { 6 } { 2 + \sin \theta }  E)  \frac { 6 } { 2 + \cos \theta }  <div style=padding-top: 35px>

A) 62cosθ\frac { 6 } { 2 - \cos \theta }
B) 62sinθ\frac { 6 } { 2 - \sin \theta }
C) 12cosθ\frac { 1 } { 2 - \cos \theta }
D) 62+sinθ\frac { 6 } { 2 + \sin \theta }
E) 62+cosθ\frac { 6 } { 2 + \cos \theta }
Question
Select correct graph to graph rotated conic. r=66+sin(θπ/3)r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }

A) <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)  <div style=padding-top: 35px>
B)  <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)  <div style=padding-top: 35px>
C) <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)  <div style=padding-top: 35px>
D)  <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)  <div style=padding-top: 35px>
E) <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)  <div style=padding-top: 35px>
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad\quad Vertex or vertices
Parabola \quad(1,π/2)\quad ( 1 , - \pi / 2 )

A) 21cosθ\frac { 2 } { 1 - \cos \theta }
B) 21+cosθ\frac { 2 } { 1 + \cos \theta }
C) 21sinθ\frac { - 2 } { 1 - \sin \theta }
D) 21sinθ\frac { 2 } { 1 - \sin \theta }
E) 21+sinθ\frac { 2 } { 1 + \sin \theta }
Question
Identify the conic and select its correct graph. r=42+8sinθr = \frac { 4 } { 2 + 8 \sin \theta }

A) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
B) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
C) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
D) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
E) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
Question
Select the polar equation with graph.  <strong>Select the polar equation with graph.    </strong> A)  \overline { 1 - \sin \theta }  B)  1 + \cos \theta  C)  \overline { 1 + \sin \theta }  D)  \frac { - 7 } { 1 - \cos \theta }  E)  \frac { 7 } { 1 - \cos \theta }  <div style=padding-top: 35px>

A) 1sinθ\overline { 1 - \sin \theta }
B) 1+cosθ1 + \cos \theta
C) 1+sinθ\overline { 1 + \sin \theta }
D) 71cosθ\frac { - 7 } { 1 - \cos \theta }
E) 71cosθ\frac { 7 } { 1 - \cos \theta }
Question
Identify the conic and select its correct graph. r=82cosθr = \frac { 8 } { 2 - \cos \theta }

A) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
B) e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
C) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
D) e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
E) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Vertex or vertices
Parabola \quad (10,π/2)\quad ( 10 , \pi / 2 )

A) 201sinθ\frac { 20 } { 1 - \sin \theta }
B) 201+sinθ\frac { 20 } { 1 + \sin \theta }
C) 201cosθ\frac { 20 } { 1 - \cos \theta }
D) 201+cosθ\frac { 20 } { 1 + \cos \theta }
E) 201sinθ\frac { - 20 } { 1 - \sin \theta }
Question
Select correct graph to graph rotated conic. r=42+sin(θ+π/6)r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }

A)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Select correct graph to graph rotated conic. r=21+2cos(θ+2π/3)r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }

A)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
By using a graphing utility select the correct graph of the polar equation.Identify the graph. 1313+16sinθ\frac { 13 } { 13 + 16 \sin \theta }

A)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
B)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
C)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
D)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
E)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
Question
Select the polar equation of graph.  <strong>Select the polar equation of graph.    </strong> A)  \frac { 1 } { 1 - \cos \theta }  B)  \frac { 4 } { 1 - \sin \theta }  C)  \frac { 4 } { 1 + \sin \theta }  D)  \frac { 4 } { 1 - \cos \theta }  E)  \frac { 4 } { 1 + \cos \theta }  <div style=padding-top: 35px>

A) 11cosθ\frac { 1 } { 1 - \cos \theta }
B) 41sinθ\frac { 4 } { 1 - \sin \theta }
C) 41+sinθ\frac { 4 } { 1 + \sin \theta }
D) 41cosθ\frac { 4 } { 1 - \cos \theta }
E) 41+cosθ\frac { 4 } { 1 + \cos \theta }
Question
By using a graphing utility select the correct graph of the polar equation.Identify the graph. 32+8sinθ\frac { - 3 } { 2 + 8 \sin \theta }

A)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=4>1e = 4 > 1 \Rightarrow Hyperbola
B)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=4>1e = 4 > 1 \Rightarrow Hyperbola
C)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=4>1e = 4 > 1 \Rightarrow Hyperbola
D) <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=4>1e = 4 > 1 \Rightarrow Hyperbola
E)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=4>1e = 4 > 1 \Rightarrow Hyperbola
Question
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Vertex or vertices
Parabola \quad\quad ( 4,0 )

A) 81cosθ\frac { 8 } { 1 - \cos \theta }
B) 81sinθ\frac { 8 } { 1 - \sin \theta }
C) 81sinθ\frac { - 8 } { 1 - \sin \theta }
D) 81+sinθ\frac { 8 } { 1 + \sin \theta }
E) 81+cosθ\frac { 8 } { 1 + \cos \theta }
Question
Select correct graph to graph rotated conic. r=61cos(θπ/4)r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }

A)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Identify the conic and select its correct graph. r=22+3sinθr = \frac { 2 } { 2 + 3 \sin \theta }

A) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
B) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
C) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
D) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
E) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   <div style=padding-top: 35px>
Question
Select the polar equation with graph.  <strong>Select the polar equation with graph.   </strong> A)  \frac { 3 } { 1 - 2 \sin \theta }  B)  \frac { 1 } { 1 - 2 \sin \theta }  C)  \frac { 3 } { 1 + 2 \cos \theta }  D)  \frac { 3 } { 1 + 2 \sin \theta }  E)  \frac { 3 } { 1 - 2 \cos \theta }  <div style=padding-top: 35px>

A) 312sinθ\frac { 3 } { 1 - 2 \sin \theta }
B) 112sinθ\frac { 1 } { 1 - 2 \sin \theta }
C) 31+2cosθ\frac { 3 } { 1 + 2 \cos \theta }
D) 31+2sinθ\frac { 3 } { 1 + 2 \sin \theta }
E) 312cosθ\frac { 3 } { 1 - 2 \cos \theta }
Question
By using a graphing utility select the correct graph of the polar equation. 31sinθ\frac { - 3 } { 1 - \sin \theta }

A) <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }  <div style=padding-top: 35px>  e=1 Parabola e = 1 \Rightarrow \text { Parabola }
B) <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }  <div style=padding-top: 35px>  e=1 Parabola e = 1 \Rightarrow \text { Parabola }
C) <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }  <div style=padding-top: 35px>  e=1 Parabola e = 1 \Rightarrow \text { Parabola }
D)  <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }  <div style=padding-top: 35px>  e=1 Parabola e = 1 \Rightarrow \text { Parabola }
E)  <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }  <div style=padding-top: 35px>  e=1 Parabola e = 1 \Rightarrow \text { Parabola }
Question
Select the polar equation of graph.  <strong>Select the polar equation of graph.   </strong> A)  \frac { 2 } { 1 - 3 \sin \theta }  B)  \frac { 1 } { 1 + 3 \sin \theta }  C)  \frac { 2 } { 1 + 3 \cos \theta }  D)  \frac { 2 } { 1 + 3 \sin \theta }  E)  \frac { 2 } { 1 - 3 \cos \theta }  <div style=padding-top: 35px>

A) 213sinθ\frac { 2 } { 1 - 3 \sin \theta }
B) 11+3sinθ\frac { 1 } { 1 + 3 \sin \theta }
C) 21+3cosθ\frac { 2 } { 1 + 3 \cos \theta }
D) 21+3sinθ\frac { 2 } { 1 + 3 \sin \theta }
E) 213cosθ\frac { 2 } { 1 - 3 \cos \theta }
Question
A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour.If this velocity is multiplied by 2\sqrt { 2 } , the satellite will have the minimum velocity necessary to escape Earth's gravity and will follow a parabolic path with the center of Earth as the focus.(Hints: The radius of Earth is 4000 miles.)  <strong>A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour.If this velocity is multiplied by  \sqrt { 2 }  , the satellite will have the minimum velocity necessary to escape Earth's gravity and will follow a parabolic path with the center of Earth as the focus.(Hints: The radius of Earth is 4000 miles.)    Find the distance between the surface of the Earth and the satellite when  \theta = 50 ^ { \circ }  . </strong> A)Distance between surface of Earth and satellite:4496 miles B)Distance between surface of Earth and satellite:4322 miles C)Distance between surface of Earth and satellite:1286 miles D)Distance between surface of Earth and satellite:643 miles E)Distance between surface of Earth and satellite:1492 miles <div style=padding-top: 35px>  Find the distance between the surface of the Earth and the satellite when θ=50\theta = 50 ^ { \circ } .

A)Distance between surface of Earth and satellite:4496 miles
B)Distance between surface of Earth and satellite:4322 miles
C)Distance between surface of Earth and satellite:1286 miles
D)Distance between surface of Earth and satellite:643 miles
E)Distance between surface of Earth and satellite:1492 miles
Question
By using a graphing utility select the correct graph of the polar equation.Identify the graph. 122cosθ\frac { 12 } { 2 - \cos \theta }

A) <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse <div style=padding-top: 35px>  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
B)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse <div style=padding-top: 35px>  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
C)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse <div style=padding-top: 35px>  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
D)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse <div style=padding-top: 35px>  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
E)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse <div style=padding-top: 35px>  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4(1cosθ)r = 4 ( 1 - \cos \theta )

A)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
B)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
C)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
D)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
E)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    <div style=padding-top: 35px>
Question
Find the polar equation of the planet's orbit and the perihelion and aphelion distances.
Earth a=95.956×106a = 95.956 \times 10 ^ { 6 } miles e=0.0167e = 0.0167

A) 0.9593×10810.0167cosθ\frac { 0.9593 \times 10 ^ { 8 } } { 1 - 0.0167 \cos \theta } Perihelion distance: r=9.4354×108r = 9.4354 \times 10 ^ { 8 } Aphelion distance: r=9.7558×108r = 9.7558 \times 10 ^ { 8 }
B) 0.9593×10810.0167sinθ\frac { 0.9593 \times 10 ^ { 8 } } { 1 - 0.0167 \sin \theta } Perihelion distance: r=9.7558×108r = 9.7558 \times 10 ^ { 8 } Aphelion distance: r=9.4354×108r = 9.4354 \times 10 ^ { 8 }
C) 0.0167×1081+0.9593sinθ\frac { 0.0167 \times 10 ^ { 8 } } { 1 + 0.9593 \sin \theta } Perihelion distance: r=9.4354×108r = 9.4354 \times 10 ^ { 8 } Aphelion distance: r=9.7558×108r = 9.7558 \times 10 ^ { 8 }
D) 0.9593×10710.0167cosθ\frac { 0.9593 \times 10 ^ { 7 } } { 1 - 0.0167 \cos \theta } Perihelion distance: r=9.7558×108r = 9.7558 \times 10 ^ { 8 } Aphelion distance: r=9.4354×108r = 9.4354 \times 10 ^ { 8 }
E) 0.9593×1071+0.0167cosθ\frac { 0.9593 \times 10 ^ { 7 } } { 1 + 0.0167 \cos \theta } Perihelion distance: r=9.4354×107r = 9.4354 \times 10 ^ { 7 } Aphelion distance: r=9.7558×107r = 9.7558 \times 10 ^ { 7 }
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=3π7r = \frac { 3 \pi } { 7 }

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }    <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }    <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }    <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }    <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }    <div style=padding-top: 35px>
Question
The Roman Coliseum is an elliptical amphitheater measuring approximately 188 meters long and 156 meters wide.Find an equation to model the coliseum that is of the form x2a2+y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 .

A) x26084y28836=1\frac { x ^ { 2 } } { 6084 } - \frac { y ^ { 2 } } { 8836 } = 1
B) x28836+y26084=1\frac { x ^ { 2 } } { 8836 } + \frac { y ^ { 2 } } { 6084 } = 1
C) x28836+y26084=0\frac { x ^ { 2 } } { 8836 } + \frac { y ^ { 2 } } { 6084 } = 0
D) x21882+y21562=1\frac { x ^ { 2 } } { 188 ^ { 2 } } + \frac { y ^ { 2 } } { 156 ^ { 2 } } = 1
E) x26084+y28836=0\frac { x ^ { 2 } } { 6084 } + \frac { y ^ { 2 } } { 8836 } = 0
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=1r = 1

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=(1+sinθ)r = ( 1 + \sin \theta )

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=π4r = \frac { \pi } { 4 }

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4+6sinθr = 4 + 6 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     <div style=padding-top: 35px>
Question
The Halley's Comet has an elliptical orbit with an eccentricity of e0.907e \approx 0.907 .The length of the major axis of the orbit is approximately 35.1 astronomical units.Find a polar equation for the orbit.How close does the comet come to the sun

A) 1.1391cosθ\frac { 1.139 } { 1 - \cos \theta } Closest point to the sun is \approx 0.579 astronomical unit.
B) 1.1391+0.967sinθ\frac { 1.139 } { 1 + 0.967 \sin \theta } Closest point to the sun is \approx 0.579 astronomical unit.
C) 1.1391+1.967cosθ\frac { 1.139 } { 1 + 1.967 \cos \theta } Closest point to the sun is \approx 0.579 astronomical unit.
D) 1.13911.967sinθ\frac { 1.139 } { 1 - 1.967 \sin \theta } Closest point to the sun is \approx 0.579 astronomical unit.
E) 1+1.139sinθ\overline { 1 + 1.139 \sin \theta } Closest point to the sun is \approx 0.579 astronomical unit.
Question
Use the following results the polar equation of the hyperbolla x2a2y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 is r2=b21e2cos2θr ^ { 2 } = \frac { - b ^ { 2 } } { 1 - e ^ { 2 } \cos ^ { 2 } \theta } to write the polar form of the equation of the conic x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1 .

A) r2=14416cos2θ+25r ^ { 2 } = \frac { 144 } { 16 \cos ^ { 2 } \theta + 25 }
B) r2=14425cos2θ16r ^ { 2 } = \frac { 144 } { 25 \cos ^ { 2 } \theta - 16 }
C) r2=14425cos2θ+16r ^ { 2 } = \frac { 144 } { 25 \cos ^ { 2 } \theta + 16 }
D) r2=14425cos2θ+16r ^ { 2 } = \frac { - 144 } { 25 \cos ^ { 2 } \theta + 16 }
E) r2=1441625cos2θr ^ { 2 } = \frac { 144 } { 16 - 25 \cos ^ { 2 } \theta }
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=2r = 2

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     <div style=padding-top: 35px>
Question
By using a graphing utility select the correct graph of the polar equation.Identify the graph. 412cosθ\frac { 4 } { 1 - 2 \cos \theta }

A)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=2>1e = 2 > 1 \Rightarrow Hyperbola
B) <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=2>1e = 2 > 1 \Rightarrow Hyperbola
C)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=2>1e = 2 > 1 \Rightarrow Hyperbola
D) <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=2>1e = 2 > 1 \Rightarrow Hyperbola
E)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola <div style=padding-top: 35px>  e=2>1e = 2 > 1 \Rightarrow Hyperbola
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=2(1sinθ)r = 2 ( 1 - \sin \theta )

A)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
B)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
C)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
D)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
E)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
γ=(1+cosθ)\gamma = ( 1 + \cos \theta )

A)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    <div style=padding-top: 35px>
B)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    <div style=padding-top: 35px>
C)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    <div style=padding-top: 35px>
D)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    <div style=padding-top: 35px>
E)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    <div style=padding-top: 35px>
Question
The Comet Borrelly has an elliptical orbit with an eccentricity of e0.624e \approx 0.624 .The length of the major axis of the orbit is approximately 5.83 astronomical units.Find a polar equation for the orbit.How close does the comet come to the sun

A) 1.78011.624sinθ\frac { 1.780 } { 1 - 1.624 \sin \theta } Closest point to the sun is \approx 1.096 astronomical unit.
B) 1.7801+cosθ\frac { 1.780 } { 1 + \cos \theta } Closest point to the sun is \approx 1.096 astronomical unit.
C) 0.6241+1.780sinθ\frac { 0.624 } { 1 + 1.780 \sin \theta } Closest point to the sun is \approx 1.096 astronomical unit.
D) 1.7801+0.624sinθ\frac { 1.780 } { 1 + 0.624 \sin \theta } Closest point to the sun is \approx 1.096 astronomical unit.
E) 11.624cosθ\overline { 1 - 1.624 \cos \theta } Closest point to the sun is \approx 1.096 astronomical unit.
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=5cosθr = 5 \cos \theta

A)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5   <div style=padding-top: 35px>
B)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5   <div style=padding-top: 35px>
C)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5   <div style=padding-top: 35px>
D)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5   <div style=padding-top: 35px>
E)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5   <div style=padding-top: 35px>
Question
Use the following results the polar equation of the ellipse x2a2+y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 is r2=b21e2cos2θr ^ { 2 } = \frac { b ^ { 2 } } { 1 - e ^ { 2 } \cos ^ { 2 } \theta } to write the polar form of the equation of the conic x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1 .

A) r2=25259cos2θr ^ { 2 } = \frac { 25 } { 25 - 9 \cos ^ { 2 } \theta }
B) r2=400259cos2θr ^ { 2 } = \frac { 400 } { 25 - 9 \cos ^ { 2 } \theta }
C) r2=40025+9cos2θr ^ { 2 } = \frac { 400 } { 25 + 9 \cos ^ { 2 } \theta }
D) r2=4009+25cos2θr ^ { 2 } = \frac { 400 } { 9 + 25 \cos ^ { 2 } \theta }
E) r2=400925cos2θr ^ { 2 } = \frac { 400 } { 9 - 25 \cos ^ { 2 } \theta }
Question
Consider the polar equation: r=810.4cosθr = \frac { 8 } { 1 - 0.4 \cos \theta }
Identify the conic without graphing the equation.

A) e<1e < 1 , the conic is a parabola.
B) e<1e < 1 , the conic is a circle.
C) e<1e < 1 , the conic is a hyperbola.
D) e<1e < 1 , the conic is an ellipse.
E)None of the above
Question
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case. 0θπ0 \leq \theta \leq \pi

A) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle <div style=padding-top: 35px>  Upper half of circle
B) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle <div style=padding-top: 35px>  Upper half of circle
C)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle <div style=padding-top: 35px>  Upper half of circle
D)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle <div style=padding-top: 35px>  Upper half of circle
E) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle <div style=padding-top: 35px>  Upper half of circle
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4sinθ2cosθr = \frac { 4 } { \sin \theta - 2 \cos \theta }

A) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
B) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
C) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
D) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
E) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=5cos2θr = 5 \cos 2 \theta

A)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     <div style=padding-top: 35px>
Question
Select the graph of the equation. r=4secθr = - 4 \sec \theta

A) <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)  <div style=padding-top: 35px>
B)  <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)  <div style=padding-top: 35px>
C)  <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)  <div style=padding-top: 35px>
D)  <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)  <div style=padding-top: 35px>
E) <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)  <div style=padding-top: 35px>
Question
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case. π2θπ2- \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }

A)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle <div style=padding-top: 35px>  Entire circle
B) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle <div style=padding-top: 35px>  Entire circle
C)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle <div style=padding-top: 35px>  Entire circle
D)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle <div style=padding-top: 35px>  Entire circle
E)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle <div style=padding-top: 35px>  Entire circle
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=43sinθr = 4 - 3 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }    <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }    <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }    <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }    <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }    <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=35sinθr = 3 - 5 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r2=9sinθr ^ { 2 } = 9 \sin \theta

A) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     <div style=padding-top: 35px>
B) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     <div style=padding-top: 35px>
C) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     <div style=padding-top: 35px>
D) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     <div style=padding-top: 35px>
E) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=82sinθ3cosθr = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }

A) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
B) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
C) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
D) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
E) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=45cosθr = 4 - 5 \cos \theta

A)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     <div style=padding-top: 35px>
B)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     <div style=padding-top: 35px>
C)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     <div style=padding-top: 35px>
D)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     <div style=padding-top: 35px>
E)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     <div style=padding-top: 35px>
Question
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case. π2θπ\frac { \pi } { 2 } \leq \theta \leq \pi

A)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle <div style=padding-top: 35px>  Lower half of circle
B) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle <div style=padding-top: 35px>  Lower half of circle
C) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle <div style=padding-top: 35px>  Lower half of circle
D)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle <div style=padding-top: 35px>  Lower half of circle
E) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle <div style=padding-top: 35px>  Lower half of circle
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=secθr = \sec \theta

A) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
B) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
C) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
D) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
E) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=46cosθr = 4 - 6 \cos \theta

A)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis r=10 when θ=πr=0 when cosθ=46\begin{array} { l } | r | = 10 \text { when } \theta = \pi \\r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=cos3θr = \cos 3 \theta

A)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r2=4cos2θr ^ { 2 } = 4 \cos 2 \theta

A)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   <div style=padding-top: 35px>
B)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   <div style=padding-top: 35px>
C)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   <div style=padding-top: 35px>
D)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   <div style=padding-top: 35px>
E)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=cscθr = \csc \theta

A) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
B) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
C) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
D) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
E) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }    <div style=padding-top: 35px>
Question
Select the graph of r=4cosθr = 4 \cos \theta over the interval.Describe the part of the graph obtained in this case. π4θ3π4\frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }

A) <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle <div style=padding-top: 35px>  Left half of circle
B) <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle <div style=padding-top: 35px>  Left half of circle
C) <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle <div style=padding-top: 35px>  Left half of circle
D)  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle <div style=padding-top: 35px>  Left half of circle
E)  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle <div style=padding-top: 35px>  Left half of circle
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4sin(2θ)r = 4 \sin ( 2 \theta )

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=3+7cosθr = 3 + 7 \cos \theta

A)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     <div style=padding-top: 35px>
B)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     <div style=padding-top: 35px>
C)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     <div style=padding-top: 35px>
D)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     <div style=padding-top: 35px>
E)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     <div style=padding-top: 35px>
Question
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4sin3θr = 4 \sin 3 \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     <div style=padding-top: 35px>
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     <div style=padding-top: 35px>
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     <div style=padding-top: 35px>
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     <div style=padding-top: 35px>
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/556
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Topics In Analytic Geometry
1
Find a polar equation of the conic with its focus at the pole.
 Conics  Eccentrity  Directrix  Parabola e=1x=4\begin{array} { l l l } \text { Conics } & \text { Eccentrity } & \text { Directrix } \\\text { Parabola } & e = 1 & x = - 4\end{array}

A) r=41sinθr = \frac { 4 } { 1 - \sin \theta }
B) r=41cosθr = \frac { 4 } { 1 - \cos \theta }
C) r=41cosθr = \frac { - 4 } { 1 - \cos \theta }
D) r=41+sinθr = \frac { 4 } { 1 + \sin \theta }
E) r=41+cosθr = \frac { 4 } { 1 + \cos \theta }
r=41cosθr = \frac { 4 } { 1 - \cos \theta }
2
Select the polar equation of the conic for e = 1.0 and identify the conic for the following equation. r=2e1+ecosθr = \frac { 2 e } { 1 + e \cos \theta }

A) r=21+cosθ hyperbola r = \frac { 2 } { 1 + \cos \theta } \Rightarrow \text { hyperbola }
B) r=21+cosθ parabola r = \frac { 2 } { 1 + \cos \theta } \Rightarrow \text { parabola }
C) r=11+cosθ hyperbola r = \frac { 1 } { 1 + \cos \theta } \Rightarrow \text { hyperbola }
D) r=21cosθ parabola r = \frac { 2 } { 1 - \cos \theta } \Rightarrow \text { parabola }
E) r=11cosθ hyperbola r = \frac { 1 } { 1 - \cos \theta } \Rightarrow \text { hyperbola }
r=21+cosθ parabola r = \frac { 2 } { 1 + \cos \theta } \Rightarrow \text { parabola }
3
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=1y=2\quad\quad\quad e = 1 \quad\quad\quad y = -2

A) r=21cosθr = \frac { - 2 } { 1 - \cos \theta }
B) r=21+cosθr = \frac { 2 } { 1 + \cos \theta }
C) r=21cosθr = \frac { 2 } { 1 - \cos \theta }
D) r=21sinθr = \frac { 2 } { 1 - \sin \theta }
E) r=21+sinθr = \frac { 2 } { 1 + \sin \theta }
r=21sinθr = \frac { 2 } { 1 - \sin \theta }
4
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=65x=3\quad\quad\quad e = \frac { 6 } { 5 } \quad\quad\quad x = -3

A) r=1556sinθr = \frac { 15 } { 5 - 6 \sin \theta }
B) r=1556cosθr = \frac { 15 } { 5 - 6 \cos \theta }
C) r=155+6cosθr = \frac { 15 } { 5 + 6 \cos \theta }
D) r=155+6sinθr = \frac { 15 } { 5 + 6 \sin \theta }
E) r=1556cosθr = \frac { - 15 } { 5 - 6 \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
5
Identify the conic and select its correct graph. r=2.92.9cosθr = \frac { 2.9 } { 2.9 - \cos \theta }

A) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse
B) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse
C) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse
D) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse
E) e=12.9<1e = \frac { 1 } { 2.9 } < 1 \Rightarrow Ellipse <strong>Identify the conic and select its correct graph.   r = \frac { 2.9 } { 2.9 - \cos \theta }  </strong> A)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse  D)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 2.9 } < 1 \Rightarrow  Ellipse
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
6
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=12y=3\quad\quad\quad e = \frac { 1 } { 2 } \quad\quad\quad y = 3


A) r=32+sinθr = \frac { 3 } { 2 + \sin \theta }
B) r=324sinθr = \frac { 3 } { 2 - 4 \sin \theta }
C) r=42sinθr = \frac { 4 } { 2 - \sin \theta }
D) r=32sinθr = \frac { - 3 } { 2 - \sin \theta }
E) r=32sinθr = \frac { 3 } { 2 - \sin \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
7
Identify the conic and select its correct graph. r=11+2cosθr = \frac { 1 } { - 1 + 2 \cos \theta }

A) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola
B) e=2>1e = 2 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola
C) e=2>1e = 2 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola
D) e=2>1e = 2 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola
E) e=2>1e = - 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.  r = \frac { 1 } { - 1 + 2 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola  D)  e = 2 > 1 \Rightarrow  Hyperbola  E)  e = - 2 > 1 \Rightarrow  Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
8
Identify the conic and select its correct graph. r=91+cosθr = \frac { 9 } { 1 + \cos \theta }

A) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
B) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
C) e=2e = 2 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
D) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
E) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 1 + \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
9
Identify the conic and select its correct graph. r=81+sinθr = \frac { 8 } { 1 + \sin \theta }

A) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
B) e=1e = 1 \Rightarrow Parabola <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
C) e=2e = 2 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
D) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
E) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 1 + \sin \theta }  </strong> A)  e = 1 \Rightarrow  Parabola   B)  e = 1 \Rightarrow  Parabola  C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
10
Select the polar equation of the conic for e = 1.0 and identify the conic for the following equation. r=2e1esinθr = \frac { 2 e } { 1 - e \sin \theta }

A) r=21sinθ parabola r = \frac { 2 } { 1 - \sin \theta } \Rightarrow \text { parabola }
B) r=11+sinθ hyperbola r = \frac { 1 } { 1 + \sin \theta } \Rightarrow \text { hyperbola }
C) r=212sinθ hyperbola r = \frac { 2 } { 1 - 2 \sin \theta } \Rightarrow \text { hyperbola }
D) r=21+sinθ parabola r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { parabola }
E) r=21+sinθ hyperbola r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { hyperbola }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
11
Identify the conic and select its correct graph. r=61cosθr = \frac { 6 } { 1 - \cos \theta }

A) e=1e = 1 \Rightarrow Parabola <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola
B) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola
C) e=2e = 2 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola
D) e=1e = 1 \Rightarrow Parabola <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola
E) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.   r = \frac { 6 } { 1 - \cos \theta }  </strong> A)  e = 1 \Rightarrow  Parabola  B)  e = 1 \Rightarrow  Parabola   C)  e = 2 \Rightarrow  Hyperbola   D)  e = 1 \Rightarrow  Parabola  E)  e = 1 \Rightarrow  Parabola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
12
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=2x=1\quad\quad\quad e = 2\quad\quad\quad x = 1

A) r=21+cosθr = \frac { 2 } { 1 + \cos \theta }
B) r=21+2cosθr = \frac { 2 } { 1 + 2 \cos \theta }
C) r=21cosθr = \frac { - 2 } { 1 - \cos \theta }
D) r=21sinθr = \frac { 2 } { 1 - \sin \theta }
E) r=21+2sinθr = \frac { 2 } { 1 + 2 \sin \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
13
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Eccentricity \quad\quad Directrix
Ellipse e=12y=3\quad\quad\quad e = \frac { 1 } { 2 } \quad\quad\quad y = -3

A) r=42sinθr = \frac { 4 } { 2 - \sin \theta }
B) r=32sinθr = \frac { 3 } { 2 - \sin \theta }
C) r=324sinθr = \frac { 3 } { 2 - 4 \sin \theta }
D) r=324sinθr = \frac { - 3 } { 2 - 4 \sin \theta }
E) r=32+sinθr = \frac { 3 } { 2 + \sin \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
14
Identify the conic and select its correct graph. r=55+sinθr = \frac { 5 } { 5 + \sin \theta }

A) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse
B) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse
C) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse
D) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse
E) e=15<1e = \frac { 1 } { 5 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 5 } { 5 + \sin \theta }  </strong> A)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse   E)  e = \frac { 1 } { 5 } < 1 \Rightarrow  Ellipse
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
15
Identify the conic and select its correct graph. r=932cosθr = \frac { 9 } { 3 - 2 \cos \theta }

A) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse
B) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse
C) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse
D) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse
E) e=23<1e = \frac { 2 } { 3 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 9 } { 3 - 2 \cos \theta }  </strong> A)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   B)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   C)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse   D)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse  E)  e = \frac { 2 } { 3 } < 1 \Rightarrow  Ellipse
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
16
Identify the conic and select its correct graph. r=61+sinθr = \frac { 6 } { 1 + \sin \theta }

A) e=2e = 2 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
B) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
C) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
D) e=1e = 1 \Rightarrow Parabola  <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
E) e=1e = 1 \Rightarrow Parabola <strong>Identify the conic and select its correct graph.  r = \frac { 6 } { 1 + \sin \theta }  </strong> A)  e = 2 \Rightarrow  Hyperbola   B)  e = 1 \Rightarrow  Parabola   C)  e = 1 \Rightarrow  Parabola   D)  e = 1 \Rightarrow  Parabola   E)  e = 1 \Rightarrow  Parabola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
17
Select the polar equation of the conic for e = 1.0 and identify the conic for the following equation. r=2e1+esinθr = \frac { 2 e } { 1 + e \sin \theta }

A) r=11+sinθ parabola r = \frac { 1 } { 1 + \sin \theta } \Rightarrow \text { parabola }
B) r=21+sinθ parabola r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { parabola }
C) r=212sinθ ellipse r = \frac { 2 } { 1 - 2 \sin \theta } \Rightarrow \text { ellipse }
D) r=21+sinθ ellipse r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { ellipse }
E) r=21+sinθ parabola r = \frac { 2 } { 1 + \sin \theta } \Rightarrow \text { parabola } .
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
18
Identify the conic and select its correct graph. r=224cosθr = \frac { 2 } { 2 - 4 \cos \theta }

A) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola
B) e=2>1e = 2 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola
C) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola
D) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola
E) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 - 4 \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = 2 > 1 \Rightarrow  Hyperbola  C)  e = 2 > 1 \Rightarrow  Hyperbola   D)  e = 2 > 1 \Rightarrow  Hyperbola   E)  e = 2 > 1 \Rightarrow  Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
19
Select the polar equation of the conic for e = 0.75 and identify the conic for the following equation. r=2e1ecosθr = \frac { 2 e } { 1 - e \cos \theta }

A) r=1.510.75cosθ ellipse r = \frac { 1.5 } { 1 - 0.75 \cos \theta } \Rightarrow \text { ellipse }
B) r=1.511.75cosθ parabola r = \frac { 1.5 } { 1 - 1.75 \cos \theta } \Rightarrow \text { parabola }
C) r=0.751+0.75cosθ parabola r = \frac { 0.75 } { 1 + 0.75 \cos \theta } \Rightarrow \text { parabola }
D) r=1.51+cosθ ellipse r = \frac { 1.5 } { 1 + \cos \theta } \Rightarrow \text { ellipse }
E) r=1.751+cosθ parabola r = \frac { 1.75 } { 1 + \cos \theta } \Rightarrow \text { parabola }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
20
Identify the conic and select its correct graph. r=32+6sinθr = \frac { 3 } { 2 + 6 \sin \theta }

A) e=3>1e = 3 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola
B) e=3>1e = 3 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola
C) e=3>1e = 3 > 1 \Rightarrow Hyperbola <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola
D) e=3>1e = 3 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola
E) e=3>1e = 3 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 3 } { 2 + 6 \sin \theta }  </strong> A)  e = 3 > 1 \Rightarrow  Hyperbola   B)  e = 3 > 1 \Rightarrow  Hyperbola   C)  e = 3 > 1 \Rightarrow  Hyperbola  D)  e = 3 > 1 \Rightarrow  Hyperbola   E)  e = 3 > 1 \Rightarrow  Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
21
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Vertex or vertices
Parabola \quad\quad(6,π)( 6 , \pi )

A) 121+cosθ\frac { 12 } { 1 + \cos \theta }
B) 121sinθ\frac { - 12 } { 1 - \sin \theta }
C) 121+sinθ\frac { 12 } { 1 + \sin \theta }
D) 121sinθ\frac { 12 } { 1 - \sin \theta }
E) 121cosθ\frac { 12 } { 1 - \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
22
Select the polar equation of graph.  <strong>Select the polar equation of graph.    </strong> A)  \frac { 8 } { 6 - \sin \theta }  B)  \frac { 8 } { 6 - \cos \theta }  C)  \frac { 1 } { 6 + \cos \theta }  D)  \frac { 8 } { 6 + \sin \theta }  E)  \frac { 8 } { 6 + \cos \theta }

A) 86sinθ\frac { 8 } { 6 - \sin \theta }
B) 86cosθ\frac { 8 } { 6 - \cos \theta }
C) 16+cosθ\frac { 1 } { 6 + \cos \theta }
D) 86+sinθ\frac { 8 } { 6 + \sin \theta }
E) 86+cosθ\frac { 8 } { 6 + \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
23
Select the polar equation of graph.  <strong>Select the polar equation of graph.    </strong> A)  \frac { 6 } { 2 - \cos \theta }  B)  \frac { 6 } { 2 - \sin \theta }  C)  \frac { 1 } { 2 - \cos \theta }  D)  \frac { 6 } { 2 + \sin \theta }  E)  \frac { 6 } { 2 + \cos \theta }

A) 62cosθ\frac { 6 } { 2 - \cos \theta }
B) 62sinθ\frac { 6 } { 2 - \sin \theta }
C) 12cosθ\frac { 1 } { 2 - \cos \theta }
D) 62+sinθ\frac { 6 } { 2 + \sin \theta }
E) 62+cosθ\frac { 6 } { 2 + \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
24
Select correct graph to graph rotated conic. r=66+sin(θπ/3)r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }

A) <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)
B)  <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)
C) <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)
D)  <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)
E) <strong>Select correct graph to graph rotated conic.   r = \frac { 6 } { 6 + \sin ( \theta - \pi / 3 ) }  </strong> A)  B)   C)  D)   E)
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
25
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad\quad Vertex or vertices
Parabola \quad(1,π/2)\quad ( 1 , - \pi / 2 )

A) 21cosθ\frac { 2 } { 1 - \cos \theta }
B) 21+cosθ\frac { 2 } { 1 + \cos \theta }
C) 21sinθ\frac { - 2 } { 1 - \sin \theta }
D) 21sinθ\frac { 2 } { 1 - \sin \theta }
E) 21+sinθ\frac { 2 } { 1 + \sin \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
26
Identify the conic and select its correct graph. r=42+8sinθr = \frac { 4 } { 2 + 8 \sin \theta }

A) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola
B) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola
C) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola
D) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola
E) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 4 } { 2 + 8 \sin \theta }  </strong> A)  e = 4 > 1 \Rightarrow  Hyperbola   B)  e = 4 > 1 \Rightarrow  Hyperbola   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = 4 > 1 \Rightarrow  Hyperbola   E)  e = 4 > 1 \Rightarrow  Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
27
Select the polar equation with graph.  <strong>Select the polar equation with graph.    </strong> A)  \overline { 1 - \sin \theta }  B)  1 + \cos \theta  C)  \overline { 1 + \sin \theta }  D)  \frac { - 7 } { 1 - \cos \theta }  E)  \frac { 7 } { 1 - \cos \theta }

A) 1sinθ\overline { 1 - \sin \theta }
B) 1+cosθ1 + \cos \theta
C) 1+sinθ\overline { 1 + \sin \theta }
D) 71cosθ\frac { - 7 } { 1 - \cos \theta }
E) 71cosθ\frac { 7 } { 1 - \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
28
Identify the conic and select its correct graph. r=82cosθr = \frac { 8 } { 2 - \cos \theta }

A) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola
B) e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola
C) e=4>1e = 4 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola
D) e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola
E) e=2>1e = 2 > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 8 } { 2 - \cos \theta }  </strong> A)  e = 2 > 1 \Rightarrow  Hyperbola   B)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   C)  e = 4 > 1 \Rightarrow  Hyperbola   D)  e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse   E)  e = 2 > 1 \Rightarrow  Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
29
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Vertex or vertices
Parabola \quad (10,π/2)\quad ( 10 , \pi / 2 )

A) 201sinθ\frac { 20 } { 1 - \sin \theta }
B) 201+sinθ\frac { 20 } { 1 + \sin \theta }
C) 201cosθ\frac { 20 } { 1 - \cos \theta }
D) 201+cosθ\frac { 20 } { 1 + \cos \theta }
E) 201sinθ\frac { - 20 } { 1 - \sin \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
30
Select correct graph to graph rotated conic. r=42+sin(θ+π/6)r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }

A)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)
B)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)
C)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)
D)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)
E)  <strong>Select correct graph to graph rotated conic.   r = \frac { 4 } { 2 + \sin ( \theta + \pi / 6 ) }  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
31
Select correct graph to graph rotated conic. r=21+2cos(θ+2π/3)r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }

A)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)
B)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)
C)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)
D)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)
E)  <strong>Select correct graph to graph rotated conic.   r = \frac { 2 } { - 1 + 2 \cos ( \theta + 2 \pi / 3 ) }  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
32
By using a graphing utility select the correct graph of the polar equation.Identify the graph. 1313+16sinθ\frac { 13 } { 13 + 16 \sin \theta }

A)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
B)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
C)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
D)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
E)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 13 } { 13 + 16 \sin \theta }  </strong> A)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola B)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola C)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola D)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola E)    e =   \frac { 16 } { 13 }   > 1 \Rightarrow  Hyperbola  e=e = 1613\frac { 16 } { 13 } >1> 1 \Rightarrow Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
33
Select the polar equation of graph.  <strong>Select the polar equation of graph.    </strong> A)  \frac { 1 } { 1 - \cos \theta }  B)  \frac { 4 } { 1 - \sin \theta }  C)  \frac { 4 } { 1 + \sin \theta }  D)  \frac { 4 } { 1 - \cos \theta }  E)  \frac { 4 } { 1 + \cos \theta }

A) 11cosθ\frac { 1 } { 1 - \cos \theta }
B) 41sinθ\frac { 4 } { 1 - \sin \theta }
C) 41+sinθ\frac { 4 } { 1 + \sin \theta }
D) 41cosθ\frac { 4 } { 1 - \cos \theta }
E) 41+cosθ\frac { 4 } { 1 + \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
34
By using a graphing utility select the correct graph of the polar equation.Identify the graph. 32+8sinθ\frac { - 3 } { 2 + 8 \sin \theta }

A)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola  e=4>1e = 4 > 1 \Rightarrow Hyperbola
B)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola  e=4>1e = 4 > 1 \Rightarrow Hyperbola
C)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola  e=4>1e = 4 > 1 \Rightarrow Hyperbola
D) <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola  e=4>1e = 4 > 1 \Rightarrow Hyperbola
E)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { - 3 } { 2 + 8 \sin \theta }  </strong> A)    e = 4 > 1 \Rightarrow  Hyperbola B)    e = 4 > 1 \Rightarrow  Hyperbola C)    e = 4 > 1 \Rightarrow  Hyperbola D)   e = 4 > 1 \Rightarrow  Hyperbola E)    e = 4 > 1 \Rightarrow  Hyperbola  e=4>1e = 4 > 1 \Rightarrow Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
35
Find a polar equation of the conic with its focus at the pole.
Conics \quad\quad Vertex or vertices
Parabola \quad\quad ( 4,0 )

A) 81cosθ\frac { 8 } { 1 - \cos \theta }
B) 81sinθ\frac { 8 } { 1 - \sin \theta }
C) 81sinθ\frac { - 8 } { 1 - \sin \theta }
D) 81+sinθ\frac { 8 } { 1 + \sin \theta }
E) 81+cosθ\frac { 8 } { 1 + \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
36
Select correct graph to graph rotated conic. r=61cos(θπ/4)r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }

A)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)
B)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)
C)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)
D)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)
E)  <strong>Select correct graph to graph rotated conic.  r = \frac { 6 } { 1 - \cos ( \theta - \pi / 4 ) }  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
37
Identify the conic and select its correct graph. r=22+3sinθr = \frac { 2 } { 2 + 3 \sin \theta }

A) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola
B) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola
C) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola
D) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola
E) e=32>1e = \frac { 3 } { 2 } > 1 \Rightarrow Hyperbola  <strong>Identify the conic and select its correct graph.   r = \frac { 2 } { 2 + 3 \sin \theta }  </strong> A)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   B)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   C)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   D)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola   E)  e = \frac { 3 } { 2 } > 1 \Rightarrow  Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
38
Select the polar equation with graph.  <strong>Select the polar equation with graph.   </strong> A)  \frac { 3 } { 1 - 2 \sin \theta }  B)  \frac { 1 } { 1 - 2 \sin \theta }  C)  \frac { 3 } { 1 + 2 \cos \theta }  D)  \frac { 3 } { 1 + 2 \sin \theta }  E)  \frac { 3 } { 1 - 2 \cos \theta }

A) 312sinθ\frac { 3 } { 1 - 2 \sin \theta }
B) 112sinθ\frac { 1 } { 1 - 2 \sin \theta }
C) 31+2cosθ\frac { 3 } { 1 + 2 \cos \theta }
D) 31+2sinθ\frac { 3 } { 1 + 2 \sin \theta }
E) 312cosθ\frac { 3 } { 1 - 2 \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
39
By using a graphing utility select the correct graph of the polar equation. 31sinθ\frac { - 3 } { 1 - \sin \theta }

A) <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }   e=1 Parabola e = 1 \Rightarrow \text { Parabola }
B) <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }   e=1 Parabola e = 1 \Rightarrow \text { Parabola }
C) <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }   e=1 Parabola e = 1 \Rightarrow \text { Parabola }
D)  <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }   e=1 Parabola e = 1 \Rightarrow \text { Parabola }
E)  <strong>By using a graphing utility select the correct graph of the polar equation.   \frac { - 3 } { 1 - \sin \theta }  </strong> A)   e = 1 \Rightarrow \text { Parabola }  B)   e = 1 \Rightarrow \text { Parabola }  C)   e = 1 \Rightarrow \text { Parabola }  D)    e = 1 \Rightarrow \text { Parabola }  E)    e = 1 \Rightarrow \text { Parabola }   e=1 Parabola e = 1 \Rightarrow \text { Parabola }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
40
Select the polar equation of graph.  <strong>Select the polar equation of graph.   </strong> A)  \frac { 2 } { 1 - 3 \sin \theta }  B)  \frac { 1 } { 1 + 3 \sin \theta }  C)  \frac { 2 } { 1 + 3 \cos \theta }  D)  \frac { 2 } { 1 + 3 \sin \theta }  E)  \frac { 2 } { 1 - 3 \cos \theta }

A) 213sinθ\frac { 2 } { 1 - 3 \sin \theta }
B) 11+3sinθ\frac { 1 } { 1 + 3 \sin \theta }
C) 21+3cosθ\frac { 2 } { 1 + 3 \cos \theta }
D) 21+3sinθ\frac { 2 } { 1 + 3 \sin \theta }
E) 213cosθ\frac { 2 } { 1 - 3 \cos \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
41
A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour.If this velocity is multiplied by 2\sqrt { 2 } , the satellite will have the minimum velocity necessary to escape Earth's gravity and will follow a parabolic path with the center of Earth as the focus.(Hints: The radius of Earth is 4000 miles.)  <strong>A satellite in a 100-mile-high circular orbit around Earth has a velocity of approximately 17,500 miles per hour.If this velocity is multiplied by  \sqrt { 2 }  , the satellite will have the minimum velocity necessary to escape Earth's gravity and will follow a parabolic path with the center of Earth as the focus.(Hints: The radius of Earth is 4000 miles.)    Find the distance between the surface of the Earth and the satellite when  \theta = 50 ^ { \circ }  . </strong> A)Distance between surface of Earth and satellite:4496 miles B)Distance between surface of Earth and satellite:4322 miles C)Distance between surface of Earth and satellite:1286 miles D)Distance between surface of Earth and satellite:643 miles E)Distance between surface of Earth and satellite:1492 miles  Find the distance between the surface of the Earth and the satellite when θ=50\theta = 50 ^ { \circ } .

A)Distance between surface of Earth and satellite:4496 miles
B)Distance between surface of Earth and satellite:4322 miles
C)Distance between surface of Earth and satellite:1286 miles
D)Distance between surface of Earth and satellite:643 miles
E)Distance between surface of Earth and satellite:1492 miles
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
42
By using a graphing utility select the correct graph of the polar equation.Identify the graph. 122cosθ\frac { 12 } { 2 - \cos \theta }

A) <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
B)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
C)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
D)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
E)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 12 } { 2 - \cos \theta }  </strong> A)   e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse B)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse C)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse D)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse E)    e = \frac { 1 } { 2 } < 1 \Rightarrow  Ellipse  e=12<1e = \frac { 1 } { 2 } < 1 \Rightarrow Ellipse
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
43
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4(1cosθ)r = 4 ( 1 - \cos \theta )

A)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
B)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
C)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
D)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
E)Symmetric with respect to polar axis r=8 when θ=πr=0 when θ=0\begin{array} { l } | r | = 8 \text { when } \theta = \pi \\r = 0 \text { when } \theta = 0\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 ( 1 - \cos \theta )  </strong> A)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    B)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    C)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    D)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}    E)Symmetric with respect to polar axis  \begin{array} { l } | r | = 8 \text { when } \theta = \pi \\ r = 0 \text { when } \theta = 0 \end{array}
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
44
Find the polar equation of the planet's orbit and the perihelion and aphelion distances.
Earth a=95.956×106a = 95.956 \times 10 ^ { 6 } miles e=0.0167e = 0.0167

A) 0.9593×10810.0167cosθ\frac { 0.9593 \times 10 ^ { 8 } } { 1 - 0.0167 \cos \theta } Perihelion distance: r=9.4354×108r = 9.4354 \times 10 ^ { 8 } Aphelion distance: r=9.7558×108r = 9.7558 \times 10 ^ { 8 }
B) 0.9593×10810.0167sinθ\frac { 0.9593 \times 10 ^ { 8 } } { 1 - 0.0167 \sin \theta } Perihelion distance: r=9.7558×108r = 9.7558 \times 10 ^ { 8 } Aphelion distance: r=9.4354×108r = 9.4354 \times 10 ^ { 8 }
C) 0.0167×1081+0.9593sinθ\frac { 0.0167 \times 10 ^ { 8 } } { 1 + 0.9593 \sin \theta } Perihelion distance: r=9.4354×108r = 9.4354 \times 10 ^ { 8 } Aphelion distance: r=9.7558×108r = 9.7558 \times 10 ^ { 8 }
D) 0.9593×10710.0167cosθ\frac { 0.9593 \times 10 ^ { 7 } } { 1 - 0.0167 \cos \theta } Perihelion distance: r=9.7558×108r = 9.7558 \times 10 ^ { 8 } Aphelion distance: r=9.4354×108r = 9.4354 \times 10 ^ { 8 }
E) 0.9593×1071+0.0167cosθ\frac { 0.9593 \times 10 ^ { 7 } } { 1 + 0.0167 \cos \theta } Perihelion distance: r=9.4354×107r = 9.4354 \times 10 ^ { 7 } Aphelion distance: r=9.7558×107r = 9.7558 \times 10 ^ { 7 }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
45
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=3π7r = \frac { 3 \pi } { 7 }

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius 3π7\frac { 3 \pi } { 7 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 3 \pi } { 7 }  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { 3 \pi } { 7 }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
46
The Roman Coliseum is an elliptical amphitheater measuring approximately 188 meters long and 156 meters wide.Find an equation to model the coliseum that is of the form x2a2+y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 .

A) x26084y28836=1\frac { x ^ { 2 } } { 6084 } - \frac { y ^ { 2 } } { 8836 } = 1
B) x28836+y26084=1\frac { x ^ { 2 } } { 8836 } + \frac { y ^ { 2 } } { 6084 } = 1
C) x28836+y26084=0\frac { x ^ { 2 } } { 8836 } + \frac { y ^ { 2 } } { 6084 } = 0
D) x21882+y21562=1\frac { x ^ { 2 } } { 188 ^ { 2 } } + \frac { y ^ { 2 } } { 156 ^ { 2 } } = 1
E) x26084+y28836=0\frac { x ^ { 2 } } { 6084 } + \frac { y ^ { 2 } } { 8836 } = 0
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
47
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=1r = 1

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=1r = 1  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 1  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 1
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
48
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=(1+sinθ)r = ( 1 + \sin \theta )

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=2 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = ( 1 + \sin \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { l } | r | = 2 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
49
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=π4r = \frac { \pi } { 4 }

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius π4\frac { \pi } { 4 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { \pi } { 4 } </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  \frac { \pi } { 4 }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
50
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4+6sinθr = 4 + 6 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=10| r | = 10 when θ=π2\theta = \frac { \pi } { 2 } r=0r = 0 when θ=7π6,θ=11π6\theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 + 6 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 10  when  \theta = \frac { \pi } { 2 }   r = 0  when  \theta = \frac { 7 \pi } { 6 } , \theta = \frac { 11 \pi } { 6 }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
51
The Halley's Comet has an elliptical orbit with an eccentricity of e0.907e \approx 0.907 .The length of the major axis of the orbit is approximately 35.1 astronomical units.Find a polar equation for the orbit.How close does the comet come to the sun

A) 1.1391cosθ\frac { 1.139 } { 1 - \cos \theta } Closest point to the sun is \approx 0.579 astronomical unit.
B) 1.1391+0.967sinθ\frac { 1.139 } { 1 + 0.967 \sin \theta } Closest point to the sun is \approx 0.579 astronomical unit.
C) 1.1391+1.967cosθ\frac { 1.139 } { 1 + 1.967 \cos \theta } Closest point to the sun is \approx 0.579 astronomical unit.
D) 1.13911.967sinθ\frac { 1.139 } { 1 - 1.967 \sin \theta } Closest point to the sun is \approx 0.579 astronomical unit.
E) 1+1.139sinθ\overline { 1 + 1.139 \sin \theta } Closest point to the sun is \approx 0.579 astronomical unit.
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
52
Use the following results the polar equation of the hyperbolla x2a2y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 is r2=b21e2cos2θr ^ { 2 } = \frac { - b ^ { 2 } } { 1 - e ^ { 2 } \cos ^ { 2 } \theta } to write the polar form of the equation of the conic x216y29=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1 .

A) r2=14416cos2θ+25r ^ { 2 } = \frac { 144 } { 16 \cos ^ { 2 } \theta + 25 }
B) r2=14425cos2θ16r ^ { 2 } = \frac { 144 } { 25 \cos ^ { 2 } \theta - 16 }
C) r2=14425cos2θ+16r ^ { 2 } = \frac { 144 } { 25 \cos ^ { 2 } \theta + 16 }
D) r2=14425cos2θ+16r ^ { 2 } = \frac { - 144 } { 25 \cos ^ { 2 } \theta + 16 }
E) r2=1441625cos2θr ^ { 2 } = \frac { 144 } { 16 - 25 \cos ^ { 2 } \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
53
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=2r = 2

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , polar axis, poleCircle with radius r=2r = 2  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2    D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , polar axis, poleCircle with radius  r = 2
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
54
By using a graphing utility select the correct graph of the polar equation.Identify the graph. 412cosθ\frac { 4 } { 1 - 2 \cos \theta }

A)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola  e=2>1e = 2 > 1 \Rightarrow Hyperbola
B) <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola  e=2>1e = 2 > 1 \Rightarrow Hyperbola
C)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola  e=2>1e = 2 > 1 \Rightarrow Hyperbola
D) <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola  e=2>1e = 2 > 1 \Rightarrow Hyperbola
E)  <strong>By using a graphing utility select the correct graph of the polar equation.Identify the graph.   \frac { 4 } { 1 - 2 \cos \theta }  </strong> A)    e = 2 > 1 \Rightarrow  Hyperbola B)   e = 2 > 1 \Rightarrow  Hyperbola C)    e = 2 > 1 \Rightarrow  Hyperbola D)   e = 2 > 1 \Rightarrow  Hyperbola E)    e = 2 > 1 \Rightarrow  Hyperbola  e=2>1e = 2 > 1 \Rightarrow Hyperbola
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
55
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=2(1sinθ)r = 2 ( 1 - \sin \theta )

A)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
B)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
C)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
D)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
E)Symmetric with respect to π2\frac { \pi } { 2 } r=4 when θ=3π2r=0 when θ=π2\begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 2 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 2 ( 1 - \sin \theta ) </strong> A)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     B)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     C)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     D)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}     E)Symmetric with respect to  \frac { \pi } { 2 }   \begin{array} { l } | r | = 4 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 2 } \end{array}
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
56
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
γ=(1+cosθ)\gamma = ( 1 + \cos \theta )

A)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi
B)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi
C)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi
D)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi
E)Symmetric with respect to polar axis r=2 when θ=0| r | = 2 \text { when } \theta = 0
r=0r = 0 when θ=π\theta = \pi  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  \gamma = ( 1 + \cos \theta )  </strong> A)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     B)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     C)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi    D)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi     E)Symmetric with respect to polar axis  | r | = 2 \text { when } \theta = 0   r = 0  when  \theta = \pi
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
57
The Comet Borrelly has an elliptical orbit with an eccentricity of e0.624e \approx 0.624 .The length of the major axis of the orbit is approximately 5.83 astronomical units.Find a polar equation for the orbit.How close does the comet come to the sun

A) 1.78011.624sinθ\frac { 1.780 } { 1 - 1.624 \sin \theta } Closest point to the sun is \approx 1.096 astronomical unit.
B) 1.7801+cosθ\frac { 1.780 } { 1 + \cos \theta } Closest point to the sun is \approx 1.096 astronomical unit.
C) 0.6241+1.780sinθ\frac { 0.624 } { 1 + 1.780 \sin \theta } Closest point to the sun is \approx 1.096 astronomical unit.
D) 1.7801+0.624sinθ\frac { 1.780 } { 1 + 0.624 \sin \theta } Closest point to the sun is \approx 1.096 astronomical unit.
E) 11.624cosθ\overline { 1 - 1.624 \cos \theta } Closest point to the sun is \approx 1.096 astronomical unit.
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
58
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=5cosθr = 5 \cos \theta

A)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5
B)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5
C)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5
D)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5
E)Symmetric with respect to polar axisCircle with radius 2.5  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos \theta  </strong> A)Symmetric with respect to polar axisCircle with radius 2.5   B)Symmetric with respect to polar axisCircle with radius 2.5   C)Symmetric with respect to polar axisCircle with radius 2.5   D)Symmetric with respect to polar axisCircle with radius 2.5   E)Symmetric with respect to polar axisCircle with radius 2.5
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
59
Use the following results the polar equation of the ellipse x2a2+y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 is r2=b21e2cos2θr ^ { 2 } = \frac { b ^ { 2 } } { 1 - e ^ { 2 } \cos ^ { 2 } \theta } to write the polar form of the equation of the conic x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1 .

A) r2=25259cos2θr ^ { 2 } = \frac { 25 } { 25 - 9 \cos ^ { 2 } \theta }
B) r2=400259cos2θr ^ { 2 } = \frac { 400 } { 25 - 9 \cos ^ { 2 } \theta }
C) r2=40025+9cos2θr ^ { 2 } = \frac { 400 } { 25 + 9 \cos ^ { 2 } \theta }
D) r2=4009+25cos2θr ^ { 2 } = \frac { 400 } { 9 + 25 \cos ^ { 2 } \theta }
E) r2=400925cos2θr ^ { 2 } = \frac { 400 } { 9 - 25 \cos ^ { 2 } \theta }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
60
Consider the polar equation: r=810.4cosθr = \frac { 8 } { 1 - 0.4 \cos \theta }
Identify the conic without graphing the equation.

A) e<1e < 1 , the conic is a parabola.
B) e<1e < 1 , the conic is a circle.
C) e<1e < 1 , the conic is a hyperbola.
D) e<1e < 1 , the conic is an ellipse.
E)None of the above
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
61
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case. 0θπ0 \leq \theta \leq \pi

A) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle  Upper half of circle
B) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle  Upper half of circle
C)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle  Upper half of circle
D)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle  Upper half of circle
E) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   0 \leq \theta \leq \pi  </strong> A)  Upper half of circle B)  Upper half of circle C)   Upper half of circle D)   Upper half of circle E)  Upper half of circle  Upper half of circle
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
62
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4sinθ2cosθr = \frac { 4 } { \sin \theta - 2 \cos \theta }

A) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }
B) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }
C) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }
D) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }
E) y=2x+4 Line y = 2 x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 4 } { \sin \theta - 2 \cos \theta } </strong> A)  y = 2 x + 4 \Rightarrow \text { Line }     B)  y = 2 x + 4 \Rightarrow \text { Line }     C)  y = 2 x + 4 \Rightarrow \text { Line }     D)  y = 2 x + 4 \Rightarrow \text { Line }     E)  y = 2 x + 4 \Rightarrow \text { Line }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
63
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=5cos2θr = 5 \cos 2 \theta

A)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
B)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
C)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
D)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
E)Symmetric with respect to the polar axis r=5 when θ=0,π2,π,3π2r=0 when θ=π4,3π4,5π4,7π4\begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 5 \cos 2 \theta  </strong> A)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    B)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}    C)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     D)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}     E)Symmetric with respect to the polar axis  \begin{array} { c } | r | = 5 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \end{array}
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
64
Select the graph of the equation. r=4secθr = - 4 \sec \theta

A) <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)
B)  <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)
C)  <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)
D)  <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)
E) <strong>Select the graph of the equation.   r = - 4 \sec \theta  </strong> A)  B)   C)   D)   E)
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
65
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case. π2θπ2- \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }

A)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle  Entire circle
B) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle  Entire circle
C)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle  Entire circle
D)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle  Entire circle
E)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }  </strong> A)   Entire circle B)  Entire circle C)   Entire circle D)   Entire circle E)   Entire circle  Entire circle
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
66
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=43sinθr = 4 - 3 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=7 when θ=3π2| r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 3 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   | r | = 7 \text { when } \theta = \frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
67
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=35sinθr = 3 - 5 \sin \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=8 when θ=3π2r=0 when θ=π6,θ=5π6\begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 - 5 \sin \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}    E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 8 \text { when } \theta = \frac { 3 \pi } { 2 } \\ r = 0 \text { when } \theta = \frac { \pi } { 6 } , \theta = \frac { 5 \pi } { 6 } \end{array}
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
68
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r2=9sinθr ^ { 2 } = 9 \sin \theta

A) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}
B) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}
C) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}
D) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}
E) r=3sinθr=3sinθ0θπ\begin{array} { c } r = 3 \sqrt { \sin \theta } \\r = - 3 \sqrt { \sin \theta } \\0 \leq \theta \leq \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 9 \sin \theta  </strong> A)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     B)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    C)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}    D)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}     E)  \begin{array} { c } r = 3 \sqrt { \sin \theta } \\ r = - 3 \sqrt { \sin \theta } \\ 0 \leq \theta \leq \pi \end{array}
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
69
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=82sinθ3cosθr = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }

A) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }
B) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }
C) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }
D) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }
E) y=32x+4 Line y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \frac { 8 } { 2 \sin \theta - 3 \cos \theta }  </strong> A)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     B)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     C)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     D)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }     E)  y = \frac { 3 } { 2 } x + 4 \Rightarrow \text { Line }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
70
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=45cosθr = 4 - 5 \cos \theta

A)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
B)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
C)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
D)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
E)Symmetric with respect to polar axis r=9| r | = 9 when θ=π\theta = \pi
r=0 when θ=π3,5π3r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 5 \cos \theta  </strong> A)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     B)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     C)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     D)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }     E)Symmetric with respect to polar axis  | r | = 9  when  \theta = \pi   r = 0 \text { when } \theta = \frac { \pi } { 3 } , \frac { 5 \pi } { 3 }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
71
Select the graph of r=3cosθr = 3 \cos \theta over the interval.Describe the part of the graph obtained in this case. π2θπ\frac { \pi } { 2 } \leq \theta \leq \pi

A)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle  Lower half of circle
B) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle  Lower half of circle
C) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle  Lower half of circle
D)  <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle  Lower half of circle
E) <strong>Select the graph of  r = 3 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 2 } \leq \theta \leq \pi  </strong> A)   Lower half of circle B)  Lower half of circle C)  Lower half of circle D)   Lower half of circle E)  Lower half of circle  Lower half of circle
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
72
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=secθr = \sec \theta

A) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
B) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
C) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
D) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
E) x=1 Line x = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \sec \theta  </strong> A)  x = 1 \Rightarrow \text { Line }    B)  x = 1 \Rightarrow \text { Line }    C)  x = 1 \Rightarrow \text { Line }    D)  x = 1 \Rightarrow \text { Line }    E)  x = 1 \Rightarrow \text { Line }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
73
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=46cosθr = 4 - 6 \cos \theta

A)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
B)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
C)Symmetric with respect to the polar axis r=10 when θ=πr=0 when cosθ=46\begin{array} { l } | r | = 10 \text { when } \theta = \pi \\r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
D)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
E)Symmetric with respect to the polar axis r=10| r | = 10 when θ=π\theta = \pi
r=0 when cosθ=46r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 - 6 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     B)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     C)Symmetric with respect to the polar axis  \begin{array} { l } | r | = 10 \text { when } \theta = \pi \\ r = 0 \text { when } \cos \theta = \frac { 4 } { 6 } \end{array}     D)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }     E)Symmetric with respect to the polar axis  | r | = 10  when  \theta = \pi   r = 0 \text { when } \cos \theta = \frac { 4 } { 6 }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
74
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=cos3θr = \cos 3 \theta

A)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }
B)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }
C)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }
D)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }
E)Symmetric with respect to the polar axis r=1| r | = 1 when θ=0,π3,2π3,π\theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi
r=0r = 0 when θ=π6,π2,5π6\theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \cos 3 \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     B)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     C)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }     D)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }    E)Symmetric with respect to the polar axis  | r | = 1  when  \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi   r = 0  when  \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
75
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r2=4cos2θr ^ { 2 } = 4 \cos 2 \theta

A)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate
B)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate
C)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate
D)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate
E)Symmetric with respectto the polar axis, θ=π2\theta = \frac { \pi } { 2 } , and the poleLemniscate  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r ^ { 2 } = 4 \cos 2 \theta  </strong> A)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   B)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   C)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   D)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate   E)Symmetric with respectto the polar axis,  \theta = \frac { \pi } { 2 }  , and the poleLemniscate
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
76
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=cscθr = \csc \theta

A) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
B) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
C) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
D) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
E) y=1 Line y = 1 \Rightarrow \text { Line }  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = \csc \theta  </strong> A)  y = 1 \Rightarrow \text { Line }    B)  y = 1 \Rightarrow \text { Line }    C)  y = 1 \Rightarrow \text { Line }    D)  y = 1 \Rightarrow \text { Line }    E)  y = 1 \Rightarrow \text { Line }
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
77
Select the graph of r=4cosθr = 4 \cos \theta over the interval.Describe the part of the graph obtained in this case. π4θ3π4\frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }

A) <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle  Left half of circle
B) <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle  Left half of circle
C) <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle  Left half of circle
D)  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle  Left half of circle
E)  <strong>Select the graph of  r = 4 \cos \theta  over the interval.Describe the part of the graph obtained in this case.   \frac { \pi } { 4 } \leq \theta \leq \frac { 3 \pi } { 4 }  </strong> A)  Left half of circle B)  Left half of circle C)  Left half of circle D)   Left half of circle E)   Left half of circle  Left half of circle
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
78
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4sin(2θ)r = 4 \sin ( 2 \theta )

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } , the polar axis, and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin ( 2 \theta )  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }  , the polar axis, and the pole  \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
79
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=3+7cosθr = 3 + 7 \cos \theta

A)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0
B)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0
C)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0
D)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0
E)Symmetric with respect to the polar axis r=10 when θ=0| r | = 10 \text { when } \theta = 0  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 3 + 7 \cos \theta  </strong> A)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0    B)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     C)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     D)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0     E)Symmetric with respect to the polar axis  | r | = 10 \text { when } \theta = 0
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
80
Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.
r=4sin3θr = 4 \sin 3 \theta

A)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}
B)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}
C)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}
D)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}
E)Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array}  <strong>Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.  r = 4 \sin 3 \theta  </strong> A)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     B)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     C)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     D)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}     E)Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}
Unlock Deck
Unlock for access to all 556 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 556 flashcards in this deck.