Solved

Construct an Appropriate Triangle to Complete the Table (0θ90,0θπ2)\left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)

Question 17

Multiple Choice

Construct an appropriate triangle to complete the table. (0θ90,0θπ2) \left( 0 ^ { \circ } \leq \theta \leq 90 ^ { \circ } , 0 ^ { \circ } \leq \theta \leq \frac { \pi } { 2 } \right)  Function θ(deg) θ(rad)  Function Value cotπ2\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & & \frac { \pi } { 2 } & \\\hline\end{array}
?


A) ?  Function θ( deg ) θ(rad)  Function Value cot30π23\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \text { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 30 ^ { \circ } & \frac { \pi } { 2 } & \sqrt { 3 } \\\hline\end{array}
B) ?  Function θ(deg) θ(rad)  Function Value cot45π21\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 45 ^ { \circ } & \frac { \pi } { 2 } & 1 \\\hline\end{array}
C) ?  Function θ(deg) θ(rad)  Function Value  cot 90π20\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \text { cot } & 90 ^ { \circ } & \frac { \pi } { 2 } & 0 \\\hline\end{array}
D) ?  Function θ(deg) θ(rad)  Function Value cot0π2 Not defined \begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \cot & 0 ^ { \circ } & \frac { \pi } { 2 } & \text { Not defined } \\\hline\end{array}
E) ?  Function θ(deg) θ(rad)  Function Value cot60π233\begin{array} { | c | c | c | c | } \hline \text { Function } & \theta ( \mathrm { deg } ) & \theta ( \mathrm { rad } ) & \text { Function Value } \\\hline \\\cot & 60 ^ { \circ } & \frac { \pi } { 2 } & \frac { \sqrt { 3 } } { 3 } \\\\\hline\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents