expand icon
book College Algebra in Context with Applications for the Managerial, Life, and Social Sciences 3rd Edition by Ronald J Harshbarger, Lisa Yocco cover

College Algebra in Context with Applications for the Managerial, Life, and Social Sciences 3rd Edition by Ronald J Harshbarger, Lisa Yocco

النسخة 3الرقم المعياري الدولي: 032157060X
book College Algebra in Context with Applications for the Managerial, Life, and Social Sciences 3rd Edition by Ronald J Harshbarger, Lisa Yocco cover

College Algebra in Context with Applications for the Managerial, Life, and Social Sciences 3rd Edition by Ronald J Harshbarger, Lisa Yocco

النسخة 3الرقم المعياري الدولي: 032157060X
تمرين 5
الحلول خطوة بخطوة
موثّق
like image
like image

الخطوة 1 من3

Consider the following table gives projections of the U.S. population from 2000 to 2100.

Year

Population (millions)

Year

Population (millions)

2000

275.3

2060

432.0

2010

299.9

2070

463.6

2020

324.9

2080

497.8

2030

351.1

2090

533.6

2040

377.4

2100

571.0

2050

403.7

(a) Let us find a linear function that models the data, with x equals to the number of years after 2000 and    <div class=answer> Consider the following table gives projections of the U.S. population from 2000 to 2100. <table style=border-collapse:collapse; border=1>     <tbody>      <tr>       <td> Year </td>       <td> Population (millions) </td>       <td> Year </td>       <td> Population (millions) </td>      </tr>      <tr>       <td> 2000 </td>       <td> 275.3 </td>       <td> 2060 </td>       <td> 432.0 </td>      </tr>      <tr>       <td> 2010 </td>       <td> 299.9 </td>       <td> 2070 </td>       <td> 463.6 </td>      </tr>      <tr>       <td> 2020 </td>       <td> 324.9 </td>       <td> 2080 </td>       <td> 497.8 </td>      </tr>      <tr>       <td> 2030 </td>       <td> 351.1 </td>       <td> 2090 </td>       <td> 533.6 </td>      </tr>      <tr>       <td> 2040 </td>       <td> 377.4 </td>       <td> 2100 </td>       <td> 571.0 </td>      </tr>      <tr>       <td> 2050 </td>       <td> 403.7 </td>       <td> </td>       <td> </td>      </tr>     </tbody>    </table> (a) Let us find a linear function that models the data, with <i>x</i> equals to the number of years after 2000 and   equal to the population in millions. Enter the data from the above table in the lists of a graphing utility. The figure below shows a partial list of the data points.      The equation that fits best for the data, found using linear regression with a graphing calculator.   The equation, rounded to three decimal places, is   . Thus, the linear function that models the data is   . equal to the population in millions.

Enter the data from the above table in the lists of a graphing utility.

The figure below shows a partial list of the data points.

    <div class=answer> Consider the following table gives projections of the U.S. population from 2000 to 2100. <table style=border-collapse:collapse; border=1>     <tbody>      <tr>       <td> Year </td>       <td> Population (millions) </td>       <td> Year </td>       <td> Population (millions) </td>      </tr>      <tr>       <td> 2000 </td>       <td> 275.3 </td>       <td> 2060 </td>       <td> 432.0 </td>      </tr>      <tr>       <td> 2010 </td>       <td> 299.9 </td>       <td> 2070 </td>       <td> 463.6 </td>      </tr>      <tr>       <td> 2020 </td>       <td> 324.9 </td>       <td> 2080 </td>       <td> 497.8 </td>      </tr>      <tr>       <td> 2030 </td>       <td> 351.1 </td>       <td> 2090 </td>       <td> 533.6 </td>      </tr>      <tr>       <td> 2040 </td>       <td> 377.4 </td>       <td> 2100 </td>       <td> 571.0 </td>      </tr>      <tr>       <td> 2050 </td>       <td> 403.7 </td>       <td> </td>       <td> </td>      </tr>     </tbody>    </table> (a) Let us find a linear function that models the data, with <i>x</i> equals to the number of years after 2000 and   equal to the population in millions. Enter the data from the above table in the lists of a graphing utility. The figure below shows a partial list of the data points.      The equation that fits best for the data, found using linear regression with a graphing calculator.   The equation, rounded to three decimal places, is   . Thus, the linear function that models the data is   .     <div class=answer> Consider the following table gives projections of the U.S. population from 2000 to 2100. <table style=border-collapse:collapse; border=1>     <tbody>      <tr>       <td> Year </td>       <td> Population (millions) </td>       <td> Year </td>       <td> Population (millions) </td>      </tr>      <tr>       <td> 2000 </td>       <td> 275.3 </td>       <td> 2060 </td>       <td> 432.0 </td>      </tr>      <tr>       <td> 2010 </td>       <td> 299.9 </td>       <td> 2070 </td>       <td> 463.6 </td>      </tr>      <tr>       <td> 2020 </td>       <td> 324.9 </td>       <td> 2080 </td>       <td> 497.8 </td>      </tr>      <tr>       <td> 2030 </td>       <td> 351.1 </td>       <td> 2090 </td>       <td> 533.6 </td>      </tr>      <tr>       <td> 2040 </td>       <td> 377.4 </td>       <td> 2100 </td>       <td> 571.0 </td>      </tr>      <tr>       <td> 2050 </td>       <td> 403.7 </td>       <td> </td>       <td> </td>      </tr>     </tbody>    </table> (a) Let us find a linear function that models the data, with <i>x</i> equals to the number of years after 2000 and   equal to the population in millions. Enter the data from the above table in the lists of a graphing utility. The figure below shows a partial list of the data points.      The equation that fits best for the data, found using linear regression with a graphing calculator.   The equation, rounded to three decimal places, is   . Thus, the linear function that models the data is   .

The equation that fits best for the data, found using linear regression with a graphing calculator.

    <div class=answer> Consider the following table gives projections of the U.S. population from 2000 to 2100. <table style=border-collapse:collapse; border=1>     <tbody>      <tr>       <td> Year </td>       <td> Population (millions) </td>       <td> Year </td>       <td> Population (millions) </td>      </tr>      <tr>       <td> 2000 </td>       <td> 275.3 </td>       <td> 2060 </td>       <td> 432.0 </td>      </tr>      <tr>       <td> 2010 </td>       <td> 299.9 </td>       <td> 2070 </td>       <td> 463.6 </td>      </tr>      <tr>       <td> 2020 </td>       <td> 324.9 </td>       <td> 2080 </td>       <td> 497.8 </td>      </tr>      <tr>       <td> 2030 </td>       <td> 351.1 </td>       <td> 2090 </td>       <td> 533.6 </td>      </tr>      <tr>       <td> 2040 </td>       <td> 377.4 </td>       <td> 2100 </td>       <td> 571.0 </td>      </tr>      <tr>       <td> 2050 </td>       <td> 403.7 </td>       <td> </td>       <td> </td>      </tr>     </tbody>    </table> (a) Let us find a linear function that models the data, with <i>x</i> equals to the number of years after 2000 and   equal to the population in millions. Enter the data from the above table in the lists of a graphing utility. The figure below shows a partial list of the data points.      The equation that fits best for the data, found using linear regression with a graphing calculator.   The equation, rounded to three decimal places, is   . Thus, the linear function that models the data is   .

The equation, rounded to three decimal places, is    <div class=answer> Consider the following table gives projections of the U.S. population from 2000 to 2100. <table style=border-collapse:collapse; border=1>     <tbody>      <tr>       <td> Year </td>       <td> Population (millions) </td>       <td> Year </td>       <td> Population (millions) </td>      </tr>      <tr>       <td> 2000 </td>       <td> 275.3 </td>       <td> 2060 </td>       <td> 432.0 </td>      </tr>      <tr>       <td> 2010 </td>       <td> 299.9 </td>       <td> 2070 </td>       <td> 463.6 </td>      </tr>      <tr>       <td> 2020 </td>       <td> 324.9 </td>       <td> 2080 </td>       <td> 497.8 </td>      </tr>      <tr>       <td> 2030 </td>       <td> 351.1 </td>       <td> 2090 </td>       <td> 533.6 </td>      </tr>      <tr>       <td> 2040 </td>       <td> 377.4 </td>       <td> 2100 </td>       <td> 571.0 </td>      </tr>      <tr>       <td> 2050 </td>       <td> 403.7 </td>       <td> </td>       <td> </td>      </tr>     </tbody>    </table> (a) Let us find a linear function that models the data, with <i>x</i> equals to the number of years after 2000 and   equal to the population in millions. Enter the data from the above table in the lists of a graphing utility. The figure below shows a partial list of the data points.      The equation that fits best for the data, found using linear regression with a graphing calculator.   The equation, rounded to three decimal places, is   . Thus, the linear function that models the data is   . . Thus, the linear function that models the data is    <div class=answer> Consider the following table gives projections of the U.S. population from 2000 to 2100. <table style=border-collapse:collapse; border=1>     <tbody>      <tr>       <td> Year </td>       <td> Population (millions) </td>       <td> Year </td>       <td> Population (millions) </td>      </tr>      <tr>       <td> 2000 </td>       <td> 275.3 </td>       <td> 2060 </td>       <td> 432.0 </td>      </tr>      <tr>       <td> 2010 </td>       <td> 299.9 </td>       <td> 2070 </td>       <td> 463.6 </td>      </tr>      <tr>       <td> 2020 </td>       <td> 324.9 </td>       <td> 2080 </td>       <td> 497.8 </td>      </tr>      <tr>       <td> 2030 </td>       <td> 351.1 </td>       <td> 2090 </td>       <td> 533.6 </td>      </tr>      <tr>       <td> 2040 </td>       <td> 377.4 </td>       <td> 2100 </td>       <td> 571.0 </td>      </tr>      <tr>       <td> 2050 </td>       <td> 403.7 </td>       <td> </td>       <td> </td>      </tr>     </tbody>    </table> (a) Let us find a linear function that models the data, with <i>x</i> equals to the number of years after 2000 and   equal to the population in millions. Enter the data from the above table in the lists of a graphing utility. The figure below shows a partial list of the data points.      The equation that fits best for the data, found using linear regression with a graphing calculator.   The equation, rounded to three decimal places, is   . Thus, the linear function that models the data is   . .


الخطوة 2 من 3


الخطوة 3 من 3

close menu
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences 3rd Edition by Ronald J Harshbarger, Lisa Yocco
cross icon