Deck 11: Analytic Geometry In Three Dimensions

Full screen (f)
exit full mode
Question
Find a set of symmetric equations of the line that passes through the given points. (5,0,5),(1,6,3)( 5,0,5 ) , ( 1,6 , - 3 )

A) x54=y6=z58\frac { x - 5 } { - 4 } = \frac { y } { 6 } = \frac { z - 5 } { - 8 }
B) x54=y6=z58\frac { x - 5 } { - 4 } = \frac { y } { - 6 } = \frac { z - 5 } { - 8 }
C) x54=y8=z56\frac { x - 5 } { - 4 } = \frac { y } { - 8 } = \frac { z - 5 } { 6 }
D) x54=y6=z+58\frac { x - 5 } { - 4 } = \frac { y } { 6 } = \frac { z + 5 } { - 8 }
E) x+54=y6=z+58\frac { x + 5 } { - 4 } = \frac { y } { 6 } = \frac { z + 5 } { - 8 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (2,5,3)( 2 , - 5,3 ) Parallel to: v=(4,3,6)v = ( 4 , - 3 , - 6 )

A)Parametric equations: x=4+3t,y=35t,z=6+2tx = 4 + 3 t , y = - 3 - 5 t , z = - 6 + 2 t
B)Parametric equations: x=6+2t,y=45t,z=3+3tx = - 6 + 2 t , y = 4 - 5 t , z = - 3 + 3 t
C)Parametric equations: x=6+2t,y=45t,z=6+3tx = - 6 + 2 t , y = 4 - 5 t , z = - 6 + 3 t
D)Parametric equations: x=2+4t,y=53t,z=36tx = 2 + 4 t , y = - 5 - 3 t , z = 3 - 6 t
E)Parametric equations: x=6+3t,y=35t,z=4+2tx = - 6 + 3 t , y = - 3 - 5 t , z = 4 + 2 t
Question
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (3,6,2)( 3 , - 6,2 ) Parallel to: x=5+2t,y=74t,z=2+tx = 5 + 2 t , y = 7 - 4 t , z = - 2 + t

A)Parametric equations: x=3+t,y=64t,z=2+2tx = 3 + t , y = - 6 - 4 t , z = 2 + 2 t
B)Parametric equations: x=2+2t,y=24t,z=2+tx = 2 + 2 t , y = 2 - 4 t , z = 2 + t
C)Parametric equations: x=2+2t,y=34t,z=6+tx = 2 + 2 t , y = 3 - 4 t , z = - 6 + t
D)Parametric equations: x=6+2t,y=64t,z=3+tx = - 6 + 2 t , y = - 6 - 4 t , z = 3 + t
E)Parametric equations: x=3+2t,y=64t,z=2+tx = 3 + 2 t , y = - 6 - 4 t , z = 2 + t
Question
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (6,2,0)( - 6,2,0 ) Parallel to: v=37i+37j5k\mathrm { v } = \frac { 3 } { 7 } \mathrm { i } + \frac { - 3 } { 7 } \mathrm { j } - 5 \mathrm { k }

A)Parametric equations: x=63t,y=43t,z=5tx = - 6 - 3 t , y = 4 - 3 t , z = - 5 t
B)Parametric equations: x=2+3t,y=53t,z=5tx = - 2 + 3 t , y = 5 - 3 t , z = - 5 t
C)Parametric equations: x=5t,y=53t,z=5tx = - 5 t , y = 5 - 3 t , z = - 5 t
D)Parametric equations: x=6+3t,y=23t,z=35tx = - 6 + 3 t , y = 2 - 3 t , z = - 35 t
E)Parametric equations: x=3t,y=5t,z=3tx = 3 t , y = - 5 t , z = - 3 t
Question
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (5,0,2)
Parallel to: x=3+3t,y=52t,z=7+tx = 3 + 3 t , y = 5 - 2 t , z = - 7 + t

A)Symmetric equations: x+33=y22=z2\frac { x + 3 } { 3 } = \frac { y - 2 } { - 2 } = z - 2
B)Symmetric equations: x23=y22=z2\frac { x - 2 } { 3 } = \frac { y - 2 } { - 2 } = z - 2
C)Symmetric equations: x52=y3=z2\frac { x - 5 } { - 2 } = \frac { y } { 3 } = z - 2
D)Symmetric equations: z53=y2=x2\frac { z - 5 } { 3 } = \frac { y } { - 2 } = x - 2
E)Symmetric equations: x53=y2=z2\frac { x - 5 } { 3 } = \frac { y } { - 2 } = z - 2
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (3,2,6)( 3,2,6 ) Perpendicular to: n=in = i

A) 3x=0- 3 x = 0
B) x=0x = 0
C) x3=0x - 3 = 0
D) 3x=03 x = 0
E) x+3=0x + 3 = 0
Question
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (6,2,2)( 6 , - 2,2 ) Parallel to: v=(3,4,10)\mathbf { v } = ( 3 , - 4 , - 10 )

A)Symmetric equations: x63=y+24=z210\frac { x - 6 } { 3 } = \frac { y + 2 } { - 4 } = \frac { z - 2 } { - 10 }
B)Symmetric equations: x64=y+24=z210\frac { x - 6 } { - 4 } = \frac { y + 2 } { - 4 } = \frac { z - 2 } { - 10 }
C)Symmetric equations: x63=y+210=z23\frac { x - 6 } { 3 } = \frac { y + 2 } { - 10 } = \frac { z - 2 } { 3 }
D)Symmetric equations: x64=y+23=z210\frac { x - 6 } { - 4 } = \frac { y + 2 } { 3 } = \frac { z - 2 } { - 10 }
E)Symmetric equations: x610=y+23=z24\frac { x - 6 } { - 10 } = \frac { y + 2 } { 3 } = \frac { z - 2 } { - 4 }
Question
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (7,0,2)( - 7,0,2 ) Parallel to: v=4i+5j3k\mathbf { v } = 4 \mathbf { i } + 5 \mathbf { j } - 3 \mathbf { k }

A)Symmetric equations: x+73=y5=z24\frac { x + 7 } { - 3 } = \frac { y } { 5 } = \frac { z - 2 } { 4 }
B)Symmetric equations: x+74=y5=z23\frac { x + 7 } { 4 } = \frac { y } { 5 } = \frac { z - 2 } { - 3 }
C)Symmetric equations: x+74=z5=y23\frac { x + 7 } { 4 } = \frac { z } { 5 } = \frac { y - 2 } { - 3 }
D)Symmetric equations: x+54=y5=z23\frac { x + 5 } { 4 } = \frac { y } { 5 } = \frac { z - 2 } { - 3 }
E)Symmetric equations: x+74=y+75=z23\frac { x + 7 } { 4 } = \frac { y + 7 } { 5 } = \frac { z - 2 } { - 3 }
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (0,0,8)( 0,0,8 ) Perpendicular to: x=1t,y=2+t,z=44tx = 1 - t , y = 2 + t , z = 4 - 4 t

A) xy+4z32=0x - y + 4 z - 32 = 0
B) x+y4z32=0x + y - 4 z - 32 = 0
C) xy4z+32=0- x - y - 4 z + 32 = 0
D) x+y+4z+32=0- x + y + 4 z + 32 = 0
E) x+y4z+32=0- x + y - 4 z + 32 = 0
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (2,0,7)( 2,0 , - 7 ) Perpendicular to: n=7k\mathbf { n } = - 7 \mathbf { k }

A) z+7=0z + 7 = 0
B) 7z=07 z = 0
C) z7=0z - 7 = 0
D) z=0z = 0
E) 7z=0- 7 z = 0
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (0,0,0)
Perpendicular to: n=2j+6k\mathbf { n } = - 2 \mathbf { j } + 6 \mathbf { k }

A) x+2y+6z=0x + 2 y + 6 z = 0
B) 6y+2z=06 y + 2 z = 0
C) x2y+6z=0x - 2 y + 6 z = 0
D) 2y+6z=0- 2 y + 6 z = 0
E) 2y6z=0- 2 y - 6 z = 0
Question
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (0,0,0)
Parallel to: v=(5,6,7)\mathbf { v } = ( 5,6,7 )

A)Parametric equations: x=6t,y=5t,z=7tx = 6 t , y = 5 t , z = 7 t
B)Parametric equations: x=5t,y=6t,z=7tx = 5 t , y = 6 t , z = 7 t
C)Parametric equations: x=6t,y=7t,z=5tx = 6 t , y = 7 t , z = 5 t
D)Parametric equations: x=7t,y=6t,z=5tx = 7 t , y = 6 t , z = 5 t
E)Parametric equations: x=7t,y=6t,z=7tx = 7 t , y = 6 t , z = 7 t
Question
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (4,4,5)( 4 , - 4,5 ) Parallel to: x=5+2t,y=74t,z=2+tx = 5 + 2 t , y = 7 - 4 t , z = - 2 + t

A)Symmetric equations: x42=y44=z5\frac { x - 4 } { 2 } = \frac { y - 4 } { - 4 } = z - 5
B)Symmetric equations: x44=y+42=z5\frac { x - 4 } { - 4 } = \frac { y + 4 } { 2 } = z - 5
C)Symmetric equations: x42=y44=z4\frac { x - 4 } { 2 } = \frac { y - 4 } { - 4 } = z - 4
D)Symmetric equations: x52=y+44=z4\frac { x - 5 } { 2 } = \frac { y + 4 } { - 4 } = z - 4
E)Symmetric equations: x42=y+44=z5\frac { x - 4 } { 2 } = \frac { y + 4 } { - 4 } = z - 5
Question
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (2,2,0)( - 2,2,0 ) Parallel to: v=37i47j3k\mathbf { v } = \frac { 3 } { 7 } \mathrm { i } - \frac { 4 } { 7 } \mathbf { j } - 3 \mathrm { k }

A)Symmetric equations: x3=y221=z4\frac { x } { 3 } = \frac { y - 2 } { - 21 } = \frac { z } { - 4 }
B)Symmetric equations: x+23=y23=z21\frac { x + 2 } { 3 } = \frac { y - 2 } { 3 } = \frac { z } { - 21 }
C)Symmetric equations: x+23=y24=z63\frac { x + 2 } { 3 } = \frac { y - 2 } { - 4 } = \frac { z - 6 } { - 3 }
D)Symmetric equations: x+23=y24=z21\frac { x + 2 } { 3 } = \frac { y - 2 } { - 4 } = \frac { z } { - 21 }
E)Symmetric equations: x+24=y3=z21\frac { x + 2 } { - 4 } = \frac { y } { 3 } = \frac { z } { - 21 }
Question
Find a set of parametric equations of the line that passes through the given points. (5,0,6),(1,6,3)( 5,0,6 ) , ( 1,6 , - 3 )

A) x=54t,y=6t,z=9tx = 5 - 4 t , y = 6 t , z = - 9 t
B) x=54t,y=5+6t,z=69tx = 5 - 4 t , y = 5 + 6 t , z = 6 - 9 t
C) x=54t,y=6t,z=69tx = 5 - 4 t , y = 6 t , z = 6 - 9 t
D) x=64t,y=16t,z=69tx = 6 - 4 t , y = 1 - 6 t , z = 6 - 9 t
E) x=64t,y=6t,z=59tx = 6 - 4 t , y = 6 t , z = 5 - 9 t
Question
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (2,0,2)( 2,0,2 ) Parallel to: x=3+4t,y=55t,z=7+3tx = 3 + 4 t , y = 5 - 5 t , z = - 7 + 3 t

A)Parametric equations: x=4t,y=5t,z=2+3tx = 4 t , y = - 5 t , z = 2 + 3 t
B)Parametric equations: x=2+4t,y=25t,z=2+3tx = 2 + 4 t , y = 2 - 5 t , z = 2 + 3 t
C)Parametric equations: x=2+4t,y=5t,z=2+3tx = 2 + 4 t , y = - 5 t , z = 2 + 3 t
D)Parametric equations: x=2+4t,y=25t,z=22tx = 2 + 4 t , y = 2 - 5 t , z = 2 - 2 t
E)Parametric equations: x=2+5t,y=3t,z=2+4tx = 2 + - 5 t , y = 3 t , z = 2 + 4 t
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (7,8,2)( 7,8,2 ) Perpendicular to: n=4i+j5k\mathbf { n } = - 4 \mathbf { i } + \mathbf { j } - 5 \mathbf { k }

A) 4x+4y5z+30=0- 4 x + - 4 y - 5 z + 30 = 0
B) 4y5z+30=0- 4 y - 5 z + 30 = 0
C) 4x+y30z+5=0- 4 x + y 30 z + - 5 = 0
D) 4x+y5z+30=0- 4 x + y - 5 z + 30 = 0
E) 4x+y5z30=0- 4 x + y - 5 z - 30 = 0
Question
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (7,2,2)( - 7,2,2 ) Parallel to: v=3i+6j2k\mathbf { v } = 3 \mathbf { i } + 6 \mathbf { j } - 2 \mathbf { k }

A)Parametric equations: x=3+7t,y=2+6t,z=22tx = 3 + - 7 t , y = 2 + 6 t , z = 2 - 2 t
B)Parametric equations: x=7+3t,y=6+2t,z=22tx = - 7 + 3 t , y = 6 + 2 t , z = 2 - 2 t
C)Parametric equations: x=7+2t,y=2+6t,z=22tx = - 7 + 2 t , y = 2 + 6 t , z = 2 - 2 t
D)Parametric equations: x=7+3t,y=2+6t,z=22tx = - 7 + 3 t , y = 2 + 6 t , z = 2 - 2 t
E)Parametric equations: x=2+3t,y=2+6t,z=22tx = 2 + 3 t , y = 2 + 6 t , z = 2 - 2 t
Question
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (7,0,0)
Parallel to: v=(5,6,7)\mathbf { v } = ( 5,6,7 )

A)Symmetric equations: x5=y7=z77\frac { x } { 5 } = \frac { y } { 7 } = \frac { z - 7 } { 7 }
B)Symmetric equations: x7=y6=z5\frac { x } { 7 } = \frac { y } { 6 } = \frac { z } { 5 }
C)Symmetric equations: x75=y6=z7\frac { x - 7 } { 5 } = \frac { y } { 6 } = \frac { z } { 7 }
D)Symmetric equations: x5=y75=z7\frac { x } { 5 } = \frac { y - 7 } { 5 } = \frac { z } { 7 }
E)Symmetric equations: x76=y5=z7\frac { x - 7 } { 6 } = \frac { y } { 5 } = \frac { z } { 7 }
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (3,0,0)( 3,0,0 ) Perpendicular to: x=3t,y=26t,z=4+tx = 3 - t , y = 2 - 6 t , z = 4 + t

A) x6yz+3=0- x - 6 y - z + 3 = 0
B) x6y+z+3=0x - 6 y + z + 3 = 0
C) x+6y+z+3=0- x + 6 y + z + 3 = 0
D) x6y+z+3=0- x - 6 y + z + 3 = 0
E) x6yz3=0- x - 6 y - z - 3 = 0
Question
Find a set of parametric equations of the line.
Passes through (5,6,6)( 5,6,6 ) and is parallel to the xz-plane and the yz-plane

A) x=5+ty=6z=6\begin{array} { l } x = 5 + \mathrm { t } \\y = 6 \\z = 6\end{array}
B) x=5y=6z=6+t\begin{array} { l } x = 5 \\y = 6 \\z = 6 + t\end{array}
C) x=5y=6+tz=6\begin{array} { l } x = 5 \\y = 6 + t \\z = 6\end{array}
D) x=5y=6+tz=6+t\begin{array} { l } x = 5 \\y = 6 + t \\z = 6 + t\end{array}
E) x=5+ty=6+tz=6\begin{array} { l } x = 5 + t \\y = 6 + t \\z = 6\end{array}
Question
Find the general form of the equation of the plane passing through the three points.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (-4,4,-1), (1,6,2), (-5,-3,6)

A)35x -38y -33z = 0
B)4x -4y 1z = 0
C)4x -4y 1z + 259 = 0
D)35x -38y -33z + 259 = 0
E)35x -38y -33z - 259 = 0
Question
Find a set of parametric equations of the line.
Passes through (4,2,3)( - 4,2,3 ) and is parallel to the xy-plane and the yz-plane

A) x=4y=2z=3+t\begin{array} { l } x = - 4 \\y = 2 \\z = 3 + t\end{array}
B) x=4+ty=2z=3\begin{array} { l } x = - 4 + t \\y = 2 \\z = 3\end{array}
C) x=4y=2+tz=3+t\begin{array} { l } x = - 4 \\y = 2 + t \\z = 3 + t\end{array}
D) x=4y=2+tz=3\begin{array} { l } x = - 4 \\y = 2 + t \\z = 3\end{array}
E) x=4y=2z=3t\begin{array} { l } x = - 4 \\y = 2 \\z = 3 - t\end{array}
Question
Find the general form of the equation of the plane with the given characteristics. The plane passes through the point (-2,-3,-5)and is parallel to the yz-plane.

A)x + y + z = -10
B)y = -3
C)z = -5
D)y + z = -8
E)x = -2
Question
Find a set of parametric equations of the line.
Passes through (4,6,5)( 4,6,5 ) and is perpendicular to 3x+6yz=63 x + 6 y - z = 6 .

A) x=4+3ty=6+6tz=5+t\begin{array} { l } x = 4 + 3 t \\y = 6 + 6 t \\z = 5 + t\end{array}
B) x=4+3ty=6+6tz=5t\begin{array} { l } x = 4 + 3 t \\y = 6 + 6 t \\z = - 5 - t\end{array}
C) x=43ty=66tz=5t\begin{array} { l } x = 4 - 3 t \\y = 6 - 6 t \\z = 5 - t\end{array}
D) x=4+3ty=6+6tz=5t\begin{array} { l } x = 4 + 3 t \\y = 6 + 6 t \\z = 5 - t\end{array}
E) x=4+3ty=66tz=5t\begin{array} { l } x = 4 + 3 t \\y = 6 - 6 t \\z = 5 - t\end{array}
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified line.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (7,8,1)x=3+2ty=32tz=2+4t\begin{array} { l } ( - 7 , - 8 , - 1 ) \\x = 3 + 2 t \\y = - 3 - 2 t \\z = 2 + 4 t\end{array}

A)7x + 8y + z + 2 = 0
B)7x + 8y + z - 2 = 0
C)x - y + 2z - 1 = 0
D)x - y + 2z + 1 = 0
E)x - y + 2z = 0
Question
Find a set of symmetric equations of the line that passes through the given points. (5,8,12),(1,2,19)( - 5,8,12 ) , ( 1 , - 2,19 )

A) x+56=y87=z126\frac { x + 5 } { 6 } = \frac { y - 8 } { 7 } = \frac { z - 12 } { 6 }
B) x+56=y810=z127\frac { x + 5 } { 6 } = \frac { y - 8 } { - 10 } = \frac { z - 12 } { 7 }
C) x56=y810=z127\frac { x - 5 } { 6 } = \frac { y - 8 } { - 10 } = \frac { z - 12 } { 7 }
D) x+56=y+810=z+127\frac { x + 5 } { 6 } = \frac { y + 8 } { - 10 } = \frac { z + 12 } { 7 }
E) x510=y+810=z127\frac { x - 5 } { - 10 } = \frac { y + 8 } { - 10 } = \frac { z - 12 } { 7 }
Question
Find a set of symmetric equations of the line that passes through the given points. (3,2,0),(9,12,12)( 3,2,0 ) , ( 9,12,12 )

A) x+310=y26=z12\frac { x + 3 } { 10 } = \frac { y - 2 } { 6 } = \frac { z } { 12 }
B) x+36=y+210=z12\frac { x + 3 } { 6 } = \frac { y + 2 } { 10 } = \frac { z } { 12 }
C) x36=y+210=z12\frac { x - 3 } { 6 } = \frac { y + 2 } { 10 } = \frac { z } { 12 }
D) x36=y210=z12\frac { x - 3 } { 6 } = \frac { y - 2 } { 10 } = \frac { z } { 12 }
E) x36=y210=z12\frac { x - 3 } { 6 } = \frac { y - 2 } { 10 } = \frac { - z } { 12 }
Question
Determine whether the planes are parallel,orthogonal,or neither.
x + 2y + z = 6
-2x - 4y - 2z = -10

A)orthogonal
B)parallel
C)neither
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (-4,5,6),n = 2i- 4j+ 4k

A)x - 2y + 2 z + 2 = 0
B)4x - 5y - 6z + 4 = 0
C)x - 2y + 2 z - 2 = 0
D)x - 2y + 2 z = 0
E)4x - 5y - 6z - 4 = 0
Question
Find the general form of the equation of the plane with the given characteristics. The plane passes through the points (3,-2,-7)and (-2,6,3)and is perpendicular to the plane -x - 4y - z = 4.

A)32x - 15y + 28z - 262 = 0
B)31x - 16y + 30z + 85 = 0
C)x + 4y + z = 0
D)32x + 15y + 28z - 130 = 0
E)x + 4y + z - 12 = 0
Question
Find a set of parametric equations of the line.
Passes through (7,4,7)( - 7,4,7 ) and is perpendicular to x+4y+z=5- x + 4 y + z = 5 .

A) x=77ty=44tz=7+t\begin{array} { l } x = - 7 - 7 t \\y = 4 - 4 t \\z = 7 + t\end{array}
B) x=77ty=44tz=7t\begin{array} { l } x = - 7 - 7 t \\y = 4 - 4 t \\z = 7 - t\end{array}
C) x=77ty=4+4tz=7t\begin{array} { l } x = - 7 - 7 t \\y = 4 + 4 t \\z = 7 - t\end{array}
D) x=77ty=4+4tz=7+t\begin{array} { l } x = - 7 - 7 t \\y = 4 + 4 t \\z = 7 + t\end{array}
E) x=7+7ty=4+4tz=7+t\begin{array} { l } x = - 7 + 7 t \\y = 4 + 4 t \\z = 7 + t\end{array}
Question
Determine whether the planes are parallel,orthogonal,or neither.
5x - 2y - 5z = -2
X - 3y + 6z = -6

A)neither
B)parallel
C)orthogonal
Question
Find a set of parametric equations of the line that passes through the given points. (2,3,0),(9,9,12)( 2,3,0 ) , ( 9,9,12 )

A) x=27t,y=3+6t,z=12tx = 2 - 7 t , y = 3 + 6 t , z = 12 t
B) x=2+7t,y=3+6t,z=12tx = 2 + 7 t , y = 3 + 6 t , z = 12 t
C) x=2+7t,y=36t,z=12tx = 2 + 7 t , y = 3 - 6 t , z = - 12 t
D) x=27t,y=36t,z=12tx = 2 - 7 t , y = 3 - 6 t , z = - 12 t
E) x=2+6t,y=3+7t,z=12tx = 2 + 6 t , y = 3 + 7 t , z = 12 t
Question
Find the angle of intersection of the planes in degrees.Round to a tenth of a degree.
3x + 2y - 6z = -5
-6x + 3y + z = 1

A)112.3°
B)2.0°
C)-22.3°
D)109.4°
E)20.8°
Question
Determine whether the planes are parallel,orthogonal,or neither. 5x - y + z = -4
-x - 6y - z = -2

A)neither
B)orthogonal
C)parallel
Question
Find a set of parametric equations of the line that passes through the given points. (4,7,13),(1,4,17)( - 4,7,13 ) , ( 1 , - 4,17 )

A) x=4+5t,y=711t,z=134tx = - 4 + 5 t , y = 7 - 11 t , z = 13 - 4 t
B) x=45t,y=711t,z=134tx = - 4 - 5 t , y = 7 - 11 t , z = 13 - 4 t
C) x=4+5t,y=11t,z=13+4tx = - 4 + 5 t , y = - 11 t , z = 13 + 4 t
D) x=4+5t,y=711t,z=4tx = - 4 + 5 t , y = 7 - 11 t , z = 4 t
E) x=4+5t,y=711t,z=13+4tx = - 4 + 5 t , y = 7 - 11 t , z = 13 + 4 t
Question
Find a set of parametric equations of the line.
Passes through (3,4,3)( 3 , - 4 , - 3 ) and is parallel to v=(6,6,3)\mathbf { v } = ( 6 , - 6,3 ) .

A) x=3+6ty=46tz=3+3t\begin{array} { l } x = 3 + 6 t \\y = - 4 - 6 t \\z = - 3 + 3 t\end{array}
B) x=36ty=46tz=3+3t\begin{array} { l } x = 3 - 6 t \\y = - 4 - 6 t \\z = - 3 + 3 t\end{array}
C) x=3+6ty=4+6tz=3+3t\begin{array} { l } x = 3 + 6 t \\y = - 4 + 6 t \\z = - 3 + 3 t\end{array}
D) x=36ty=46tz=33t\begin{array} { l } x = 3 - 6 t \\y = - 4 - 6 t \\z = - 3 - 3 t\end{array}
E) x=3+6ty=46tz=33t\begin{array} { l } x = 3 + 6 t \\y = - 4 - 6 t \\z = - 3 - 3 t\end{array}
Question
Find the general form of the equation of the plane with the given characteristics.
Passes through (7,4,6)( 7,4,6 ) and is parallel to the yz-plane

A) x=0x = 0
B) 7x=0- 7 x = 0
C) x+7=0x + 7 = 0
D) 7x=07 x = 0
E) x7=0x - 7 = 0
Question
Find the general form of the equation of the plane with the given characteristics.
Passes through (3,8,6)( 3,8,6 ) and is parallel to the xz-plane

A) y+8=0y + 8 = 0
B) 8y=0- 8 y = 0
C) y8=0y - 8 = 0
D) 8y=08 y = 0
E) y=0y = 0
Question
Find the angle between the two planes. x4y+z=33x+3z+4=0\begin{array} { l } x - 4 y + z = - 3 \\3 x + 3 z + 4 = 0\end{array}

A)71.5 ^\circ
B)72.5 ^\circ
C)73.5 ^\circ
D)70.5 ^\circ
E)69.5 ^\circ
Question
Determine whether the planes are parallel,orthogonal,or neither. x9yz=54x36y4z=2\begin{array} { l } x - 9 y - z = 5 \\4 x - 36 y - 4 z = - 2\end{array}

A)Neither
B)Orthogonal
C)Parallel
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (6,2,9),n = 8i + 6j + 9k

A)8x + 6y + 9 z = 0
B)8x + 6y + 9 z + 141 = 0
C)8x + 6y + 9 z - 141 = 0
D)6x + 2y + 9z + 141 = 0
E)6x + 2y + 9z - 141 = 0
Question
Determine whether the planes are parallel,orthogonal,or neither.
5x - 6y - 6z = 0
3x - 4y + 2z = -4

A)parallel
B)orthogonal
C)neither
Question
Find the angle of intersection of the planes in degrees.Round to a tenth of a degree. 5x + y - z = -3
-3x - y + z = -1

A)167.7°
B)-80.6°
C)170.6°
D)44.6°
E)3.0°
Question
Find the general form of the equation of the plane passing through the three points.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (3,1,6), (-6,-1,6), (3,5,-6)

A)2x - 9y - 3z + 21 = 0
B)2x - 9y - 3z = 0
C)3x + y + 6z = 0
D)2x - 9y - 3z - 21 = 0
E)3x + y + 6z - 252 = 0
Question
Find a set of parametric equations of the line.
Passes through (1,6,3)( - 1,6 , - 3 ) and is parallel to v=5ij\mathbf { v } = 5 \mathbf { i } - \mathbf { j } .

A) x=1+5ty=6tz=3\begin{array} { l } x = - 1 + 5 t \\y = 6 - t \\z = 3\end{array}
B) x=1+5ty=6tz=3\begin{array} { l } x = - 1 + 5 t \\y = - 6 - t \\z = - 3\end{array}
C) x=1+5ty=6tz=3\begin{array} { l } x = 1 + 5 t \\y = 6 - t \\z = 3\end{array}
D) x=1+5ty=6tz=3\begin{array} { l } x = - 1 + 5 t \\y = 6 - t \\z = - 3\end{array}
E) x=1+5ty=6tz=3\begin{array} { l } x = 1 + 5 t \\y = 6 - t \\z = - 3\end{array}
Question
Find the general form of the equation of the plane passing through the three points. (0,0,0),(5,6,7),(6,7,7)( 0,0,0 ) , ( 5,6,7 ) , ( - 6,7,7 )

A) 7x+71y+77z=0- 7 x + 71 y + 77 z = 0
B) 7x77y71z=0- 7 x - 77 y - 71 z = 0
C) 7x77y+71z=0- 7 x - 77 y + 71 z = 0
D) 7x+77y71z=0- 7 x + 77 y - 71 z = 0
E) 7x+77y+71z=0- 7 x + 77 y + 71 z = 0
Question
Find the angle between the two planes in degrees.Round to a tenth of a degree.
3x - 4y + z = -6
2x + y + 3z = 0

A)15.2°
B)71.9°
C)14.7°
D)74.8°
E)1.3°
Question
Find the general form of the equation of the plane with the given characteristics. The plane passes through the point (5,-1,-4)and is parallel to the yz-plane.

A)y = -1
B)z = -4
C)x + y + z = 0
D)y + z = -5
E)x = 5
Question
Determine whether the planes are parallel,orthogonal,or neither.
5x - 4y + z = -2
3x + 4y + z = -5

A)parallel
B)orthogonal
C)neither
Question
Find the general form of the equation of the plane with the given characteristics. The plane passes through the points (5,5,-2)and (4,2,1)and is perpendicular to the plane -3x - 2y + 4z = 1.

A)6x + 5y + 7z - 41 = 0
B)3x + 2y - 4z + 33 = 0
C)6x - 5y + 7z - 9 = 0
D)3x + 2y - 4z = 0
E)7x + 6y + 5z - 55 = 0
Question
Determine whether the planes are parallel,orthogonal,or neither. 3xz=37x+y+21z=7\begin{array} { l } 3 x - z = 3 \\7 x + y + 21 z = 7\end{array}

A)Neither
B)Parallel
C)Orthogonal
Question
Find the angle,in degrees,between two adjacent sides of the pyramid shown below.Round to the nearest tenth of a degree.[Note: The base of the pyramid is not considered a side.] <strong>Find the angle,in degrees,between two adjacent sides of the pyramid shown below.Round to the nearest tenth of a degree.[Note: The base of the pyramid is not considered a side.]   P(8,0,0),Q(8,8,0),R(0,8,0),S(4,4,4)</strong> A)54.7° B)30° C)2.1° D)90° E)45° <div style=padding-top: 35px> P(8,0,0),Q(8,8,0),R(0,8,0),S(4,4,4)

A)54.7°
B)30°
C)2.1°
D)90°
E)45°
Question
Find the angle between the two planes. 3x4y+5z=6x+yz=2\begin{array} { l } 3 x - 4 y + 5 z = 6 \\x + y - z = 2\end{array}

A)81.6°
B)83.2°
C)83.8°
D)80.6°
E)79.6°
Question
Determine whether the planes are parallel,orthogonal,or neither.
6x + y - z = 2
-18x - 3y + 3z = -4

A)parallel
B)orthogonal
C)neither
Question
Find the angle between the two planes in degrees.Round to a tenth of a degree.
5x - 6y - 4z = -5
X + y + 5z = -1

A)114.5°
B)27.4°
C)117.4°
D)24.7°
E)2.0°
Question
Find the angle between the two planes in degrees.Round to a tenth of a degree. 3x4y+1z=62x+1y3z=0\begin{array} { l } 3 x - 4 y + 1 z = - 6 \\2 x + 1 y - 3 z = 0\end{array}

A)88.0°
B)90.8°
C)10.8°
D)89.8°
E)89.7°
Question
Find the angle between the two planes. x+yz=34x5y4z=5\begin{array} { l } x + y - z = 3 \\4 x - 5 y - 4 z = 5\end{array}

A)77.7°
B)76.7°
C)79.7°
D)78.7°
E)75.7°
Question
Find the general form of the equation of the plane passing through the point and perpendicular to the specified line.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (3,3,7)x=4ty=13tz=35t\begin{array} { l } ( - 3,3 , - 7 ) \\x = 4 - t \\y = 1 - 3 t \\z = 3 - 5 t\end{array}

A)x + 3y + 5z = 0
B)x + 3y + 5z - 29 = 0
C)x + 3y + 5z + 29 = 0
D)3x - 3y + 7z - 29 = 0
E)3x - 3y + 7z + 29 = 0
Question
Find u × v and show that it is orthogonal to both u and v.
u=57iv=67j49k\begin{array} { l } \mathbf { u } = \frac { 5 } { 7 } \mathbf { i } \\\mathbf { v } = \frac { 6 } { 7 } \mathbf { j } - 49 \mathbf { k }\end{array}

A) u×v=35i+3049j(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
B) u×v=35i3049k(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathrm { i } - \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
C) u×v=35i+3049k(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
D) u×v=35i+3049j(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
E) u×v=35j+3049k(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { j } + \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
Question
Find u × v and show that it is orthogonal to both u and v. u=12i+6j+kv=i+5j6k\begin{array} { l } \mathbf { u } = 12 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } \\\mathbf { v } = \mathbf { i } + 5 \mathbf { j } - 6 \mathbf { k }\end{array}

A) u×v=73i41j41k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } - 41 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=73i41j+73k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } + 73 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=73i41j+54k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } + 54 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=41i+73j+54k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 41 \mathbf { i } + 73 \mathbf { j } + 54 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=41i+73j41k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 41 \mathbf { i } + 73 \mathbf { j } - 41 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
Question
Find symmetric equations for the line through the point and parallel to the specified vector.
(9,-6,-5),parallel to Find symmetric equations for the line through the point and parallel to the specified vector. (9,-6,-5),parallel to  <div style=padding-top: 35px>
Question
Find a set of parametric equations for the line through the point and parallel to the specified vector. Find a set of parametric equations for the line through the point and parallel to the specified vector.  <div style=padding-top: 35px>
Question
Find symmetric equations for the line through the point and parallel to the specified line. Find symmetric equations for the line through the point and parallel to the specified line.  <div style=padding-top: 35px>
Question
Find a set of parametric equations for the line that passes through the given points. Find a set of parametric equations for the line that passes through the given points.  <div style=padding-top: 35px>
Question
Use the vectors u and v to find u × v. u=5ij+6k\mathbf { u } = 5 \mathbf { i } - \mathbf { j } + 6 \mathbf { k } v=4i+4jk\mathbf { v } = 4 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }

A) u×v=24i+29j23k\mathbf { u } \times \mathbf { v } = 24 \mathbf { i } + 29 \mathbf { j } - 23 \mathbf { k }
B) u×v=29i+24j23k\mathbf { u } \times \mathbf { v } = 29 \mathbf { i } + 24 \mathbf { j } - 23 \mathbf { k }
C) u×v=24i23j+29k\mathbf { u } \times \mathbf { v } = 24 \mathbf { i } - 23 \mathbf { j } + 29 \mathbf { k }
D) u×v=29i23j+24k\mathbf { u } \times \mathbf { v } = 29 \mathbf { i } - 23 \mathbf { j } + 24 \mathbf { k }
E) u×v=23i+29j+24k\mathbf { u } \times \mathbf { v } = - 23 \mathbf { i } + 29 \mathbf { j } + 24 \mathbf { k }
Question
Use the vectors u and v to find v × u. u=3ij+4kv=2i+2jk\mathbf { u } = 3 \mathbf { i } - \mathbf { j } + 4 \mathbf { k } \quad \mathbf { v } = 2 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }

A) v×u=11i+7j8k\mathbf { v } \times \mathbf { u } = 11 \mathbf { i } + 7 \mathbf { j } - 8 \mathbf { k }
B) v×u=7i11j8k\mathbf { v } \times \mathbf { u } = 7 \mathbf { i } - 11 \mathbf { j } - 8 \mathbf { k }
C) v×u=7i+11j+7k\mathbf { v } \times \mathbf { u } = - 7 \mathbf { i } + 11 \mathbf { j } + 7 \mathbf { k }
D) v×u=11i+11j+8k\mathbf { v } \times \mathbf { u } = 11 \mathbf { i } + 11 \mathbf { j } + 8 \mathbf { k }
E) v×u=7i8j+8k\mathbf { v } \times \mathbf { u } = 7 \mathbf { i } - 8 \mathbf { j } + 8 \mathbf { k }
Question
Use the vectors u and v to find (3u)× v. u=7ij+8kv=6i+6jk\mathbf { u } = 7 \mathbf { i } - \mathbf { j } + 8 \mathbf { k } \quad \mathbf { v } = 6 \mathbf { i } + 6 \mathbf { j } - \mathbf { k }

A) (3u)×v=141i+165j+144k( 3 \mathbf { u } ) \times \mathbf { v } = - 141 \mathbf { i } + 165 \mathbf { j } + 144 \mathbf { k }
B)  (3u) ×v=165i141j+144k\text { (3u) } \times \mathbf { v } = 165 \mathbf { i } - 141 \mathbf { j } + 144 \mathbf { k }
C) (3u)×v=165i+165j+144k( 3 \mathbf { u } ) \times \mathbf { v } = 165 \mathbf { i } + 165 \mathbf { j } + 144 \mathbf { k }
D) (3u)×v=165i+144j+144k( 3 \mathbf { u } ) \times \mathbf { v } = 165 \mathbf { i } + 144 \mathbf { j } + 144 \mathbf { k }
E)  (3u) ×v=144i+165j141k\text { (3u) } \times \mathbf { v } = 144 \mathbf { i } + 165 \mathbf { j } - 141 \mathbf { k }
Question
Use the vectors u and v to find u × (2v). u=6ij+7kv=5i+5jk\mathbf { u } = 6 \mathbf { i } - \mathbf { j } + 7 \mathbf { k } \quad \mathbf { v } = 5 \mathbf { i } + 5 \mathbf { j } - \mathbf { k }

A) u×(2v)=68i+82j+82k\mathbf { u } \times ( 2 \mathbf { v } ) = - 68 \mathbf { i } + 82 \mathbf { j } + 82 \mathbf { k }
B) u×(2v)=68i+82j+70k\mathbf { u } \times ( 2 \mathbf { v } ) = - 68 \mathbf { i } + 82 \mathbf { j } + 70 \mathbf { k }
C) u×(2v)=68i+70j+70k\mathbf { u } \times ( 2 \mathbf { v } ) = - 68 \mathbf { i } + 70 \mathbf { j } + 70 \mathbf { k }
D) u×(2v)=82i+82j+70k\mathbf { u } \times ( 2 \mathbf { v } ) = 82 \mathbf { i } + 82 \mathbf { j } + 70 \mathbf { k }
E) u×(2v)=70i+82j+70k\mathbf { u } \times ( 2 \mathbf { v } ) = 70 \mathbf { i } + 82 \mathbf { j } + 70 \mathbf { k }
Question
Find u × v and show that it is orthogonal to both u and v. u=8kv=i+4j+k\begin{array} { l } \mathbf { u } = 8 \mathbf { k } \\\mathbf { v } = - \mathbf { i } + 4 \mathbf { j } + \mathbf { k }\end{array}

A) u×v=4i8j(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 4 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=32i8k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { i } - 8 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=32i8j(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=32j8k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { j } - 8 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=8i8j(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 8 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
Question
Find u × v and show that it is orthogonal to both u and v. u=i+kv=j3k\begin{array} { l } \mathbf { u } = - \mathbf { i } + \mathbf { k } \\\mathbf { v } = \mathbf { j } - 3 \mathbf { k }\end{array}

A) u×v=i3jk(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = \mathbf { i } - 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=i3jk(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } - 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=i+3jk(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } + 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=i3j+k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } - 3 \mathbf { j } + \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=i3j+k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = \mathbf { i } - 3 \mathbf { j } + \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
Question
Use the vectors u and v to find u × (-v). u=7ij+8kv=6i+6jk\mathbf { u } = 7 \mathbf { i } - \mathbf { j } + 8 \mathbf { k } \quad \mathbf { v } = 6 \mathbf { i } + 6 \mathbf { j } - \mathbf { k }

A) u×(v)=47i55j48k\mathbf { u } \times ( - \mathbf { v } ) = 47 \mathbf { i } - 55 \mathbf { j } - 48 \mathbf { k }
B) u×(v)=55i55j48k\mathbf { u } \times ( - \mathbf { v } ) = 55 \mathbf { i } - 55 \mathbf { j } - 48 \mathbf { k }
C) u×(v)=47i+47j48k\mathbf { u } \times ( - \mathbf { v } ) = 47 \mathbf { i } + 47 \mathbf { j } - 48 \mathbf { k }
D) u×(v)=55i+47j+48k\mathbf { u } \times ( - \mathbf { v } ) = 55 \mathbf { i } + 47 \mathbf { j } + 48 \mathbf { k }
E) u×(v)=48i55j+47k\mathbf { u } \times ( - \mathbf { v } ) = 48 \mathbf { i } - 55 \mathbf { j } + 47 \mathbf { k }
Question
Use the vectors u and v to find (-2u)× v. u=3ij+4kv=2i+2jk\mathbf { u } = 3 \mathbf { i } - \mathbf { j } + 4 \mathbf { k } \quad \mathbf { v } = 2 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }

A) (2u)×v=14i22j16k( - 2 \mathbf { u } ) \times \mathbf { v } = - 14 \mathbf { i } - 22 \mathbf { j } - 16 \mathbf { k }
B) (2u)×v=16i22j+14k( - 2 \mathbf { u } ) \times \mathbf { v } = - 16 \mathbf { i } - 22 \mathbf { j } + 14 \mathbf { k }
C) (2u)×v=16i+14j22k( - 2 \mathbf { u } ) \times \mathbf { v } = - 16 \mathbf { i } + 14 \mathbf { j } - 22 \mathbf { k }
D) (2u)×v=22i+14j16k( - 2 \mathbf { u } ) \times \mathbf { v } = - 22 \mathbf { i } + 14 \mathbf { j } - 16 \mathbf { k }
E) (2u)×v=14i22j16k( - 2 \mathbf { u } ) \times \mathbf { v } = 14 \mathbf { i } - 22 \mathbf { j } - 16 \mathbf { k }
Question
Find the distance between the point and the plane.
(-5,-6,-5) 2x+3y9z=12 x + 3 y - 9 z = - 1

A)18
B) 1894\frac { 18 } { 94 }
C) 194\frac { 1 } { \sqrt { 94 } }
D)0
E) 1894\frac { 18 } { \sqrt { 94 } }
Question
Find the angle,in degrees,between two adjacent sides of the pyramid shown below.Round to the nearest tenth of a degree.[Note: The base of the pyramid is not considered a side.] <strong>Find the angle,in degrees,between two adjacent sides of the pyramid shown below.Round to the nearest tenth of a degree.[Note: The base of the pyramid is not considered a side.]   P(10,0,0),Q(10,10,0),R(0,10,0),S(5,5,2)</strong> A)2.6° B)47.1° C)90° D)45° E)59.5° <div style=padding-top: 35px> P(10,0,0),Q(10,10,0),R(0,10,0),S(5,5,2)

A)2.6°
B)47.1°
C)90°
D)45°
E)59.5°
Question
Find a set of parametric equations for the line through the point and parallel to the specified line. Find a set of parametric equations for the line through the point and parallel to the specified line.  <div style=padding-top: 35px>
Question
Use the vectors u and v to find v × (u × u). u=7ij+8kv=6i+6jk\mathbf { u } = 7 \mathbf { i } - \mathbf { j } + 8 \mathbf { k } \quad \mathbf { v } = 6 \mathbf { i } + 6 \mathbf { j } - \mathbf { k }

A)v × (u × u)= -12
B)v × (u × u)= 0
C)v × (u × u)= 12
D)v × (u × u)= -11
E)v × (u × u)= 11
Question
Find a set of parametric equations for the line that passes through the given points.
(8,2,3), (-1,3,-6)
Question
Use the vectors v to find v×v. v=4i+4jk\mathbf { v } = 4 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }

A)v × v = -8
B)v × v = -7
C)v × v = 0
D)v × v = 8
E)v × v = 7
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/256
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: Analytic Geometry In Three Dimensions
1
Find a set of symmetric equations of the line that passes through the given points. (5,0,5),(1,6,3)( 5,0,5 ) , ( 1,6 , - 3 )

A) x54=y6=z58\frac { x - 5 } { - 4 } = \frac { y } { 6 } = \frac { z - 5 } { - 8 }
B) x54=y6=z58\frac { x - 5 } { - 4 } = \frac { y } { - 6 } = \frac { z - 5 } { - 8 }
C) x54=y8=z56\frac { x - 5 } { - 4 } = \frac { y } { - 8 } = \frac { z - 5 } { 6 }
D) x54=y6=z+58\frac { x - 5 } { - 4 } = \frac { y } { 6 } = \frac { z + 5 } { - 8 }
E) x+54=y6=z+58\frac { x + 5 } { - 4 } = \frac { y } { 6 } = \frac { z + 5 } { - 8 }
x54=y6=z58\frac { x - 5 } { - 4 } = \frac { y } { 6 } = \frac { z - 5 } { - 8 }
2
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (2,5,3)( 2 , - 5,3 ) Parallel to: v=(4,3,6)v = ( 4 , - 3 , - 6 )

A)Parametric equations: x=4+3t,y=35t,z=6+2tx = 4 + 3 t , y = - 3 - 5 t , z = - 6 + 2 t
B)Parametric equations: x=6+2t,y=45t,z=3+3tx = - 6 + 2 t , y = 4 - 5 t , z = - 3 + 3 t
C)Parametric equations: x=6+2t,y=45t,z=6+3tx = - 6 + 2 t , y = 4 - 5 t , z = - 6 + 3 t
D)Parametric equations: x=2+4t,y=53t,z=36tx = 2 + 4 t , y = - 5 - 3 t , z = 3 - 6 t
E)Parametric equations: x=6+3t,y=35t,z=4+2tx = - 6 + 3 t , y = - 3 - 5 t , z = 4 + 2 t
Parametric equations: x=2+4t,y=53t,z=36tx = 2 + 4 t , y = - 5 - 3 t , z = 3 - 6 t
3
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (3,6,2)( 3 , - 6,2 ) Parallel to: x=5+2t,y=74t,z=2+tx = 5 + 2 t , y = 7 - 4 t , z = - 2 + t

A)Parametric equations: x=3+t,y=64t,z=2+2tx = 3 + t , y = - 6 - 4 t , z = 2 + 2 t
B)Parametric equations: x=2+2t,y=24t,z=2+tx = 2 + 2 t , y = 2 - 4 t , z = 2 + t
C)Parametric equations: x=2+2t,y=34t,z=6+tx = 2 + 2 t , y = 3 - 4 t , z = - 6 + t
D)Parametric equations: x=6+2t,y=64t,z=3+tx = - 6 + 2 t , y = - 6 - 4 t , z = 3 + t
E)Parametric equations: x=3+2t,y=64t,z=2+tx = 3 + 2 t , y = - 6 - 4 t , z = 2 + t
Parametric equations: x=3+2t,y=64t,z=2+tx = 3 + 2 t , y = - 6 - 4 t , z = 2 + t
4
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (6,2,0)( - 6,2,0 ) Parallel to: v=37i+37j5k\mathrm { v } = \frac { 3 } { 7 } \mathrm { i } + \frac { - 3 } { 7 } \mathrm { j } - 5 \mathrm { k }

A)Parametric equations: x=63t,y=43t,z=5tx = - 6 - 3 t , y = 4 - 3 t , z = - 5 t
B)Parametric equations: x=2+3t,y=53t,z=5tx = - 2 + 3 t , y = 5 - 3 t , z = - 5 t
C)Parametric equations: x=5t,y=53t,z=5tx = - 5 t , y = 5 - 3 t , z = - 5 t
D)Parametric equations: x=6+3t,y=23t,z=35tx = - 6 + 3 t , y = 2 - 3 t , z = - 35 t
E)Parametric equations: x=3t,y=5t,z=3tx = 3 t , y = - 5 t , z = - 3 t
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
5
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (5,0,2)
Parallel to: x=3+3t,y=52t,z=7+tx = 3 + 3 t , y = 5 - 2 t , z = - 7 + t

A)Symmetric equations: x+33=y22=z2\frac { x + 3 } { 3 } = \frac { y - 2 } { - 2 } = z - 2
B)Symmetric equations: x23=y22=z2\frac { x - 2 } { 3 } = \frac { y - 2 } { - 2 } = z - 2
C)Symmetric equations: x52=y3=z2\frac { x - 5 } { - 2 } = \frac { y } { 3 } = z - 2
D)Symmetric equations: z53=y2=x2\frac { z - 5 } { 3 } = \frac { y } { - 2 } = x - 2
E)Symmetric equations: x53=y2=z2\frac { x - 5 } { 3 } = \frac { y } { - 2 } = z - 2
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
6
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (3,2,6)( 3,2,6 ) Perpendicular to: n=in = i

A) 3x=0- 3 x = 0
B) x=0x = 0
C) x3=0x - 3 = 0
D) 3x=03 x = 0
E) x+3=0x + 3 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
7
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (6,2,2)( 6 , - 2,2 ) Parallel to: v=(3,4,10)\mathbf { v } = ( 3 , - 4 , - 10 )

A)Symmetric equations: x63=y+24=z210\frac { x - 6 } { 3 } = \frac { y + 2 } { - 4 } = \frac { z - 2 } { - 10 }
B)Symmetric equations: x64=y+24=z210\frac { x - 6 } { - 4 } = \frac { y + 2 } { - 4 } = \frac { z - 2 } { - 10 }
C)Symmetric equations: x63=y+210=z23\frac { x - 6 } { 3 } = \frac { y + 2 } { - 10 } = \frac { z - 2 } { 3 }
D)Symmetric equations: x64=y+23=z210\frac { x - 6 } { - 4 } = \frac { y + 2 } { 3 } = \frac { z - 2 } { - 10 }
E)Symmetric equations: x610=y+23=z24\frac { x - 6 } { - 10 } = \frac { y + 2 } { 3 } = \frac { z - 2 } { - 4 }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
8
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (7,0,2)( - 7,0,2 ) Parallel to: v=4i+5j3k\mathbf { v } = 4 \mathbf { i } + 5 \mathbf { j } - 3 \mathbf { k }

A)Symmetric equations: x+73=y5=z24\frac { x + 7 } { - 3 } = \frac { y } { 5 } = \frac { z - 2 } { 4 }
B)Symmetric equations: x+74=y5=z23\frac { x + 7 } { 4 } = \frac { y } { 5 } = \frac { z - 2 } { - 3 }
C)Symmetric equations: x+74=z5=y23\frac { x + 7 } { 4 } = \frac { z } { 5 } = \frac { y - 2 } { - 3 }
D)Symmetric equations: x+54=y5=z23\frac { x + 5 } { 4 } = \frac { y } { 5 } = \frac { z - 2 } { - 3 }
E)Symmetric equations: x+74=y+75=z23\frac { x + 7 } { 4 } = \frac { y + 7 } { 5 } = \frac { z - 2 } { - 3 }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
9
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (0,0,8)( 0,0,8 ) Perpendicular to: x=1t,y=2+t,z=44tx = 1 - t , y = 2 + t , z = 4 - 4 t

A) xy+4z32=0x - y + 4 z - 32 = 0
B) x+y4z32=0x + y - 4 z - 32 = 0
C) xy4z+32=0- x - y - 4 z + 32 = 0
D) x+y+4z+32=0- x + y + 4 z + 32 = 0
E) x+y4z+32=0- x + y - 4 z + 32 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
10
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (2,0,7)( 2,0 , - 7 ) Perpendicular to: n=7k\mathbf { n } = - 7 \mathbf { k }

A) z+7=0z + 7 = 0
B) 7z=07 z = 0
C) z7=0z - 7 = 0
D) z=0z = 0
E) 7z=0- 7 z = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
11
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (0,0,0)
Perpendicular to: n=2j+6k\mathbf { n } = - 2 \mathbf { j } + 6 \mathbf { k }

A) x+2y+6z=0x + 2 y + 6 z = 0
B) 6y+2z=06 y + 2 z = 0
C) x2y+6z=0x - 2 y + 6 z = 0
D) 2y+6z=0- 2 y + 6 z = 0
E) 2y6z=0- 2 y - 6 z = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
12
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (0,0,0)
Parallel to: v=(5,6,7)\mathbf { v } = ( 5,6,7 )

A)Parametric equations: x=6t,y=5t,z=7tx = 6 t , y = 5 t , z = 7 t
B)Parametric equations: x=5t,y=6t,z=7tx = 5 t , y = 6 t , z = 7 t
C)Parametric equations: x=6t,y=7t,z=5tx = 6 t , y = 7 t , z = 5 t
D)Parametric equations: x=7t,y=6t,z=5tx = 7 t , y = 6 t , z = 5 t
E)Parametric equations: x=7t,y=6t,z=7tx = 7 t , y = 6 t , z = 7 t
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
13
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (4,4,5)( 4 , - 4,5 ) Parallel to: x=5+2t,y=74t,z=2+tx = 5 + 2 t , y = 7 - 4 t , z = - 2 + t

A)Symmetric equations: x42=y44=z5\frac { x - 4 } { 2 } = \frac { y - 4 } { - 4 } = z - 5
B)Symmetric equations: x44=y+42=z5\frac { x - 4 } { - 4 } = \frac { y + 4 } { 2 } = z - 5
C)Symmetric equations: x42=y44=z4\frac { x - 4 } { 2 } = \frac { y - 4 } { - 4 } = z - 4
D)Symmetric equations: x52=y+44=z4\frac { x - 5 } { 2 } = \frac { y + 4 } { - 4 } = z - 4
E)Symmetric equations: x42=y+44=z5\frac { x - 4 } { 2 } = \frac { y + 4 } { - 4 } = z - 5
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
14
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (2,2,0)( - 2,2,0 ) Parallel to: v=37i47j3k\mathbf { v } = \frac { 3 } { 7 } \mathrm { i } - \frac { 4 } { 7 } \mathbf { j } - 3 \mathrm { k }

A)Symmetric equations: x3=y221=z4\frac { x } { 3 } = \frac { y - 2 } { - 21 } = \frac { z } { - 4 }
B)Symmetric equations: x+23=y23=z21\frac { x + 2 } { 3 } = \frac { y - 2 } { 3 } = \frac { z } { - 21 }
C)Symmetric equations: x+23=y24=z63\frac { x + 2 } { 3 } = \frac { y - 2 } { - 4 } = \frac { z - 6 } { - 3 }
D)Symmetric equations: x+23=y24=z21\frac { x + 2 } { 3 } = \frac { y - 2 } { - 4 } = \frac { z } { - 21 }
E)Symmetric equations: x+24=y3=z21\frac { x + 2 } { - 4 } = \frac { y } { 3 } = \frac { z } { - 21 }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
15
Find a set of parametric equations of the line that passes through the given points. (5,0,6),(1,6,3)( 5,0,6 ) , ( 1,6 , - 3 )

A) x=54t,y=6t,z=9tx = 5 - 4 t , y = 6 t , z = - 9 t
B) x=54t,y=5+6t,z=69tx = 5 - 4 t , y = 5 + 6 t , z = 6 - 9 t
C) x=54t,y=6t,z=69tx = 5 - 4 t , y = 6 t , z = 6 - 9 t
D) x=64t,y=16t,z=69tx = 6 - 4 t , y = 1 - 6 t , z = 6 - 9 t
E) x=64t,y=6t,z=59tx = 6 - 4 t , y = 6 t , z = 5 - 9 t
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
16
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (2,0,2)( 2,0,2 ) Parallel to: x=3+4t,y=55t,z=7+3tx = 3 + 4 t , y = 5 - 5 t , z = - 7 + 3 t

A)Parametric equations: x=4t,y=5t,z=2+3tx = 4 t , y = - 5 t , z = 2 + 3 t
B)Parametric equations: x=2+4t,y=25t,z=2+3tx = 2 + 4 t , y = 2 - 5 t , z = 2 + 3 t
C)Parametric equations: x=2+4t,y=5t,z=2+3tx = 2 + 4 t , y = - 5 t , z = 2 + 3 t
D)Parametric equations: x=2+4t,y=25t,z=22tx = 2 + 4 t , y = 2 - 5 t , z = 2 - 2 t
E)Parametric equations: x=2+5t,y=3t,z=2+4tx = 2 + - 5 t , y = 3 t , z = 2 + 4 t
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
17
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (7,8,2)( 7,8,2 ) Perpendicular to: n=4i+j5k\mathbf { n } = - 4 \mathbf { i } + \mathbf { j } - 5 \mathbf { k }

A) 4x+4y5z+30=0- 4 x + - 4 y - 5 z + 30 = 0
B) 4y5z+30=0- 4 y - 5 z + 30 = 0
C) 4x+y30z+5=0- 4 x + y 30 z + - 5 = 0
D) 4x+y5z+30=0- 4 x + y - 5 z + 30 = 0
E) 4x+y5z30=0- 4 x + y - 5 z - 30 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
18
Find a set of parametric equations for the line through the point and parallel to the specified vector or line.(For each line,write the direction numbers as integers. )
Point: (7,2,2)( - 7,2,2 ) Parallel to: v=3i+6j2k\mathbf { v } = 3 \mathbf { i } + 6 \mathbf { j } - 2 \mathbf { k }

A)Parametric equations: x=3+7t,y=2+6t,z=22tx = 3 + - 7 t , y = 2 + 6 t , z = 2 - 2 t
B)Parametric equations: x=7+3t,y=6+2t,z=22tx = - 7 + 3 t , y = 6 + 2 t , z = 2 - 2 t
C)Parametric equations: x=7+2t,y=2+6t,z=22tx = - 7 + 2 t , y = 2 + 6 t , z = 2 - 2 t
D)Parametric equations: x=7+3t,y=2+6t,z=22tx = - 7 + 3 t , y = 2 + 6 t , z = 2 - 2 t
E)Parametric equations: x=2+3t,y=2+6t,z=22tx = 2 + 3 t , y = 2 + 6 t , z = 2 - 2 t
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
19
Find a set of symmetric equations for the line through the point and parallel to the specified vector or line.
Point: (7,0,0)
Parallel to: v=(5,6,7)\mathbf { v } = ( 5,6,7 )

A)Symmetric equations: x5=y7=z77\frac { x } { 5 } = \frac { y } { 7 } = \frac { z - 7 } { 7 }
B)Symmetric equations: x7=y6=z5\frac { x } { 7 } = \frac { y } { 6 } = \frac { z } { 5 }
C)Symmetric equations: x75=y6=z7\frac { x - 7 } { 5 } = \frac { y } { 6 } = \frac { z } { 7 }
D)Symmetric equations: x5=y75=z7\frac { x } { 5 } = \frac { y - 7 } { 5 } = \frac { z } { 7 }
E)Symmetric equations: x76=y5=z7\frac { x - 7 } { 6 } = \frac { y } { 5 } = \frac { z } { 7 }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
20
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector or line.
Point: (3,0,0)( 3,0,0 ) Perpendicular to: x=3t,y=26t,z=4+tx = 3 - t , y = 2 - 6 t , z = 4 + t

A) x6yz+3=0- x - 6 y - z + 3 = 0
B) x6y+z+3=0x - 6 y + z + 3 = 0
C) x+6y+z+3=0- x + 6 y + z + 3 = 0
D) x6y+z+3=0- x - 6 y + z + 3 = 0
E) x6yz3=0- x - 6 y - z - 3 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
21
Find a set of parametric equations of the line.
Passes through (5,6,6)( 5,6,6 ) and is parallel to the xz-plane and the yz-plane

A) x=5+ty=6z=6\begin{array} { l } x = 5 + \mathrm { t } \\y = 6 \\z = 6\end{array}
B) x=5y=6z=6+t\begin{array} { l } x = 5 \\y = 6 \\z = 6 + t\end{array}
C) x=5y=6+tz=6\begin{array} { l } x = 5 \\y = 6 + t \\z = 6\end{array}
D) x=5y=6+tz=6+t\begin{array} { l } x = 5 \\y = 6 + t \\z = 6 + t\end{array}
E) x=5+ty=6+tz=6\begin{array} { l } x = 5 + t \\y = 6 + t \\z = 6\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
22
Find the general form of the equation of the plane passing through the three points.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (-4,4,-1), (1,6,2), (-5,-3,6)

A)35x -38y -33z = 0
B)4x -4y 1z = 0
C)4x -4y 1z + 259 = 0
D)35x -38y -33z + 259 = 0
E)35x -38y -33z - 259 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
23
Find a set of parametric equations of the line.
Passes through (4,2,3)( - 4,2,3 ) and is parallel to the xy-plane and the yz-plane

A) x=4y=2z=3+t\begin{array} { l } x = - 4 \\y = 2 \\z = 3 + t\end{array}
B) x=4+ty=2z=3\begin{array} { l } x = - 4 + t \\y = 2 \\z = 3\end{array}
C) x=4y=2+tz=3+t\begin{array} { l } x = - 4 \\y = 2 + t \\z = 3 + t\end{array}
D) x=4y=2+tz=3\begin{array} { l } x = - 4 \\y = 2 + t \\z = 3\end{array}
E) x=4y=2z=3t\begin{array} { l } x = - 4 \\y = 2 \\z = 3 - t\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
24
Find the general form of the equation of the plane with the given characteristics. The plane passes through the point (-2,-3,-5)and is parallel to the yz-plane.

A)x + y + z = -10
B)y = -3
C)z = -5
D)y + z = -8
E)x = -2
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
25
Find a set of parametric equations of the line.
Passes through (4,6,5)( 4,6,5 ) and is perpendicular to 3x+6yz=63 x + 6 y - z = 6 .

A) x=4+3ty=6+6tz=5+t\begin{array} { l } x = 4 + 3 t \\y = 6 + 6 t \\z = 5 + t\end{array}
B) x=4+3ty=6+6tz=5t\begin{array} { l } x = 4 + 3 t \\y = 6 + 6 t \\z = - 5 - t\end{array}
C) x=43ty=66tz=5t\begin{array} { l } x = 4 - 3 t \\y = 6 - 6 t \\z = 5 - t\end{array}
D) x=4+3ty=6+6tz=5t\begin{array} { l } x = 4 + 3 t \\y = 6 + 6 t \\z = 5 - t\end{array}
E) x=4+3ty=66tz=5t\begin{array} { l } x = 4 + 3 t \\y = 6 - 6 t \\z = 5 - t\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
26
Find the general form of the equation of the plane passing through the point and perpendicular to the specified line.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (7,8,1)x=3+2ty=32tz=2+4t\begin{array} { l } ( - 7 , - 8 , - 1 ) \\x = 3 + 2 t \\y = - 3 - 2 t \\z = 2 + 4 t\end{array}

A)7x + 8y + z + 2 = 0
B)7x + 8y + z - 2 = 0
C)x - y + 2z - 1 = 0
D)x - y + 2z + 1 = 0
E)x - y + 2z = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
27
Find a set of symmetric equations of the line that passes through the given points. (5,8,12),(1,2,19)( - 5,8,12 ) , ( 1 , - 2,19 )

A) x+56=y87=z126\frac { x + 5 } { 6 } = \frac { y - 8 } { 7 } = \frac { z - 12 } { 6 }
B) x+56=y810=z127\frac { x + 5 } { 6 } = \frac { y - 8 } { - 10 } = \frac { z - 12 } { 7 }
C) x56=y810=z127\frac { x - 5 } { 6 } = \frac { y - 8 } { - 10 } = \frac { z - 12 } { 7 }
D) x+56=y+810=z+127\frac { x + 5 } { 6 } = \frac { y + 8 } { - 10 } = \frac { z + 12 } { 7 }
E) x510=y+810=z127\frac { x - 5 } { - 10 } = \frac { y + 8 } { - 10 } = \frac { z - 12 } { 7 }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
28
Find a set of symmetric equations of the line that passes through the given points. (3,2,0),(9,12,12)( 3,2,0 ) , ( 9,12,12 )

A) x+310=y26=z12\frac { x + 3 } { 10 } = \frac { y - 2 } { 6 } = \frac { z } { 12 }
B) x+36=y+210=z12\frac { x + 3 } { 6 } = \frac { y + 2 } { 10 } = \frac { z } { 12 }
C) x36=y+210=z12\frac { x - 3 } { 6 } = \frac { y + 2 } { 10 } = \frac { z } { 12 }
D) x36=y210=z12\frac { x - 3 } { 6 } = \frac { y - 2 } { 10 } = \frac { z } { 12 }
E) x36=y210=z12\frac { x - 3 } { 6 } = \frac { y - 2 } { 10 } = \frac { - z } { 12 }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
29
Determine whether the planes are parallel,orthogonal,or neither.
x + 2y + z = 6
-2x - 4y - 2z = -10

A)orthogonal
B)parallel
C)neither
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
30
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (-4,5,6),n = 2i- 4j+ 4k

A)x - 2y + 2 z + 2 = 0
B)4x - 5y - 6z + 4 = 0
C)x - 2y + 2 z - 2 = 0
D)x - 2y + 2 z = 0
E)4x - 5y - 6z - 4 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
31
Find the general form of the equation of the plane with the given characteristics. The plane passes through the points (3,-2,-7)and (-2,6,3)and is perpendicular to the plane -x - 4y - z = 4.

A)32x - 15y + 28z - 262 = 0
B)31x - 16y + 30z + 85 = 0
C)x + 4y + z = 0
D)32x + 15y + 28z - 130 = 0
E)x + 4y + z - 12 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
32
Find a set of parametric equations of the line.
Passes through (7,4,7)( - 7,4,7 ) and is perpendicular to x+4y+z=5- x + 4 y + z = 5 .

A) x=77ty=44tz=7+t\begin{array} { l } x = - 7 - 7 t \\y = 4 - 4 t \\z = 7 + t\end{array}
B) x=77ty=44tz=7t\begin{array} { l } x = - 7 - 7 t \\y = 4 - 4 t \\z = 7 - t\end{array}
C) x=77ty=4+4tz=7t\begin{array} { l } x = - 7 - 7 t \\y = 4 + 4 t \\z = 7 - t\end{array}
D) x=77ty=4+4tz=7+t\begin{array} { l } x = - 7 - 7 t \\y = 4 + 4 t \\z = 7 + t\end{array}
E) x=7+7ty=4+4tz=7+t\begin{array} { l } x = - 7 + 7 t \\y = 4 + 4 t \\z = 7 + t\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
33
Determine whether the planes are parallel,orthogonal,or neither.
5x - 2y - 5z = -2
X - 3y + 6z = -6

A)neither
B)parallel
C)orthogonal
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
34
Find a set of parametric equations of the line that passes through the given points. (2,3,0),(9,9,12)( 2,3,0 ) , ( 9,9,12 )

A) x=27t,y=3+6t,z=12tx = 2 - 7 t , y = 3 + 6 t , z = 12 t
B) x=2+7t,y=3+6t,z=12tx = 2 + 7 t , y = 3 + 6 t , z = 12 t
C) x=2+7t,y=36t,z=12tx = 2 + 7 t , y = 3 - 6 t , z = - 12 t
D) x=27t,y=36t,z=12tx = 2 - 7 t , y = 3 - 6 t , z = - 12 t
E) x=2+6t,y=3+7t,z=12tx = 2 + 6 t , y = 3 + 7 t , z = 12 t
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
35
Find the angle of intersection of the planes in degrees.Round to a tenth of a degree.
3x + 2y - 6z = -5
-6x + 3y + z = 1

A)112.3°
B)2.0°
C)-22.3°
D)109.4°
E)20.8°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
36
Determine whether the planes are parallel,orthogonal,or neither. 5x - y + z = -4
-x - 6y - z = -2

A)neither
B)orthogonal
C)parallel
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
37
Find a set of parametric equations of the line that passes through the given points. (4,7,13),(1,4,17)( - 4,7,13 ) , ( 1 , - 4,17 )

A) x=4+5t,y=711t,z=134tx = - 4 + 5 t , y = 7 - 11 t , z = 13 - 4 t
B) x=45t,y=711t,z=134tx = - 4 - 5 t , y = 7 - 11 t , z = 13 - 4 t
C) x=4+5t,y=11t,z=13+4tx = - 4 + 5 t , y = - 11 t , z = 13 + 4 t
D) x=4+5t,y=711t,z=4tx = - 4 + 5 t , y = 7 - 11 t , z = 4 t
E) x=4+5t,y=711t,z=13+4tx = - 4 + 5 t , y = 7 - 11 t , z = 13 + 4 t
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
38
Find a set of parametric equations of the line.
Passes through (3,4,3)( 3 , - 4 , - 3 ) and is parallel to v=(6,6,3)\mathbf { v } = ( 6 , - 6,3 ) .

A) x=3+6ty=46tz=3+3t\begin{array} { l } x = 3 + 6 t \\y = - 4 - 6 t \\z = - 3 + 3 t\end{array}
B) x=36ty=46tz=3+3t\begin{array} { l } x = 3 - 6 t \\y = - 4 - 6 t \\z = - 3 + 3 t\end{array}
C) x=3+6ty=4+6tz=3+3t\begin{array} { l } x = 3 + 6 t \\y = - 4 + 6 t \\z = - 3 + 3 t\end{array}
D) x=36ty=46tz=33t\begin{array} { l } x = 3 - 6 t \\y = - 4 - 6 t \\z = - 3 - 3 t\end{array}
E) x=3+6ty=46tz=33t\begin{array} { l } x = 3 + 6 t \\y = - 4 - 6 t \\z = - 3 - 3 t\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
39
Find the general form of the equation of the plane with the given characteristics.
Passes through (7,4,6)( 7,4,6 ) and is parallel to the yz-plane

A) x=0x = 0
B) 7x=0- 7 x = 0
C) x+7=0x + 7 = 0
D) 7x=07 x = 0
E) x7=0x - 7 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
40
Find the general form of the equation of the plane with the given characteristics.
Passes through (3,8,6)( 3,8,6 ) and is parallel to the xz-plane

A) y+8=0y + 8 = 0
B) 8y=0- 8 y = 0
C) y8=0y - 8 = 0
D) 8y=08 y = 0
E) y=0y = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
41
Find the angle between the two planes. x4y+z=33x+3z+4=0\begin{array} { l } x - 4 y + z = - 3 \\3 x + 3 z + 4 = 0\end{array}

A)71.5 ^\circ
B)72.5 ^\circ
C)73.5 ^\circ
D)70.5 ^\circ
E)69.5 ^\circ
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
42
Determine whether the planes are parallel,orthogonal,or neither. x9yz=54x36y4z=2\begin{array} { l } x - 9 y - z = 5 \\4 x - 36 y - 4 z = - 2\end{array}

A)Neither
B)Orthogonal
C)Parallel
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
43
Find the general form of the equation of the plane passing through the point and perpendicular to the specified vector.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (6,2,9),n = 8i + 6j + 9k

A)8x + 6y + 9 z = 0
B)8x + 6y + 9 z + 141 = 0
C)8x + 6y + 9 z - 141 = 0
D)6x + 2y + 9z + 141 = 0
E)6x + 2y + 9z - 141 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
44
Determine whether the planes are parallel,orthogonal,or neither.
5x - 6y - 6z = 0
3x - 4y + 2z = -4

A)parallel
B)orthogonal
C)neither
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
45
Find the angle of intersection of the planes in degrees.Round to a tenth of a degree. 5x + y - z = -3
-3x - y + z = -1

A)167.7°
B)-80.6°
C)170.6°
D)44.6°
E)3.0°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
46
Find the general form of the equation of the plane passing through the three points.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (3,1,6), (-6,-1,6), (3,5,-6)

A)2x - 9y - 3z + 21 = 0
B)2x - 9y - 3z = 0
C)3x + y + 6z = 0
D)2x - 9y - 3z - 21 = 0
E)3x + y + 6z - 252 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
47
Find a set of parametric equations of the line.
Passes through (1,6,3)( - 1,6 , - 3 ) and is parallel to v=5ij\mathbf { v } = 5 \mathbf { i } - \mathbf { j } .

A) x=1+5ty=6tz=3\begin{array} { l } x = - 1 + 5 t \\y = 6 - t \\z = 3\end{array}
B) x=1+5ty=6tz=3\begin{array} { l } x = - 1 + 5 t \\y = - 6 - t \\z = - 3\end{array}
C) x=1+5ty=6tz=3\begin{array} { l } x = 1 + 5 t \\y = 6 - t \\z = 3\end{array}
D) x=1+5ty=6tz=3\begin{array} { l } x = - 1 + 5 t \\y = 6 - t \\z = - 3\end{array}
E) x=1+5ty=6tz=3\begin{array} { l } x = 1 + 5 t \\y = 6 - t \\z = - 3\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
48
Find the general form of the equation of the plane passing through the three points. (0,0,0),(5,6,7),(6,7,7)( 0,0,0 ) , ( 5,6,7 ) , ( - 6,7,7 )

A) 7x+71y+77z=0- 7 x + 71 y + 77 z = 0
B) 7x77y71z=0- 7 x - 77 y - 71 z = 0
C) 7x77y+71z=0- 7 x - 77 y + 71 z = 0
D) 7x+77y71z=0- 7 x + 77 y - 71 z = 0
E) 7x+77y+71z=0- 7 x + 77 y + 71 z = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
49
Find the angle between the two planes in degrees.Round to a tenth of a degree.
3x - 4y + z = -6
2x + y + 3z = 0

A)15.2°
B)71.9°
C)14.7°
D)74.8°
E)1.3°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
50
Find the general form of the equation of the plane with the given characteristics. The plane passes through the point (5,-1,-4)and is parallel to the yz-plane.

A)y = -1
B)z = -4
C)x + y + z = 0
D)y + z = -5
E)x = 5
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
51
Determine whether the planes are parallel,orthogonal,or neither.
5x - 4y + z = -2
3x + 4y + z = -5

A)parallel
B)orthogonal
C)neither
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
52
Find the general form of the equation of the plane with the given characteristics. The plane passes through the points (5,5,-2)and (4,2,1)and is perpendicular to the plane -3x - 2y + 4z = 1.

A)6x + 5y + 7z - 41 = 0
B)3x + 2y - 4z + 33 = 0
C)6x - 5y + 7z - 9 = 0
D)3x + 2y - 4z = 0
E)7x + 6y + 5z - 55 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
53
Determine whether the planes are parallel,orthogonal,or neither. 3xz=37x+y+21z=7\begin{array} { l } 3 x - z = 3 \\7 x + y + 21 z = 7\end{array}

A)Neither
B)Parallel
C)Orthogonal
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
54
Find the angle,in degrees,between two adjacent sides of the pyramid shown below.Round to the nearest tenth of a degree.[Note: The base of the pyramid is not considered a side.] <strong>Find the angle,in degrees,between two adjacent sides of the pyramid shown below.Round to the nearest tenth of a degree.[Note: The base of the pyramid is not considered a side.]   P(8,0,0),Q(8,8,0),R(0,8,0),S(4,4,4)</strong> A)54.7° B)30° C)2.1° D)90° E)45° P(8,0,0),Q(8,8,0),R(0,8,0),S(4,4,4)

A)54.7°
B)30°
C)2.1°
D)90°
E)45°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
55
Find the angle between the two planes. 3x4y+5z=6x+yz=2\begin{array} { l } 3 x - 4 y + 5 z = 6 \\x + y - z = 2\end{array}

A)81.6°
B)83.2°
C)83.8°
D)80.6°
E)79.6°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
56
Determine whether the planes are parallel,orthogonal,or neither.
6x + y - z = 2
-18x - 3y + 3z = -4

A)parallel
B)orthogonal
C)neither
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
57
Find the angle between the two planes in degrees.Round to a tenth of a degree.
5x - 6y - 4z = -5
X + y + 5z = -1

A)114.5°
B)27.4°
C)117.4°
D)24.7°
E)2.0°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
58
Find the angle between the two planes in degrees.Round to a tenth of a degree. 3x4y+1z=62x+1y3z=0\begin{array} { l } 3 x - 4 y + 1 z = - 6 \\2 x + 1 y - 3 z = 0\end{array}

A)88.0°
B)90.8°
C)10.8°
D)89.8°
E)89.7°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
59
Find the angle between the two planes. x+yz=34x5y4z=5\begin{array} { l } x + y - z = 3 \\4 x - 5 y - 4 z = 5\end{array}

A)77.7°
B)76.7°
C)79.7°
D)78.7°
E)75.7°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
60
Find the general form of the equation of the plane passing through the point and perpendicular to the specified line.[Be sure to reduce the coefficients in your answer to lowest terms by dividing out any common factor.] (3,3,7)x=4ty=13tz=35t\begin{array} { l } ( - 3,3 , - 7 ) \\x = 4 - t \\y = 1 - 3 t \\z = 3 - 5 t\end{array}

A)x + 3y + 5z = 0
B)x + 3y + 5z - 29 = 0
C)x + 3y + 5z + 29 = 0
D)3x - 3y + 7z - 29 = 0
E)3x - 3y + 7z + 29 = 0
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
61
Find u × v and show that it is orthogonal to both u and v.
u=57iv=67j49k\begin{array} { l } \mathbf { u } = \frac { 5 } { 7 } \mathbf { i } \\\mathbf { v } = \frac { 6 } { 7 } \mathbf { j } - 49 \mathbf { k }\end{array}

A) u×v=35i+3049j(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
B) u×v=35i3049k(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathrm { i } - \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
C) u×v=35i+3049k(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
D) u×v=35i+3049j(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { i } + \frac { 30 } { 49 } \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
E) u×v=35j+3049k(u×v)u=0(u×v)u=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 35 \mathbf { j } + \frac { 30 } { 49 } \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
62
Find u × v and show that it is orthogonal to both u and v. u=12i+6j+kv=i+5j6k\begin{array} { l } \mathbf { u } = 12 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } \\\mathbf { v } = \mathbf { i } + 5 \mathbf { j } - 6 \mathbf { k }\end{array}

A) u×v=73i41j41k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } - 41 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=73i41j+73k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } + 73 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=73i41j+54k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 73 \mathbf { i } - 41 \mathbf { j } + 54 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=41i+73j+54k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 41 \mathbf { i } + 73 \mathbf { j } + 54 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=41i+73j41k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 41 \mathbf { i } + 73 \mathbf { j } - 41 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
63
Find symmetric equations for the line through the point and parallel to the specified vector.
(9,-6,-5),parallel to Find symmetric equations for the line through the point and parallel to the specified vector. (9,-6,-5),parallel to
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
64
Find a set of parametric equations for the line through the point and parallel to the specified vector. Find a set of parametric equations for the line through the point and parallel to the specified vector.
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
65
Find symmetric equations for the line through the point and parallel to the specified line. Find symmetric equations for the line through the point and parallel to the specified line.
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
66
Find a set of parametric equations for the line that passes through the given points. Find a set of parametric equations for the line that passes through the given points.
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
67
Use the vectors u and v to find u × v. u=5ij+6k\mathbf { u } = 5 \mathbf { i } - \mathbf { j } + 6 \mathbf { k } v=4i+4jk\mathbf { v } = 4 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }

A) u×v=24i+29j23k\mathbf { u } \times \mathbf { v } = 24 \mathbf { i } + 29 \mathbf { j } - 23 \mathbf { k }
B) u×v=29i+24j23k\mathbf { u } \times \mathbf { v } = 29 \mathbf { i } + 24 \mathbf { j } - 23 \mathbf { k }
C) u×v=24i23j+29k\mathbf { u } \times \mathbf { v } = 24 \mathbf { i } - 23 \mathbf { j } + 29 \mathbf { k }
D) u×v=29i23j+24k\mathbf { u } \times \mathbf { v } = 29 \mathbf { i } - 23 \mathbf { j } + 24 \mathbf { k }
E) u×v=23i+29j+24k\mathbf { u } \times \mathbf { v } = - 23 \mathbf { i } + 29 \mathbf { j } + 24 \mathbf { k }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
68
Use the vectors u and v to find v × u. u=3ij+4kv=2i+2jk\mathbf { u } = 3 \mathbf { i } - \mathbf { j } + 4 \mathbf { k } \quad \mathbf { v } = 2 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }

A) v×u=11i+7j8k\mathbf { v } \times \mathbf { u } = 11 \mathbf { i } + 7 \mathbf { j } - 8 \mathbf { k }
B) v×u=7i11j8k\mathbf { v } \times \mathbf { u } = 7 \mathbf { i } - 11 \mathbf { j } - 8 \mathbf { k }
C) v×u=7i+11j+7k\mathbf { v } \times \mathbf { u } = - 7 \mathbf { i } + 11 \mathbf { j } + 7 \mathbf { k }
D) v×u=11i+11j+8k\mathbf { v } \times \mathbf { u } = 11 \mathbf { i } + 11 \mathbf { j } + 8 \mathbf { k }
E) v×u=7i8j+8k\mathbf { v } \times \mathbf { u } = 7 \mathbf { i } - 8 \mathbf { j } + 8 \mathbf { k }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
69
Use the vectors u and v to find (3u)× v. u=7ij+8kv=6i+6jk\mathbf { u } = 7 \mathbf { i } - \mathbf { j } + 8 \mathbf { k } \quad \mathbf { v } = 6 \mathbf { i } + 6 \mathbf { j } - \mathbf { k }

A) (3u)×v=141i+165j+144k( 3 \mathbf { u } ) \times \mathbf { v } = - 141 \mathbf { i } + 165 \mathbf { j } + 144 \mathbf { k }
B)  (3u) ×v=165i141j+144k\text { (3u) } \times \mathbf { v } = 165 \mathbf { i } - 141 \mathbf { j } + 144 \mathbf { k }
C) (3u)×v=165i+165j+144k( 3 \mathbf { u } ) \times \mathbf { v } = 165 \mathbf { i } + 165 \mathbf { j } + 144 \mathbf { k }
D) (3u)×v=165i+144j+144k( 3 \mathbf { u } ) \times \mathbf { v } = 165 \mathbf { i } + 144 \mathbf { j } + 144 \mathbf { k }
E)  (3u) ×v=144i+165j141k\text { (3u) } \times \mathbf { v } = 144 \mathbf { i } + 165 \mathbf { j } - 141 \mathbf { k }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
70
Use the vectors u and v to find u × (2v). u=6ij+7kv=5i+5jk\mathbf { u } = 6 \mathbf { i } - \mathbf { j } + 7 \mathbf { k } \quad \mathbf { v } = 5 \mathbf { i } + 5 \mathbf { j } - \mathbf { k }

A) u×(2v)=68i+82j+82k\mathbf { u } \times ( 2 \mathbf { v } ) = - 68 \mathbf { i } + 82 \mathbf { j } + 82 \mathbf { k }
B) u×(2v)=68i+82j+70k\mathbf { u } \times ( 2 \mathbf { v } ) = - 68 \mathbf { i } + 82 \mathbf { j } + 70 \mathbf { k }
C) u×(2v)=68i+70j+70k\mathbf { u } \times ( 2 \mathbf { v } ) = - 68 \mathbf { i } + 70 \mathbf { j } + 70 \mathbf { k }
D) u×(2v)=82i+82j+70k\mathbf { u } \times ( 2 \mathbf { v } ) = 82 \mathbf { i } + 82 \mathbf { j } + 70 \mathbf { k }
E) u×(2v)=70i+82j+70k\mathbf { u } \times ( 2 \mathbf { v } ) = 70 \mathbf { i } + 82 \mathbf { j } + 70 \mathbf { k }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
71
Find u × v and show that it is orthogonal to both u and v. u=8kv=i+4j+k\begin{array} { l } \mathbf { u } = 8 \mathbf { k } \\\mathbf { v } = - \mathbf { i } + 4 \mathbf { j } + \mathbf { k }\end{array}

A) u×v=4i8j(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 4 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=32i8k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { i } - 8 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=32i8j(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=32j8k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - 32 \mathbf { j } - 8 \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=8i8j(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = 8 \mathbf { i } - 8 \mathbf { j } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
72
Find u × v and show that it is orthogonal to both u and v. u=i+kv=j3k\begin{array} { l } \mathbf { u } = - \mathbf { i } + \mathbf { k } \\\mathbf { v } = \mathbf { j } - 3 \mathbf { k }\end{array}

A) u×v=i3jk(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = \mathbf { i } - 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=i3jk(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } - 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=i+3jk(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } + 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=i3j+k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } - 3 \mathbf { j } + \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=i3j+k(u×v)u=0(u×v)v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = \mathbf { i } - 3 \mathbf { j } + \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
73
Use the vectors u and v to find u × (-v). u=7ij+8kv=6i+6jk\mathbf { u } = 7 \mathbf { i } - \mathbf { j } + 8 \mathbf { k } \quad \mathbf { v } = 6 \mathbf { i } + 6 \mathbf { j } - \mathbf { k }

A) u×(v)=47i55j48k\mathbf { u } \times ( - \mathbf { v } ) = 47 \mathbf { i } - 55 \mathbf { j } - 48 \mathbf { k }
B) u×(v)=55i55j48k\mathbf { u } \times ( - \mathbf { v } ) = 55 \mathbf { i } - 55 \mathbf { j } - 48 \mathbf { k }
C) u×(v)=47i+47j48k\mathbf { u } \times ( - \mathbf { v } ) = 47 \mathbf { i } + 47 \mathbf { j } - 48 \mathbf { k }
D) u×(v)=55i+47j+48k\mathbf { u } \times ( - \mathbf { v } ) = 55 \mathbf { i } + 47 \mathbf { j } + 48 \mathbf { k }
E) u×(v)=48i55j+47k\mathbf { u } \times ( - \mathbf { v } ) = 48 \mathbf { i } - 55 \mathbf { j } + 47 \mathbf { k }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
74
Use the vectors u and v to find (-2u)× v. u=3ij+4kv=2i+2jk\mathbf { u } = 3 \mathbf { i } - \mathbf { j } + 4 \mathbf { k } \quad \mathbf { v } = 2 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }

A) (2u)×v=14i22j16k( - 2 \mathbf { u } ) \times \mathbf { v } = - 14 \mathbf { i } - 22 \mathbf { j } - 16 \mathbf { k }
B) (2u)×v=16i22j+14k( - 2 \mathbf { u } ) \times \mathbf { v } = - 16 \mathbf { i } - 22 \mathbf { j } + 14 \mathbf { k }
C) (2u)×v=16i+14j22k( - 2 \mathbf { u } ) \times \mathbf { v } = - 16 \mathbf { i } + 14 \mathbf { j } - 22 \mathbf { k }
D) (2u)×v=22i+14j16k( - 2 \mathbf { u } ) \times \mathbf { v } = - 22 \mathbf { i } + 14 \mathbf { j } - 16 \mathbf { k }
E) (2u)×v=14i22j16k( - 2 \mathbf { u } ) \times \mathbf { v } = 14 \mathbf { i } - 22 \mathbf { j } - 16 \mathbf { k }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
75
Find the distance between the point and the plane.
(-5,-6,-5) 2x+3y9z=12 x + 3 y - 9 z = - 1

A)18
B) 1894\frac { 18 } { 94 }
C) 194\frac { 1 } { \sqrt { 94 } }
D)0
E) 1894\frac { 18 } { \sqrt { 94 } }
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
76
Find the angle,in degrees,between two adjacent sides of the pyramid shown below.Round to the nearest tenth of a degree.[Note: The base of the pyramid is not considered a side.] <strong>Find the angle,in degrees,between two adjacent sides of the pyramid shown below.Round to the nearest tenth of a degree.[Note: The base of the pyramid is not considered a side.]   P(10,0,0),Q(10,10,0),R(0,10,0),S(5,5,2)</strong> A)2.6° B)47.1° C)90° D)45° E)59.5° P(10,0,0),Q(10,10,0),R(0,10,0),S(5,5,2)

A)2.6°
B)47.1°
C)90°
D)45°
E)59.5°
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
77
Find a set of parametric equations for the line through the point and parallel to the specified line. Find a set of parametric equations for the line through the point and parallel to the specified line.
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
78
Use the vectors u and v to find v × (u × u). u=7ij+8kv=6i+6jk\mathbf { u } = 7 \mathbf { i } - \mathbf { j } + 8 \mathbf { k } \quad \mathbf { v } = 6 \mathbf { i } + 6 \mathbf { j } - \mathbf { k }

A)v × (u × u)= -12
B)v × (u × u)= 0
C)v × (u × u)= 12
D)v × (u × u)= -11
E)v × (u × u)= 11
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
79
Find a set of parametric equations for the line that passes through the given points.
(8,2,3), (-1,3,-6)
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
80
Use the vectors v to find v×v. v=4i+4jk\mathbf { v } = 4 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }

A)v × v = -8
B)v × v = -7
C)v × v = 0
D)v × v = 8
E)v × v = 7
Unlock Deck
Unlock for access to all 256 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 256 flashcards in this deck.