Solved

Evaluate (If Possible)the Sine,cosine,and Tangent of the Real Number t=3π2t = \frac { 3 \pi } { 2 }

Question 3

Multiple Choice

Evaluate (if possible) the sine,cosine,and tangent of the real number.​ t=3π2t = \frac { 3 \pi } { 2 }


A) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y) =(1,0) ( x , y ) = ( - 1,0 ) . sin(3π2) =0cos(3π2) =1tan(3π2) =0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
B) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y) =(0,1) ( x , y ) = ( 0 , - 1 ) .​ sin(3π2) =1cos(3π2) =0tan(3π2)  is undefined.\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0\\\\\tan \left( \frac { 3 \pi } { 2 } \right) ~ is~ undefined.\end{array}
C) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y) =(0,0) ( x , y ) = ( 0,0 ) .​ sin(3π2) =0cos(3π2) =0tan(3π2) =0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
D) t=3π2t = \frac { 3 \pi } { 2 } corresponds to the point (x,y) =(1,0) ( x , y ) = ( - 1,0 ) .​ sin(3π2) =1cos(3π2) =0tan(3π2) =0\begin{array} { l } \sin \left( \frac { 3 \pi } { 2 } \right) = - 1 \\\\\cos \left( \frac { 3 \pi } { 2 } \right) = 0 \\\\\tan \left( \frac { 3 \pi } { 2 } \right) = 0\end{array}
E) Not possible

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents