Solved

If We Add the First 100 Terms of the Alternating 112+1314+151 - \frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } + \frac { 1 } { 5 } - \cdots

Question 156

Multiple Choice

If we add the first 100 terms of the alternating series 112+1314+151 - \frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } + \frac { 1 } { 5 } - \cdots , how close can we determine the partial sum S100S _ { 100 } to be to the sum SS of the series?


A) s100>s, with s100s<1101s _ { 100 } > s \text {, with } s _ { 100 } - s < \frac { 1 } { 101 }
B) s100>s, with s100s<1e100s _ { 100 } > s , \text { with } s _ { 100 } - s < \frac { 1 } { e ^ { 100 } }
C) s100>s, with s100s<1100s _ { 100 } > s \text {, with } s _ { 100 } - s < \frac { 1 } { 100 }
D) s100<s, with ss100<1e101s _ { 100 } < s , \text { with } s - s _ { 100 } < \frac { 1 } { e ^ { 101 } }
E) s100>s, with s100s<1e101s _ { 100 } > s , \text { with } s _ { 100 } - s < \frac { 1 } { e ^ { 101 } }
F) s100<s, with ss100<1101s _ { 100 } < s \text {, with } s - s _ { 100 } < \frac { 1 } { 101 }
G) s100<s, with ss100<1100s _ { 100 } < s \text {, with } s - s _ { 100 } < \frac { 1 } { 100 }
H) s100<s, with ss100<1e100s _ { 100 } < s , \text { with } s - s _ { 100 } < \frac { 1 } { e ^ { 100 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents