Solved

Select the Graph of the Polar Equation Using Symmetry,zeros,maximum R-Values,and r=4sin(2θ)r = 4 \sin ( 2 \theta )

Question 10

Multiple Choice

Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4sin(2θ) r = 4 \sin ( 2 \theta )


A) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
B) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
C) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
D) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​
E) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } ,the polar axis,and the pole r=4 when θ=π4,3π4,5π4,7π4r=0 when θ=0,π2,π\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin ( 2 \theta )   ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }  ,the polar axis,and the pole  \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 2 } , \pi \end{array}  ​

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents