Services
Discover
Question 45
Use the Chain Rule to find ∂z∂s\frac { \partial z } { \partial s }∂s∂z . z=eycos(θ) ,r=8st,θ=s2+t2z = e ^ { y } \cos ( \theta ) , r = 8 s t , \theta = \sqrt { s ^ { 2 } + t ^ { 2 } }z=eycos(θ) ,r=8st,θ=s2+t2
A) ∂z∂s=eγ(8tcos(θ) −ssin(θ) s2+t2) \frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right) ∂s∂z=eγ(8tcos(θ) −s2+t2ssin(θ) ) B) ∂z∂s=eγ(8tcos(θ) +ssin(θ) s2−t2) \frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right) ∂s∂z=eγ(8tcos(θ) +s2−t2ssin(θ) ) C) ∂z∂s=(8tcos(θ) +seγsin(θ) s2+t2) \frac { \partial z } { \partial s } = \left( 8 t \cos ( \theta ) + \frac { s e ^ { \gamma } \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right) ∂s∂z=(8tcos(θ) +s2+t2seγsin(θ) ) D) ∂z∂s=eγ(cos(θ) +ssin(θ) s2−t2) \frac { \partial z } { \partial s } = e ^ { \gamma } \left( \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right) ∂s∂z=eγ(cos(θ) +s2−t2ssin(θ) ) E) ∂z∂s=eγ(tcos(θ) −ssin(θ) s2+t) \frac { \partial z } { \partial s } = e ^ { \gamma } \left( t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t } } \right) ∂s∂z=eγ(tcos(θ) −s2+tssin(θ) )
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q40: If Q41: Use the Chain Rule to findQ42: Find the limit if Q43: The radius of a right circularQ44: Find the differential of the functionQ46: Use the Chain Rule to findQ47: Find an equation of the tangentQ48: Use the Chain Rule to findQ49: Find the equation of the tangentQ50: Use the equation
Q41: Use the Chain Rule to find
Q42: Find the limit if
Q43: The radius of a right circular
Q44: Find the differential of the function
Q46: Use the Chain Rule to find
Q47: Find an equation of the tangent
Q48: Use the Chain Rule to find
Q49: Find the equation of the tangent
Q50: Use the equation
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents