Deck 3: Exponential and Logarithmic Functions

Full screen (f)
exit full mode
Question
Carbon dating presumes that, as long as a plant or animal is alive, the proportion of its carbon that is 14C is constant.The amount of 14C in an object made from harvested plants, like paper, will decline exponentially according to the equation A=A0e0.0001213tA = A _ { 0 } e ^ { - 0.0001213 t } , where A represents the amount of 14C in the object, Ao represents the amount of 14C in living organisms, and t is the time in years since the plant was harvested.If an archeological artifact has 35% as much 14C as a living organism, how old would you predict it to be? Round to the nearest year.

A)5715 years
B)29,310 years
C)93 years
D)8655 years
E)15,427 years
Use Space or
up arrow
down arrow
to flip the card.
Question
The value V (in millions of dollars) of a famous painting can be modeled by V=10eitV = 10 e ^ { i t } where t represents the year, with t = 0 corresponding to 2000.In 2008, the same painting was sold for $65 million.Predict the value of the painting in 2018.(Round your answer to two decimal places.)

A)$674.61 million
B)$874.61 million
C)$474.61 million
D)$774.61 million
E)$574.61 million
Question
The population P (in thousands) of Orlando, Florida from 2000 through 2007 can be modeled by P=1530.6ektP = 1530.6 e ^ { k t } where t represents the year, with t=0t = 0 corresponding to 2000.In 2006, the population of Orlando, Florida was about 1,883,000.00.Find the value of k.

A)k = 0.03183
B)k = 0.02863
C)k = 0.02163
D)k = 0.03453
E)k = 0.03063
Question
Select the correct graph for the given function y=7ex/4y = 7 e ^ { - x / 4 }

A)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find the exponential model y=ae0.7675xy = a e ^ { 0.7675 x } that fits the points shown in the graph.  <strong>Find the exponential model  y = a e ^ { 0.7675 x }  that fits the points shown in the graph.    </strong> A)  y = e ^ { - 0.7675 x }  B)  y = e ^ { 0.7675 x }  C)  y = - e ^ { - 0.7675 x }  D)  y = x e ^ { 0.7675 }  E)  y = - x e ^ { - 0.7675 }  <div style=padding-top: 35px>

A) y=e0.7675xy = e ^ { - 0.7675 x }
B) y=e0.7675xy = e ^ { 0.7675 x }
C) y=e0.7675xy = - e ^ { - 0.7675 x }
D) y=xe0.7675y = x e ^ { 0.7675 }
E) y=xe0.7675y = - x e ^ { - 0.7675 }
Question
Select the correct graph for the given function y=5e(x2)2/5y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }

A)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Select the correct graph for the given function y=61+e2xy = \frac { 6 } { 1 + e ^ { - 2 x } }

A)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Select a scatter plot of the given data. r7%8%11%12%14%15%t16.2414.2710.539.698.387.86\begin{array}{|c|c|c|c|c|c|c|}\hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\\hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\\hline\end{array}

A) <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)  <div style=padding-top: 35px>
B)  <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)  <div style=padding-top: 35px>
C)  <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)  <div style=padding-top: 35px>
D) <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)  <div style=padding-top: 35px>
E) <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)  <div style=padding-top: 35px>
Question
The populations P (in thousands) of Pittsburgh, Pennsylvania from 2000 through 2007 can be modeled by P=26321+0.083e0.0500tP = \frac { 2632 } { 1 + 0.083 e ^ { 0.0500 t } } where t represents the year, with t=0t = 0 corresponding to 2000.Use the model to find the numbers of cell sites in the year 2009.

A)2,326,853.00
B)2,327,853.00
C)2,329,853.00
D)2,328,853.00
E)2,330,853.00
Question
An initial investment of $5000 doubles in value in 6.3 years.Assuming continuous compounding, what was the interest rate? Round to the nearest tenth of a percent.

A)11.0%
B)4.8%
C)5.5%
D)6.3%
E)100%
Question
Select the correct graph for the given function y=ln(x+2)y = \ln ( x + 2 )

A) <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)   <div style=padding-top: 35px>
B)  <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)   <div style=padding-top: 35px>
C) <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)   <div style=padding-top: 35px>
D)  <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)   <div style=padding-top: 35px>
E)  <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)   <div style=padding-top: 35px>
Question
The population P of a bacteria culture is modeled by P=4100ektP = 4100 e ^ { k t } , where t is the time in hours.If the population of the culture was 5800 after 40 hours, how long does it take for the population to double? Round to the nearest tenth of an hour.

A)54.8 hours
B)8.9 hours
C)79.9 hours
D)81.7 hours
E)56.6 hours
Question
The population P (in thousands) of Reno, Nevada from 2000 through 2007 can be modeled by P=346.8ektP = 346.8 e ^ { k t } where t represents the year, with t=0t = 0 corresponding to 2000.In 2005, the population of Reno was about 395,000.According to the model, during what year will the population reach 486,000.00?

A)2013
B)2005
C)2021
D)2017
E)2009
Question
An initial investment of $4000 grows at an annual interest rate of 5% compounded continuously.How long will it take to double the investment?

A)1 year
B)14.40 years
C)13.86 years
D)14.86 years
E)13.40 years
Question
If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by A=1+0.075t or A=e0.07tA = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t } depending on whether the account pays simple interest at 712%7 \frac { 1 } { 2 } \% or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?

A)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)   <div style=padding-top: 35px>
B)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)   <div style=padding-top: 35px>
C)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)   <div style=padding-top: 35px>
D)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)   <div style=padding-top: 35px>
E)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)   <div style=padding-top: 35px>
Question
Select the correct graph for the given function y=4ex/2y = 4 e ^ { x / 2 }

A)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Select the correct graph for the given function
y=5+log(x+2)y = 5 + \log ( x + 2 )

A) <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)   <div style=padding-top: 35px>
B)  <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)   <div style=padding-top: 35px>
C)  <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)   <div style=padding-top: 35px>
D) <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)   <div style=padding-top: 35px>
E)  <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)   <div style=padding-top: 35px>
Question
Find the exponential model y=ae0.5756xy = a e ^ { 0.5756 x } that fits the points shown in the graph.  <strong>Find the exponential model  y = a e ^ { 0.5756 x }  that fits the points shown in the graph.    </strong> A)  y = \frac { 1 } { 2 } e ^ { - 0.5756 x }  B)  y = - \frac { 1 } { 2 } x e ^ { - 0.5756 }  C)  y = \frac { 1 } { 2 } x e ^ { 0.5756 }  D)  y = \frac { 1 } { 2 } e ^ { 0.5756 x }  E)  y = - \frac { 1 } { 2 } e ^ { - 0.5756 x }  <div style=padding-top: 35px>

A) y=12e0.5756xy = \frac { 1 } { 2 } e ^ { - 0.5756 x }
B) y=12xe0.5756y = - \frac { 1 } { 2 } x e ^ { - 0.5756 }
C) y=12xe0.5756y = \frac { 1 } { 2 } x e ^ { 0.5756 }
D) y=12e0.5756xy = \frac { 1 } { 2 } e ^ { 0.5756 x }
E) y=12e0.5756xy = - \frac { 1 } { 2 } e ^ { - 0.5756 x }
Question
The population P of a culture of bacteria is described by the equation P=1300e0.052tP = 1300 e ^ { 0.052 t } , where t is the time, in hours, relative to the time at which the population was 1300.What was the population at t=3t = 3 hours?

A) P(3)1419P ( 3 ) \approx 1419
B) P(3)1519P ( 3 ) \approx 1519
C) P(3)1319P ( 3 ) \approx 1319
D) P(3)1619P ( 3 ) \approx 1619
E) P(3)1719P ( 3 ) \approx 1719
Question
The number y of hits a new search-engine website receives each month can be modeled by y=4080ekty = 4080 e ^ { k t } where t represents the number of months the website has been operating.In the website's third month, there were 10,000 hits.Find the value of k, and use this value to predict the number of hits the website will receive after 22 months.

A) k=0.2988k = 0.2988 ; About 184,894,691,979 hits
B) k=0.2988k = 0.2988 ; About 2,921,047 hits
C) k=0.2988k = 0.2988 ; About 22,832,533,585 hits
D) k=0.2988k = 0.2988 ; About 57,970,933 hits
E) k=0.2988k = 0.2988 ; About 1,150,488,266 hits
Question
Find the intensity I of an earthquake measuring R on the Richter scale ( let I0=1)\left( \text { let } I _ { 0 } = 1 \right) .
Southern Sumatra, Indonesia in 2007, R=8.25R = 8.25

A) 108.25177,822,94110 ^ { 8.25 } \approx 177,822,941
B) 108.25177,827,94110 ^ { 8.25 } \approx 177,827,941
C) 108.25177,825,94110 ^ { 8.25 } \approx 177,825,941
D) 108.25177,832,94110 ^ { 8.25 } \approx 177,832,941
E) 108.25177,829,94110 ^ { 8.25 } \approx 177,829,941
Question
Find the magnitude R of an earthquake of intensity I( let I0=1 ) I \left( \text { let } I _ { 0 } = 1 \right. \text { ) } . I=16000I = 16000

A)3.20
B)5.20
C)4.20
D)2.20
E)6.20
Question
Determine whether the given x-value is a solution (or an approximate solution) of the equation. 43x10=16x=4\begin{array} { l } 4 ^ { 3 x - 10 } = 16 \\x = 4\end{array}
Question
Tritium, a radioactive isotope of hydrogen, has a half-life of 12.4 years.Of an initial sample of 33 grams, how much will remain after 69 years? ​

A)0 grams
B)29.1351 grams
C)10.9074 grams
D)8.2500 grams
E)0.6973 grams
Question
Solve for x. 6x=366 ^ { x } = 36

A)8
B)2
C)-2
D)-6
E)6
Question
The chemical acidity of a solution is measured in units of pH: pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is the hydrogen ion concentration in the solution.What is [H+]\left[ \mathrm { H } ^ { + } \right] if the pH=3.8\mathrm { pH } = 3.8

A)3.800
B) 6.31×1046.31 \times 10 ^ { - 4 }
C) 6.31×1036.31 \times 10 ^ { - 3 }
D) 1.58×1031.58 \times 10 ^ { - 3 }
E) 1.58×1041.58 \times 10 ^ { - 4 }
Question
An initial investment of $2000 grows at an annual interest rate of 4% compounded continuously.How long will it take to double the investment?

A)17.33 years
B)18.33 years
C)18.00 years
D)17.00 years
E)1 year
Question
A cell site is a site where electronic communications equipment is placed in a cellular network for the use of mobile phones.The numbers of cell sites from 1985 through 2008 can be modeled by y=237,1011+1950e0.355ty = \frac { 237,101 } { 1 + 1950 e ^ { - 0.355 t } } where t represents the year, with t=5t = 5 corresponding to 1985.Use the model to find the numbers of cell sites in the year 2007 .

A)211,071
B)209,071
C)208,071
D)207,071
E)210,071
Question
Carbon dating presumes that, as long as a plant or animal is alive, the proportion of its carbon that is 14C is constant.The amount of 14C in an object made from harvested plants, like paper, will decline exponentially according to the equation A=A0e0.0001213tA = A _ { 0 } e ^ { - 0.0001213 t } , where A represents the amount of 14C in the object, Ao represents the amount of 14C in living organisms, and t is the time in years since the plant was harvested.If an archeological artifact has 30% as much 14C as a living organism, how old would you predict it to be? Round to the nearest year.

A)28,040 years
B)5715 years
C)9926 years
D)14,758 years
E)100 years
Question
Determine whether the given x-value is a solution (or an approximate solution) of the equation. 45x5=256x=2\begin{array} { l } 4 ^ { 5 x - 5 } = 256 \\x = 2\end{array}
Question
The chemical acidity of a solution is measured in units of pH: pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is the hydrogen ion concentration in the solution.What is [H+]\left[ \mathrm { H } ^ { + } \right] if the pH=6.8\mathrm { pH } = 6.8 ?

A) 1.58×1071.58 \times 10 ^ { - 7 }
B) 6.31×1076.31 \times 10 ^ { - 7 }
C) 6.31×1066.31 \times 10 ^ { - 6 }
D) 1.58×1061.58 \times 10 ^ { - 6 }
E)6.800
Question
The chemical acidity of a solution is measured in units of pH: pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is the hydrogen ion concentration in the solution.If a sample of rain has a pH of 3.3, how many times higher is its [H+]\left[ \mathrm { H } ^ { + } \right] than pure water's, which has a pH of 7?

A) 5.0×1045.0 \times 10 ^ { 4 }
B) 2.0×1042.0 \times 10 ^ { 4 }
C) 2.0×1032.0 \times 10 ^ { 3 }
D) 5.0×1035.0 \times 10 ^ { 3 }
E)7
Question
Find the magnitude R of an earthquake of intensity I (let I0=1)\left. I \text { (let } I _ { 0 } = 1 \right) . I=270300000I = 270300000

A)7.43
B)6.43
C)8.43
D)10.43
E)9.43
Question
Solve for x.Approximate the result to three decimal places. ex=4e ^ { x } = 4

A) ln41.466\ln 4 \approx 1.466
B) ln41.476\ln 4 \approx 1.476
C) ln41.436\ln 4 \approx 1.436
D) ln41.386\ln 4 \approx 1.386
E) ln41.456\ln 4 \approx 1.456
Question
Solve for x. lnxln5=0\ln x - \ln 5 = 0

A) 15- \frac { 1 } { 5 }
B) 5- 5
C) 15\frac { 1 } { 5 }
D) 525 ^ { - 2 }
E)5
Question
Solve for x. (14)x=64\left( \frac { 1 } { 4 } \right) ^ { x } = 64

A)4
B) 3- 3
C)7
D)3
E) 4- 4
Question
Find the intensity I of an earthquake measuring R on the Richter scale  (let I0=1 ) \text { (let } I _ { 0 } = 1 \text { ) } .
Costa Rica in 2009, R=5.70R = 5.70

A) 105.70503,18710 ^ { 5.70 } \approx 503,187
B) 105.70501,18710 ^ { 5.70 } \approx 501,187
C) 105.70506,18710 ^ { 5.70 } \approx 506,187
D) 105.70496,18710 ^ { 5.70 } \approx 496,187
E) 105.70499,18710 ^ { 5.70 } \approx 499,187
Question
The population P of a culture of bacteria is described by the equation The population P of a culture of bacteria is described by the equation   , where t is the time, in hours, relative to the time at which the population was 1600. (a) What was the population at   hours? Show your work. (b) After how many hours will the population reach 10000.00? Round to the nearest tenth of an hour.Show your work.<div style=padding-top: 35px> , where t is the time, in hours, relative to the time at which the population was 1600.
(a) What was the population at The population P of a culture of bacteria is described by the equation   , where t is the time, in hours, relative to the time at which the population was 1600. (a) What was the population at   hours? Show your work. (b) After how many hours will the population reach 10000.00? Round to the nearest tenth of an hour.Show your work.<div style=padding-top: 35px> hours? Show your work.
(b) After how many hours will the population reach 10000.00? Round to the nearest tenth of an hour.Show your work.
Question
A population growing at an annual rate r will triple in a time t given by the formula t=ln3rt = \frac { \ln 3 } { r } .If the growth rate remains constant and equals 9% per year, how long will it take the population of the town to triple?

A)2.2 years
B)5.3 years
C)6.6 years
D)1 years
E)12.2 years
Question
The chemical acidity of a solution is measured in units of pH: pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is the hydrogen ion concentration in the solution.If a sample of rain has a pH of 3.4, how many times higher is its [H+]\left[ \mathrm { H } ^ { + } \right] than pure water's, which has a pH of 7?

A) 4.0×1034.0 \times 10 ^ { 3 }
B) 2.5×1042.5 \times 10 ^ { 4 }
C)7
D) 2.5×1032.5 \times 10 ^ { 3 }
E) 4.0×1044.0 \times 10 ^ { 4 }
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 3ex=153 e ^ { x } = 15

A) ln51.609\ln 5 \approx - 1.609
B) ln51.099\ln 5 \approx 1.099
C) ln51.099\ln 5 \approx - 1.099
D) ln51.609\ln 5 \approx 1.609
E) ln52.708\ln 5 \approx 2.708
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 2(52x)=122 \left( 5 ^ { 2 - x } \right) = 12

A) 2ln6ln53.8872 - \frac { \ln 6 } { \ln 5 } \approx 3.887
B) 2ln6ln51.8872 - \frac { \ln 6 } { \ln 5 } \approx 1.887
C) 2ln6ln50.8872 - \frac { \ln 6 } { \ln 5 } \approx 0.887
D) 2ln6ln54.8872 - \frac { \ln 6 } { \ln 5 } \approx 4.887
E) 2ln6ln52.8872 - \frac { \ln 6 } { \ln 5 } \approx 2.887
Question
Solve for x. logx=4\log x = - 4

A) 4- 4
B)0.0001
C) 0.0001- 0.0001
D) 44
E)1.386
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 4(5x5)=244 \left( 5 ^ { x - 5 } \right) = 24

A) 5+ln6ln57.1135 + \frac { \ln 6 } { \ln 5 } \approx 7.113
B) 5+ln6ln59.1135 + \frac { \ln 6 } { \ln 5 } \approx 9.113
C) 5+ln6ln56.1135 + \frac { \ln 6 } { \ln 5 } \approx 6.113
D) 5+ln6ln58.1135 + \frac { \ln 6 } { \ln 5 } \approx 8.113
E) 5+ln6ln510.1135 + \frac { \ln 6 } { \ln 5 } \approx 10.113
Question
Solve for x.Approximate the result to three decimal places. log7x=12\log _ { 7 } x = \frac { 1 } { 2 }

A) 72.828\sqrt { 7 } \approx 2.828
B) 7=2.646\sqrt { 7 } = 2.646
C) 72.646\sqrt { 7 } \approx - 2.646
D) 72.646\sqrt { 7 } \approx 2.646
E) 772.646\frac { \sqrt { 7 } } { 7 } \approx 2.646
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 2x5=162 ^ { x - 5 } = 16

A)10
B)11
C)9
D)-9
E)12
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. ex=ex212e ^ { x } = e ^ { x ^ { 2 } - 12 }

A) 3,43 , - 4
B) 3,4- 3 , - 4
C) 3,43,4
D) 3,4- 3,4
E) 3,3- 3,3
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 1000e4x=751000 e ^ { - 4 x } = 75

A) 14ln3402.648- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx 2.648
B) 14ln3401.352- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx - 1.352
C) 14ln3401.648- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx 1.648
D) 14ln3400.648- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx 0.648
E) 14ln3400.352- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx - 0.352
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places.
e2x7ex8=0e ^ { 2 x } - 7 e ^ { x } - 8 = 0

A) ln83.079\ln 8 \approx 3.079
B) ln82.079\ln 8 \approx 2.079
C) ln84.079\ln 8 \approx 4.079
D) ln81.079\ln 8 \approx 1.079
E) ln80.079\ln 8 \approx 0.079
Question
Solve for x.Approximate the result to three decimal places. lnx=2\ln x = - 2

A) e27.389e ^ { - 2 } \approx 7.389
B) e20.368e ^ { - 2 } \approx 0.368
C) e22.718e ^ { - 2 } \approx 2.718
D) e20.135e ^ { - 2 } \approx 0.135
E) e21.000e ^ { - 2 } \approx 1.000
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 65x=0.506 ^ { - 5 x } = 0.50

A) ln(0.50)5ln60.072- \frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx 0.072
B) ln(0.50)5ln60.517\frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx 0.517
C) ln(0.50)5ln60.387- \frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx 0.387
D) ln(0.50)5ln60.077- \frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx 0.077
E) ln(0.50)5ln60.077- \frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx - 0.077
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. e4x2=e3x214xe ^ { - 4 x ^ { 2 } } = e ^ { 3 x ^ { 2 } - 14 x }

A) 4,24,2
B) 3,23,2
C) 4,2- 4,2
D) 0,20,2
E) 0,20 , - 2
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 6x+8=576 ^ { x } + 8 = 57

A) ln49ln62.172\frac { \ln 49 } { \ln 6 } \approx 2.172
B) ln49ln60.460\frac { \ln 49 } { \ln 6 } \approx - 0.460
C) ln49ln60.514\frac { \ln 49 } { \ln 6 } \approx 0.514
D) ln49ln60.460\frac { \ln 49 } { \ln 6 } \approx 0.460
E) ln49ln62.172\frac { \ln 49 } { \ln 6 } \approx - 2.172
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. ex6=13e ^ { x } - 6 = 13

A) ln192.565\ln 19 \approx - 2.565
B) ln192.944\ln 19 \approx 2.944
C) ln191.792\ln 19 \approx 1.792
D) ln192.565\ln 19 \approx 2.565
E) ln192.944\ln 19 \approx - 2.944
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places.
22+4ex=13- 22 + 4 e ^ { x } = 13

A) ln3541.169\ln \frac { 35 } { 4 } \approx 1.169
B) ln3544.169\ln \frac { 35 } { 4 } \approx 4.169
C) ln3542.169\ln \frac { 35 } { 4 } \approx 2.169
D) ln3540.169\ln \frac { 35 } { 4 } \approx 0.169
E) ln3543.169\ln \frac { 35 } { 4 } \approx 3.169
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 4ex=334 e ^ { x } = 33

A) ln3342.110\ln \frac { 33 } { 4 } \approx 2.110
B) ln3342.110\ln \frac { 33 } { 4 } \approx - 2.110
C) ln4332.110\ln \frac { 4 } { 33 } \approx 2.110
D) ln3343.497\ln \frac { 33 } { 4 } \approx 3.497
E) ln3340.114\ln \frac { 33 } { 4 } \approx 0.114
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 2(3x)=362 \left( 3 ^ { x } \right) = 36

A) ln18ln30.380\frac { \ln 18 } { \ln 3 } \approx 0.380
B) ln18ln30.380\frac { \ln 18 } { \ln 3 } \approx - 0.380
C) ln18ln32.631\frac { \ln 18 } { \ln 3 } \approx - 2.631
D) ln3ln182.631\frac { \ln 3 } { \ln 18 } \approx 2.631
E) ln18ln32.631\frac { \ln 18 } { \ln 3 } \approx 2.631
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. 38x=24003 ^ { 8 x } = 2400

A) ln24008ln30.018\frac { \ln 2400 } { 8 \ln 3 } \approx 0.018
B) ln24008ln30.886\frac { \ln 2400 } { 8 \ln 3 } \approx 0.886
C) ln24008ln30.089\frac { \ln 2400 } { 8 \ln 3 } \approx 0.089
D) ln24008ln30.886\frac { \ln 2400 } { 8 \ln 3 } \approx - 0.886
E) ln24008ln31.248\frac { \ln 2400 } { 8 \ln 3 } \approx 1.248
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. e3x=75e ^ { 3 x } = 75

A) ln7530.439\frac { \ln 75 } { 3 } \approx 0.439
B) ln7532.439\frac { \ln 75 } { 3 } \approx 2.439
C) ln7530.561\frac { \ln 75 } { 3 } \approx - 0.561
D) ln7533.439\frac { \ln 75 } { 3 } \approx 3.439
E) ln7531.439\frac { \ln 75 } { 3 } \approx 1.439
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places. ex=ex230e ^ { x } = e ^ { x ^ { 2 } - 30 }

A) 6,5- 6 , - 5
B) 1,301 , - 30
C) 6,56,5
D) 6,5- 6,5
E) 6,56 , - 5
Question
$3000 is invested in an account at interest rate r, compounded continuously.Find the time required for the amount to triple.(Approximate the result to two decimal places.) r=0.03r = 0.03

A)37.62 yr
B)36.62 yr
C)35.62 yr
D)34.62 yr
E)38.62 yr
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. 8+71lnx=148 + 71 \ln x = 14

A) e6/73.356e ^ { 6 / 7 } \approx 3.356
B) e6/71.356e ^ { 6 / 7 } \approx 1.356
C) e6/74.356e ^ { 6 / 7 } \approx 4.356
D) e6/72.356e ^ { 6 / 7 } \approx 2.356
E) e6/70.356e ^ { 6 / 7 } \approx 0.356
Question
Solve (14)x=64\left( \frac { 1 } { 4 } \right) ^ { x } = 64 for x.

A)-3
B)-4
C)-1
D)1
E)no solution
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. 6lnx=56 \ln x = 5

A) e5/60.301e ^ { 5 / 6 } \approx 0.301
B) e5/61.301e ^ { 5 / 6 } \approx 1.301
C) e5/63.301e ^ { 5 / 6 } \approx 3.301
D) e5/62.301e ^ { 5 / 6 } \approx 2.301
E) e5/64.301e ^ { 5 / 6 } \approx 4.301
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. 2log3(0.5x)=52 \log _ { 3 } ( 0.5 x ) = 5

A) 2(35/2)33.1772 \left( 3 ^ { 5 / 2 } \right) \approx 33.177
B) 2(35/2)30.1772 \left( 3 ^ { 5 / 2 } \right) \approx 30.177
C) 2(35/2)31.1772 \left( 3 ^ { 5 / 2 } \right) \approx 31.177
D) 2(35/2)29.1772 \left( 3 ^ { 5 / 2 } \right) \approx 29.177
E) 2(35/2)32.1772 \left( 3 ^ { 5 / 2 } \right) \approx 32.177
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. ln2x=3\ln 2 x = 3

A) e328.043\frac { e ^ { 3 } } { 2 } \approx 8.043
B) e3210.043\frac { e ^ { 3 } } { 2 } \approx 10.043
C) e3212.043\frac { e ^ { 3 } } { 2 } \approx 12.043
D) e3211.043\frac { e ^ { 3 } } { 2 } \approx 11.043
E) e3213.043\frac { e ^ { 3 } } { 2 } \approx 13.043
Question
Solve for x: 7(10x3)=237 \left( 10 ^ { x - 3 } \right) = 23 .Round to 3 decimal places.

A)0.517
B)no solution
C)3.517
D)-1.362
E)1.362
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. logx=4\log x = 4

A)1,000
B)1,000,000
C)10,000
D)100,000
E)100
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. lnx=5\ln x = - 5

A) e52.007e ^ { - 5 } \approx 2.007
B) e51.007e ^ { - 5 } \approx 1.007
C) e53.007e ^ { - 5 } \approx 3.007
D) e51.993e ^ { - 5 } \approx - 1.993
E) e50.007e ^ { - 5 } \approx 0.007
Question
Solve for x: 5x/3=0.00525 ^ { - x / 3 } = 0.0052 .Round to 3 decimal places.

A)-20.606
B)9.803
C)20.606
D)-3.268
E)15.777
Question
Determine whether or not x=37x = \frac { 3 } { 7 } is a solution to 33x3=813 ^ { 3 x - 3 } = 81 .
Question
$4500 is invested in an account at interest rate r, compounded continuously.Find the time required for the amount to triple.(Approximate the result to two decimal places.) r=0.0315r = 0.0315

A)21.00 yr
B)20.00 yr
C)34.88 yr
D)24.00 yr
E)23.00 yr
Question
Solve the equation algebraically.Round the result to three decimal places. 3+lnx8=0\frac { 3 + \ln x } { 8 } = 0

A) e32,980.958e ^ { - 3 } \approx 2,980.958
B) e30e ^ { - 3 } \approx 0
C) e354.598e ^ { - 3 } \approx 54.598
D) e30.050e ^ { - 3 } \approx 0.050
E) e320.086e ^ { - 3 } \approx 20.086
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. log5(5x3)=log5(4x+4)\log _ { 5 } ( 5 x - 3 ) = \log _ { 5 } ( 4 x + 4 )

A)8
B)6
C)-1
D)7
E)9
Question
$2500 is invested in an account at interest rate r, compounded continuously.Find the time required for the amount to double.(Approximate the result to two decimal places.) r=0.06r = 0.06

A)13.55 yr
B)10.55 yr
C)12.55 yr
D)9.55 yr
E)11.55 yr
Question
$5500 is invested in an account at interest rate r, compounded continuously.Find the time required for the amount to double.(Approximate the result to two decimal places.) r=0.0540r = 0.0540

A)13.84 yr
B)10.84 yr
C)12.84 yr
D)11.84 yr
E)14.84 yr
Question
Solve the exponential equation algebraically.Approximate the result to three decimal places.
e2x7ex8=0e ^ { 2 x } - 7 e ^ { x } - 8 = 0

A) ln83.079\ln 8 \approx 3.079
B) ln81.079\ln 8 \approx 1.079
C) ln82.079\ln 8 \approx 2.079
D) ln80.079\ln 8 \approx 0.079
E) ln84.079\ln 8 \approx 4.079
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. lnx8=7\ln \sqrt { x - 8 } = 7

A) e14+81,202,611.284e ^ { 14 } + 8 \approx 1,202,611.284
B) e14+81,202,614.284e ^ { 14 } + 8 \approx 1,202,614.284
C) e14+81,202,612.284e ^ { 14 } + 8 \approx 1,202,612.284
D) e14+81,202,610.284e ^ { 14 } + 8 \approx 1,202,610.284
E) e14+81,202,613.284e ^ { 14 } + 8 \approx 1,202,613.284
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. 9+2lnx=49 + 2 \ln x = 4

A) e5/21.082e ^ { - 5 / 2 } \approx 1.082
B) e5/20.918e ^ { - 5 / 2 } \approx - 0.918
C) e5/21.918e ^ { - 5 / 2 } \approx - 1.918
D) e5/20.082e ^ { - 5 / 2 } \approx 0.082
E) e5/22.082e ^ { - 5 / 2 } \approx 2.082
Question
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. lnx5=0\ln x - 5 = 0

A) e5151.413e ^ { 5 } \approx 151.413
B) e5146.413e ^ { 5 } \approx 146.413
C) e5148.413e ^ { 5 } \approx 148.413
D) e5149.413e ^ { 5 } \approx 149.413
E) e5150.413e ^ { 5 } \approx 150.413
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/266
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 3: Exponential and Logarithmic Functions
1
Carbon dating presumes that, as long as a plant or animal is alive, the proportion of its carbon that is 14C is constant.The amount of 14C in an object made from harvested plants, like paper, will decline exponentially according to the equation A=A0e0.0001213tA = A _ { 0 } e ^ { - 0.0001213 t } , where A represents the amount of 14C in the object, Ao represents the amount of 14C in living organisms, and t is the time in years since the plant was harvested.If an archeological artifact has 35% as much 14C as a living organism, how old would you predict it to be? Round to the nearest year.

A)5715 years
B)29,310 years
C)93 years
D)8655 years
E)15,427 years
8655 years
2
The value V (in millions of dollars) of a famous painting can be modeled by V=10eitV = 10 e ^ { i t } where t represents the year, with t = 0 corresponding to 2000.In 2008, the same painting was sold for $65 million.Predict the value of the painting in 2018.(Round your answer to two decimal places.)

A)$674.61 million
B)$874.61 million
C)$474.61 million
D)$774.61 million
E)$574.61 million
$674.61 million
3
The population P (in thousands) of Orlando, Florida from 2000 through 2007 can be modeled by P=1530.6ektP = 1530.6 e ^ { k t } where t represents the year, with t=0t = 0 corresponding to 2000.In 2006, the population of Orlando, Florida was about 1,883,000.00.Find the value of k.

A)k = 0.03183
B)k = 0.02863
C)k = 0.02163
D)k = 0.03453
E)k = 0.03063
k = 0.03453
4
Select the correct graph for the given function y=7ex/4y = 7 e ^ { - x / 4 }

A)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)
B)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)
C)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)
D)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)
E)  <strong>Select the correct graph for the given function  y = 7 e ^ { - x / 4 }  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
5
Find the exponential model y=ae0.7675xy = a e ^ { 0.7675 x } that fits the points shown in the graph.  <strong>Find the exponential model  y = a e ^ { 0.7675 x }  that fits the points shown in the graph.    </strong> A)  y = e ^ { - 0.7675 x }  B)  y = e ^ { 0.7675 x }  C)  y = - e ^ { - 0.7675 x }  D)  y = x e ^ { 0.7675 }  E)  y = - x e ^ { - 0.7675 }

A) y=e0.7675xy = e ^ { - 0.7675 x }
B) y=e0.7675xy = e ^ { 0.7675 x }
C) y=e0.7675xy = - e ^ { - 0.7675 x }
D) y=xe0.7675y = x e ^ { 0.7675 }
E) y=xe0.7675y = - x e ^ { - 0.7675 }
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
6
Select the correct graph for the given function y=5e(x2)2/5y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }

A)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)
B)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)
C)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)
D)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)
E)  <strong>Select the correct graph for the given function   y = 5 e ^ { - ( x - 2 ) ^ { 2 } / 5 }  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
7
Select the correct graph for the given function y=61+e2xy = \frac { 6 } { 1 + e ^ { - 2 x } }

A)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)
B)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)
C)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)
D)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)
E)  <strong>Select the correct graph for the given function   y = \frac { 6 } { 1 + e ^ { - 2 x } }  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
8
Select a scatter plot of the given data. r7%8%11%12%14%15%t16.2414.2710.539.698.387.86\begin{array}{|c|c|c|c|c|c|c|}\hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\\hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\\hline\end{array}

A) <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)
B)  <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)
C)  <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)
D) <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)
E) <strong>Select a scatter plot of the given data.  \begin{array}{|c|c|c|c|c|c|c|} \hline r & 7 \% & 8 \% & 11 \% & 12 \% & 14 \% & 15 \% \\ \hline t & 16.24 & 14.27 & 10.53 & 9.69 & 8.38 & 7.86 \\ \hline \end{array} </strong> A)  B)   C)   D)  E)
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
9
The populations P (in thousands) of Pittsburgh, Pennsylvania from 2000 through 2007 can be modeled by P=26321+0.083e0.0500tP = \frac { 2632 } { 1 + 0.083 e ^ { 0.0500 t } } where t represents the year, with t=0t = 0 corresponding to 2000.Use the model to find the numbers of cell sites in the year 2009.

A)2,326,853.00
B)2,327,853.00
C)2,329,853.00
D)2,328,853.00
E)2,330,853.00
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
10
An initial investment of $5000 doubles in value in 6.3 years.Assuming continuous compounding, what was the interest rate? Round to the nearest tenth of a percent.

A)11.0%
B)4.8%
C)5.5%
D)6.3%
E)100%
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
11
Select the correct graph for the given function y=ln(x+2)y = \ln ( x + 2 )

A) <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)
B)  <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)
C) <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)
D)  <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)
E)  <strong>Select the correct graph for the given function   y = \ln ( x + 2 )  </strong> A)  B)   C)  D)   E)
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
12
The population P of a bacteria culture is modeled by P=4100ektP = 4100 e ^ { k t } , where t is the time in hours.If the population of the culture was 5800 after 40 hours, how long does it take for the population to double? Round to the nearest tenth of an hour.

A)54.8 hours
B)8.9 hours
C)79.9 hours
D)81.7 hours
E)56.6 hours
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
13
The population P (in thousands) of Reno, Nevada from 2000 through 2007 can be modeled by P=346.8ektP = 346.8 e ^ { k t } where t represents the year, with t=0t = 0 corresponding to 2000.In 2005, the population of Reno was about 395,000.According to the model, during what year will the population reach 486,000.00?

A)2013
B)2005
C)2021
D)2017
E)2009
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
14
An initial investment of $4000 grows at an annual interest rate of 5% compounded continuously.How long will it take to double the investment?

A)1 year
B)14.40 years
C)13.86 years
D)14.86 years
E)13.40 years
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
15
If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by A=1+0.075t or A=e0.07tA = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t } depending on whether the account pays simple interest at 712%7 \frac { 1 } { 2 } \% or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?

A)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)
B)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)
C)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)
D)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)
E)  <strong>If $1 is invested in an account over a 10-year period, the amount in the account, where t represents the time in years, is given by  A = 1 + 0.075 \| t \mid \| \text { or } A = e ^ { 0.07 t }  depending on whether the account pays simple interest at  7 \frac { 1 } { 2 } \%  or continuous compound interest at 7%.Graph each function on the same set of axes.Which grows at a higher rate?  </strong> A)    B)    C)    D)   E)
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
16
Select the correct graph for the given function y=4ex/2y = 4 e ^ { x / 2 }

A)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)
B)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)
C)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)
D)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)
E)  <strong>Select the correct graph for the given function   y = 4 e ^ { x / 2 }  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
17
Select the correct graph for the given function
y=5+log(x+2)y = 5 + \log ( x + 2 )

A) <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)
B)  <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)
C)  <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)
D) <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)
E)  <strong>Select the correct graph for the given function  y = 5 + \log ( x + 2 )  </strong> A)  B)   C)   D)  E)
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
18
Find the exponential model y=ae0.5756xy = a e ^ { 0.5756 x } that fits the points shown in the graph.  <strong>Find the exponential model  y = a e ^ { 0.5756 x }  that fits the points shown in the graph.    </strong> A)  y = \frac { 1 } { 2 } e ^ { - 0.5756 x }  B)  y = - \frac { 1 } { 2 } x e ^ { - 0.5756 }  C)  y = \frac { 1 } { 2 } x e ^ { 0.5756 }  D)  y = \frac { 1 } { 2 } e ^ { 0.5756 x }  E)  y = - \frac { 1 } { 2 } e ^ { - 0.5756 x }

A) y=12e0.5756xy = \frac { 1 } { 2 } e ^ { - 0.5756 x }
B) y=12xe0.5756y = - \frac { 1 } { 2 } x e ^ { - 0.5756 }
C) y=12xe0.5756y = \frac { 1 } { 2 } x e ^ { 0.5756 }
D) y=12e0.5756xy = \frac { 1 } { 2 } e ^ { 0.5756 x }
E) y=12e0.5756xy = - \frac { 1 } { 2 } e ^ { - 0.5756 x }
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
19
The population P of a culture of bacteria is described by the equation P=1300e0.052tP = 1300 e ^ { 0.052 t } , where t is the time, in hours, relative to the time at which the population was 1300.What was the population at t=3t = 3 hours?

A) P(3)1419P ( 3 ) \approx 1419
B) P(3)1519P ( 3 ) \approx 1519
C) P(3)1319P ( 3 ) \approx 1319
D) P(3)1619P ( 3 ) \approx 1619
E) P(3)1719P ( 3 ) \approx 1719
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
20
The number y of hits a new search-engine website receives each month can be modeled by y=4080ekty = 4080 e ^ { k t } where t represents the number of months the website has been operating.In the website's third month, there were 10,000 hits.Find the value of k, and use this value to predict the number of hits the website will receive after 22 months.

A) k=0.2988k = 0.2988 ; About 184,894,691,979 hits
B) k=0.2988k = 0.2988 ; About 2,921,047 hits
C) k=0.2988k = 0.2988 ; About 22,832,533,585 hits
D) k=0.2988k = 0.2988 ; About 57,970,933 hits
E) k=0.2988k = 0.2988 ; About 1,150,488,266 hits
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
21
Find the intensity I of an earthquake measuring R on the Richter scale ( let I0=1)\left( \text { let } I _ { 0 } = 1 \right) .
Southern Sumatra, Indonesia in 2007, R=8.25R = 8.25

A) 108.25177,822,94110 ^ { 8.25 } \approx 177,822,941
B) 108.25177,827,94110 ^ { 8.25 } \approx 177,827,941
C) 108.25177,825,94110 ^ { 8.25 } \approx 177,825,941
D) 108.25177,832,94110 ^ { 8.25 } \approx 177,832,941
E) 108.25177,829,94110 ^ { 8.25 } \approx 177,829,941
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
22
Find the magnitude R of an earthquake of intensity I( let I0=1 ) I \left( \text { let } I _ { 0 } = 1 \right. \text { ) } . I=16000I = 16000

A)3.20
B)5.20
C)4.20
D)2.20
E)6.20
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
23
Determine whether the given x-value is a solution (or an approximate solution) of the equation. 43x10=16x=4\begin{array} { l } 4 ^ { 3 x - 10 } = 16 \\x = 4\end{array}
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
24
Tritium, a radioactive isotope of hydrogen, has a half-life of 12.4 years.Of an initial sample of 33 grams, how much will remain after 69 years? ​

A)0 grams
B)29.1351 grams
C)10.9074 grams
D)8.2500 grams
E)0.6973 grams
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
25
Solve for x. 6x=366 ^ { x } = 36

A)8
B)2
C)-2
D)-6
E)6
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
26
The chemical acidity of a solution is measured in units of pH: pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is the hydrogen ion concentration in the solution.What is [H+]\left[ \mathrm { H } ^ { + } \right] if the pH=3.8\mathrm { pH } = 3.8

A)3.800
B) 6.31×1046.31 \times 10 ^ { - 4 }
C) 6.31×1036.31 \times 10 ^ { - 3 }
D) 1.58×1031.58 \times 10 ^ { - 3 }
E) 1.58×1041.58 \times 10 ^ { - 4 }
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
27
An initial investment of $2000 grows at an annual interest rate of 4% compounded continuously.How long will it take to double the investment?

A)17.33 years
B)18.33 years
C)18.00 years
D)17.00 years
E)1 year
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
28
A cell site is a site where electronic communications equipment is placed in a cellular network for the use of mobile phones.The numbers of cell sites from 1985 through 2008 can be modeled by y=237,1011+1950e0.355ty = \frac { 237,101 } { 1 + 1950 e ^ { - 0.355 t } } where t represents the year, with t=5t = 5 corresponding to 1985.Use the model to find the numbers of cell sites in the year 2007 .

A)211,071
B)209,071
C)208,071
D)207,071
E)210,071
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
29
Carbon dating presumes that, as long as a plant or animal is alive, the proportion of its carbon that is 14C is constant.The amount of 14C in an object made from harvested plants, like paper, will decline exponentially according to the equation A=A0e0.0001213tA = A _ { 0 } e ^ { - 0.0001213 t } , where A represents the amount of 14C in the object, Ao represents the amount of 14C in living organisms, and t is the time in years since the plant was harvested.If an archeological artifact has 30% as much 14C as a living organism, how old would you predict it to be? Round to the nearest year.

A)28,040 years
B)5715 years
C)9926 years
D)14,758 years
E)100 years
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
30
Determine whether the given x-value is a solution (or an approximate solution) of the equation. 45x5=256x=2\begin{array} { l } 4 ^ { 5 x - 5 } = 256 \\x = 2\end{array}
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
31
The chemical acidity of a solution is measured in units of pH: pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is the hydrogen ion concentration in the solution.What is [H+]\left[ \mathrm { H } ^ { + } \right] if the pH=6.8\mathrm { pH } = 6.8 ?

A) 1.58×1071.58 \times 10 ^ { - 7 }
B) 6.31×1076.31 \times 10 ^ { - 7 }
C) 6.31×1066.31 \times 10 ^ { - 6 }
D) 1.58×1061.58 \times 10 ^ { - 6 }
E)6.800
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
32
The chemical acidity of a solution is measured in units of pH: pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is the hydrogen ion concentration in the solution.If a sample of rain has a pH of 3.3, how many times higher is its [H+]\left[ \mathrm { H } ^ { + } \right] than pure water's, which has a pH of 7?

A) 5.0×1045.0 \times 10 ^ { 4 }
B) 2.0×1042.0 \times 10 ^ { 4 }
C) 2.0×1032.0 \times 10 ^ { 3 }
D) 5.0×1035.0 \times 10 ^ { 3 }
E)7
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
33
Find the magnitude R of an earthquake of intensity I (let I0=1)\left. I \text { (let } I _ { 0 } = 1 \right) . I=270300000I = 270300000

A)7.43
B)6.43
C)8.43
D)10.43
E)9.43
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
34
Solve for x.Approximate the result to three decimal places. ex=4e ^ { x } = 4

A) ln41.466\ln 4 \approx 1.466
B) ln41.476\ln 4 \approx 1.476
C) ln41.436\ln 4 \approx 1.436
D) ln41.386\ln 4 \approx 1.386
E) ln41.456\ln 4 \approx 1.456
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
35
Solve for x. lnxln5=0\ln x - \ln 5 = 0

A) 15- \frac { 1 } { 5 }
B) 5- 5
C) 15\frac { 1 } { 5 }
D) 525 ^ { - 2 }
E)5
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
36
Solve for x. (14)x=64\left( \frac { 1 } { 4 } \right) ^ { x } = 64

A)4
B) 3- 3
C)7
D)3
E) 4- 4
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
37
Find the intensity I of an earthquake measuring R on the Richter scale  (let I0=1 ) \text { (let } I _ { 0 } = 1 \text { ) } .
Costa Rica in 2009, R=5.70R = 5.70

A) 105.70503,18710 ^ { 5.70 } \approx 503,187
B) 105.70501,18710 ^ { 5.70 } \approx 501,187
C) 105.70506,18710 ^ { 5.70 } \approx 506,187
D) 105.70496,18710 ^ { 5.70 } \approx 496,187
E) 105.70499,18710 ^ { 5.70 } \approx 499,187
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
38
The population P of a culture of bacteria is described by the equation The population P of a culture of bacteria is described by the equation   , where t is the time, in hours, relative to the time at which the population was 1600. (a) What was the population at   hours? Show your work. (b) After how many hours will the population reach 10000.00? Round to the nearest tenth of an hour.Show your work. , where t is the time, in hours, relative to the time at which the population was 1600.
(a) What was the population at The population P of a culture of bacteria is described by the equation   , where t is the time, in hours, relative to the time at which the population was 1600. (a) What was the population at   hours? Show your work. (b) After how many hours will the population reach 10000.00? Round to the nearest tenth of an hour.Show your work. hours? Show your work.
(b) After how many hours will the population reach 10000.00? Round to the nearest tenth of an hour.Show your work.
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
39
A population growing at an annual rate r will triple in a time t given by the formula t=ln3rt = \frac { \ln 3 } { r } .If the growth rate remains constant and equals 9% per year, how long will it take the population of the town to triple?

A)2.2 years
B)5.3 years
C)6.6 years
D)1 years
E)12.2 years
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
40
The chemical acidity of a solution is measured in units of pH: pH=log[H+]\mathrm { pH } = - \log \left[ \mathrm { H } ^ { + } \right] , where [H+]\left[ \mathrm { H } ^ { + } \right] is the hydrogen ion concentration in the solution.If a sample of rain has a pH of 3.4, how many times higher is its [H+]\left[ \mathrm { H } ^ { + } \right] than pure water's, which has a pH of 7?

A) 4.0×1034.0 \times 10 ^ { 3 }
B) 2.5×1042.5 \times 10 ^ { 4 }
C)7
D) 2.5×1032.5 \times 10 ^ { 3 }
E) 4.0×1044.0 \times 10 ^ { 4 }
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
41
Solve the exponential equation algebraically.Approximate the result to three decimal places. 3ex=153 e ^ { x } = 15

A) ln51.609\ln 5 \approx - 1.609
B) ln51.099\ln 5 \approx 1.099
C) ln51.099\ln 5 \approx - 1.099
D) ln51.609\ln 5 \approx 1.609
E) ln52.708\ln 5 \approx 2.708
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
42
Solve the exponential equation algebraically.Approximate the result to three decimal places. 2(52x)=122 \left( 5 ^ { 2 - x } \right) = 12

A) 2ln6ln53.8872 - \frac { \ln 6 } { \ln 5 } \approx 3.887
B) 2ln6ln51.8872 - \frac { \ln 6 } { \ln 5 } \approx 1.887
C) 2ln6ln50.8872 - \frac { \ln 6 } { \ln 5 } \approx 0.887
D) 2ln6ln54.8872 - \frac { \ln 6 } { \ln 5 } \approx 4.887
E) 2ln6ln52.8872 - \frac { \ln 6 } { \ln 5 } \approx 2.887
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
43
Solve for x. logx=4\log x = - 4

A) 4- 4
B)0.0001
C) 0.0001- 0.0001
D) 44
E)1.386
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
44
Solve the exponential equation algebraically.Approximate the result to three decimal places. 4(5x5)=244 \left( 5 ^ { x - 5 } \right) = 24

A) 5+ln6ln57.1135 + \frac { \ln 6 } { \ln 5 } \approx 7.113
B) 5+ln6ln59.1135 + \frac { \ln 6 } { \ln 5 } \approx 9.113
C) 5+ln6ln56.1135 + \frac { \ln 6 } { \ln 5 } \approx 6.113
D) 5+ln6ln58.1135 + \frac { \ln 6 } { \ln 5 } \approx 8.113
E) 5+ln6ln510.1135 + \frac { \ln 6 } { \ln 5 } \approx 10.113
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
45
Solve for x.Approximate the result to three decimal places. log7x=12\log _ { 7 } x = \frac { 1 } { 2 }

A) 72.828\sqrt { 7 } \approx 2.828
B) 7=2.646\sqrt { 7 } = 2.646
C) 72.646\sqrt { 7 } \approx - 2.646
D) 72.646\sqrt { 7 } \approx 2.646
E) 772.646\frac { \sqrt { 7 } } { 7 } \approx 2.646
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
46
Solve the exponential equation algebraically.Approximate the result to three decimal places. 2x5=162 ^ { x - 5 } = 16

A)10
B)11
C)9
D)-9
E)12
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
47
Solve the exponential equation algebraically.Approximate the result to three decimal places. ex=ex212e ^ { x } = e ^ { x ^ { 2 } - 12 }

A) 3,43 , - 4
B) 3,4- 3 , - 4
C) 3,43,4
D) 3,4- 3,4
E) 3,3- 3,3
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
48
Solve the exponential equation algebraically.Approximate the result to three decimal places. 1000e4x=751000 e ^ { - 4 x } = 75

A) 14ln3402.648- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx 2.648
B) 14ln3401.352- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx - 1.352
C) 14ln3401.648- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx 1.648
D) 14ln3400.648- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx 0.648
E) 14ln3400.352- \frac { 1 } { 4 } \ln \frac { 3 } { 40 } \approx - 0.352
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
49
Solve the exponential equation algebraically.Approximate the result to three decimal places.
e2x7ex8=0e ^ { 2 x } - 7 e ^ { x } - 8 = 0

A) ln83.079\ln 8 \approx 3.079
B) ln82.079\ln 8 \approx 2.079
C) ln84.079\ln 8 \approx 4.079
D) ln81.079\ln 8 \approx 1.079
E) ln80.079\ln 8 \approx 0.079
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
50
Solve for x.Approximate the result to three decimal places. lnx=2\ln x = - 2

A) e27.389e ^ { - 2 } \approx 7.389
B) e20.368e ^ { - 2 } \approx 0.368
C) e22.718e ^ { - 2 } \approx 2.718
D) e20.135e ^ { - 2 } \approx 0.135
E) e21.000e ^ { - 2 } \approx 1.000
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
51
Solve the exponential equation algebraically.Approximate the result to three decimal places. 65x=0.506 ^ { - 5 x } = 0.50

A) ln(0.50)5ln60.072- \frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx 0.072
B) ln(0.50)5ln60.517\frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx 0.517
C) ln(0.50)5ln60.387- \frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx 0.387
D) ln(0.50)5ln60.077- \frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx 0.077
E) ln(0.50)5ln60.077- \frac { \ln ( 0.50 ) } { 5 \ln 6 } \approx - 0.077
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
52
Solve the exponential equation algebraically.Approximate the result to three decimal places. e4x2=e3x214xe ^ { - 4 x ^ { 2 } } = e ^ { 3 x ^ { 2 } - 14 x }

A) 4,24,2
B) 3,23,2
C) 4,2- 4,2
D) 0,20,2
E) 0,20 , - 2
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
53
Solve the exponential equation algebraically.Approximate the result to three decimal places. 6x+8=576 ^ { x } + 8 = 57

A) ln49ln62.172\frac { \ln 49 } { \ln 6 } \approx 2.172
B) ln49ln60.460\frac { \ln 49 } { \ln 6 } \approx - 0.460
C) ln49ln60.514\frac { \ln 49 } { \ln 6 } \approx 0.514
D) ln49ln60.460\frac { \ln 49 } { \ln 6 } \approx 0.460
E) ln49ln62.172\frac { \ln 49 } { \ln 6 } \approx - 2.172
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
54
Solve the exponential equation algebraically.Approximate the result to three decimal places. ex6=13e ^ { x } - 6 = 13

A) ln192.565\ln 19 \approx - 2.565
B) ln192.944\ln 19 \approx 2.944
C) ln191.792\ln 19 \approx 1.792
D) ln192.565\ln 19 \approx 2.565
E) ln192.944\ln 19 \approx - 2.944
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
55
Solve the exponential equation algebraically.Approximate the result to three decimal places.
22+4ex=13- 22 + 4 e ^ { x } = 13

A) ln3541.169\ln \frac { 35 } { 4 } \approx 1.169
B) ln3544.169\ln \frac { 35 } { 4 } \approx 4.169
C) ln3542.169\ln \frac { 35 } { 4 } \approx 2.169
D) ln3540.169\ln \frac { 35 } { 4 } \approx 0.169
E) ln3543.169\ln \frac { 35 } { 4 } \approx 3.169
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
56
Solve the exponential equation algebraically.Approximate the result to three decimal places. 4ex=334 e ^ { x } = 33

A) ln3342.110\ln \frac { 33 } { 4 } \approx 2.110
B) ln3342.110\ln \frac { 33 } { 4 } \approx - 2.110
C) ln4332.110\ln \frac { 4 } { 33 } \approx 2.110
D) ln3343.497\ln \frac { 33 } { 4 } \approx 3.497
E) ln3340.114\ln \frac { 33 } { 4 } \approx 0.114
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
57
Solve the exponential equation algebraically.Approximate the result to three decimal places. 2(3x)=362 \left( 3 ^ { x } \right) = 36

A) ln18ln30.380\frac { \ln 18 } { \ln 3 } \approx 0.380
B) ln18ln30.380\frac { \ln 18 } { \ln 3 } \approx - 0.380
C) ln18ln32.631\frac { \ln 18 } { \ln 3 } \approx - 2.631
D) ln3ln182.631\frac { \ln 3 } { \ln 18 } \approx 2.631
E) ln18ln32.631\frac { \ln 18 } { \ln 3 } \approx 2.631
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
58
Solve the exponential equation algebraically.Approximate the result to three decimal places. 38x=24003 ^ { 8 x } = 2400

A) ln24008ln30.018\frac { \ln 2400 } { 8 \ln 3 } \approx 0.018
B) ln24008ln30.886\frac { \ln 2400 } { 8 \ln 3 } \approx 0.886
C) ln24008ln30.089\frac { \ln 2400 } { 8 \ln 3 } \approx 0.089
D) ln24008ln30.886\frac { \ln 2400 } { 8 \ln 3 } \approx - 0.886
E) ln24008ln31.248\frac { \ln 2400 } { 8 \ln 3 } \approx 1.248
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
59
Solve the exponential equation algebraically.Approximate the result to three decimal places. e3x=75e ^ { 3 x } = 75

A) ln7530.439\frac { \ln 75 } { 3 } \approx 0.439
B) ln7532.439\frac { \ln 75 } { 3 } \approx 2.439
C) ln7530.561\frac { \ln 75 } { 3 } \approx - 0.561
D) ln7533.439\frac { \ln 75 } { 3 } \approx 3.439
E) ln7531.439\frac { \ln 75 } { 3 } \approx 1.439
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
60
Solve the exponential equation algebraically.Approximate the result to three decimal places. ex=ex230e ^ { x } = e ^ { x ^ { 2 } - 30 }

A) 6,5- 6 , - 5
B) 1,301 , - 30
C) 6,56,5
D) 6,5- 6,5
E) 6,56 , - 5
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
61
$3000 is invested in an account at interest rate r, compounded continuously.Find the time required for the amount to triple.(Approximate the result to two decimal places.) r=0.03r = 0.03

A)37.62 yr
B)36.62 yr
C)35.62 yr
D)34.62 yr
E)38.62 yr
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
62
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. 8+71lnx=148 + 71 \ln x = 14

A) e6/73.356e ^ { 6 / 7 } \approx 3.356
B) e6/71.356e ^ { 6 / 7 } \approx 1.356
C) e6/74.356e ^ { 6 / 7 } \approx 4.356
D) e6/72.356e ^ { 6 / 7 } \approx 2.356
E) e6/70.356e ^ { 6 / 7 } \approx 0.356
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
63
Solve (14)x=64\left( \frac { 1 } { 4 } \right) ^ { x } = 64 for x.

A)-3
B)-4
C)-1
D)1
E)no solution
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
64
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. 6lnx=56 \ln x = 5

A) e5/60.301e ^ { 5 / 6 } \approx 0.301
B) e5/61.301e ^ { 5 / 6 } \approx 1.301
C) e5/63.301e ^ { 5 / 6 } \approx 3.301
D) e5/62.301e ^ { 5 / 6 } \approx 2.301
E) e5/64.301e ^ { 5 / 6 } \approx 4.301
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
65
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. 2log3(0.5x)=52 \log _ { 3 } ( 0.5 x ) = 5

A) 2(35/2)33.1772 \left( 3 ^ { 5 / 2 } \right) \approx 33.177
B) 2(35/2)30.1772 \left( 3 ^ { 5 / 2 } \right) \approx 30.177
C) 2(35/2)31.1772 \left( 3 ^ { 5 / 2 } \right) \approx 31.177
D) 2(35/2)29.1772 \left( 3 ^ { 5 / 2 } \right) \approx 29.177
E) 2(35/2)32.1772 \left( 3 ^ { 5 / 2 } \right) \approx 32.177
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
66
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. ln2x=3\ln 2 x = 3

A) e328.043\frac { e ^ { 3 } } { 2 } \approx 8.043
B) e3210.043\frac { e ^ { 3 } } { 2 } \approx 10.043
C) e3212.043\frac { e ^ { 3 } } { 2 } \approx 12.043
D) e3211.043\frac { e ^ { 3 } } { 2 } \approx 11.043
E) e3213.043\frac { e ^ { 3 } } { 2 } \approx 13.043
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
67
Solve for x: 7(10x3)=237 \left( 10 ^ { x - 3 } \right) = 23 .Round to 3 decimal places.

A)0.517
B)no solution
C)3.517
D)-1.362
E)1.362
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
68
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. logx=4\log x = 4

A)1,000
B)1,000,000
C)10,000
D)100,000
E)100
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
69
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. lnx=5\ln x = - 5

A) e52.007e ^ { - 5 } \approx 2.007
B) e51.007e ^ { - 5 } \approx 1.007
C) e53.007e ^ { - 5 } \approx 3.007
D) e51.993e ^ { - 5 } \approx - 1.993
E) e50.007e ^ { - 5 } \approx 0.007
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
70
Solve for x: 5x/3=0.00525 ^ { - x / 3 } = 0.0052 .Round to 3 decimal places.

A)-20.606
B)9.803
C)20.606
D)-3.268
E)15.777
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
71
Determine whether or not x=37x = \frac { 3 } { 7 } is a solution to 33x3=813 ^ { 3 x - 3 } = 81 .
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
72
$4500 is invested in an account at interest rate r, compounded continuously.Find the time required for the amount to triple.(Approximate the result to two decimal places.) r=0.0315r = 0.0315

A)21.00 yr
B)20.00 yr
C)34.88 yr
D)24.00 yr
E)23.00 yr
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
73
Solve the equation algebraically.Round the result to three decimal places. 3+lnx8=0\frac { 3 + \ln x } { 8 } = 0

A) e32,980.958e ^ { - 3 } \approx 2,980.958
B) e30e ^ { - 3 } \approx 0
C) e354.598e ^ { - 3 } \approx 54.598
D) e30.050e ^ { - 3 } \approx 0.050
E) e320.086e ^ { - 3 } \approx 20.086
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
74
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. log5(5x3)=log5(4x+4)\log _ { 5 } ( 5 x - 3 ) = \log _ { 5 } ( 4 x + 4 )

A)8
B)6
C)-1
D)7
E)9
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
75
$2500 is invested in an account at interest rate r, compounded continuously.Find the time required for the amount to double.(Approximate the result to two decimal places.) r=0.06r = 0.06

A)13.55 yr
B)10.55 yr
C)12.55 yr
D)9.55 yr
E)11.55 yr
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
76
$5500 is invested in an account at interest rate r, compounded continuously.Find the time required for the amount to double.(Approximate the result to two decimal places.) r=0.0540r = 0.0540

A)13.84 yr
B)10.84 yr
C)12.84 yr
D)11.84 yr
E)14.84 yr
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
77
Solve the exponential equation algebraically.Approximate the result to three decimal places.
e2x7ex8=0e ^ { 2 x } - 7 e ^ { x } - 8 = 0

A) ln83.079\ln 8 \approx 3.079
B) ln81.079\ln 8 \approx 1.079
C) ln82.079\ln 8 \approx 2.079
D) ln80.079\ln 8 \approx 0.079
E) ln84.079\ln 8 \approx 4.079
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
78
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. lnx8=7\ln \sqrt { x - 8 } = 7

A) e14+81,202,611.284e ^ { 14 } + 8 \approx 1,202,611.284
B) e14+81,202,614.284e ^ { 14 } + 8 \approx 1,202,614.284
C) e14+81,202,612.284e ^ { 14 } + 8 \approx 1,202,612.284
D) e14+81,202,610.284e ^ { 14 } + 8 \approx 1,202,610.284
E) e14+81,202,613.284e ^ { 14 } + 8 \approx 1,202,613.284
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
79
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. 9+2lnx=49 + 2 \ln x = 4

A) e5/21.082e ^ { - 5 / 2 } \approx 1.082
B) e5/20.918e ^ { - 5 / 2 } \approx - 0.918
C) e5/21.918e ^ { - 5 / 2 } \approx - 1.918
D) e5/20.082e ^ { - 5 / 2 } \approx 0.082
E) e5/22.082e ^ { - 5 / 2 } \approx 2.082
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
80
Solve the logarithmic equation algebraically.Approximate the result to three decimal places. lnx5=0\ln x - 5 = 0

A) e5151.413e ^ { 5 } \approx 151.413
B) e5146.413e ^ { 5 } \approx 146.413
C) e5148.413e ^ { 5 } \approx 148.413
D) e5149.413e ^ { 5 } \approx 149.413
E) e5150.413e ^ { 5 } \approx 150.413
Unlock Deck
Unlock for access to all 266 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 266 flashcards in this deck.