Solved

The LP Model and LINGO Output Represent a Problem Whose

Question 47

Essay

The LP model and LINGO output represent a problem whose solution will tell a specialty retailer how many of four different styles of umbrellas to stock in order to maximize profit.It is assumed that every one stocked will be sold.The variables measure the number of women's,golf,men's,and folding umbrellas,respectively.The constraints measure storage space in units,special display racks,demand,and a marketing restriction,respectively.
MAX 4 X1 + 6 X2 + 5 X3 + 3.5 X4
SUBJECT TO
2)2 X1 + 3 X2 + 3 X3 + X4 <= 120
3)1.5 X1 + 2 X2 <= 54
4)2 X2 + X3 + X4 <= 72
5)X2 + X3 >= 12
END
OBJECTIVE FUNCTION VALUE
1)318.00000  VARIABLE  VALUE  REDUCED COST  X1 12.000000.000000 X2 .000000.500000 X3 12.000000.000000 X4 60.000000.000000\begin{array} { c c c } \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\\text { X1 } & 12.000000 & .000000 \\\text { X2 } & .000000 & .500000 \\\text { X3 } & 12.000000 & .000000 \\\text { X4 } & 60.000000 & .000000\end{array}  ROW  SLACK OR SURPLUS  DUAL PRICE 2).0000002.000000 3) 36.000000.000000 4) .0000001.500000 5) .0000002.500000\begin{array} { c c r } { \text { ROW } } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE } \\\hline2) & .000000 & 2.000000 \\\text { 3) } & 36.000000 & .000000 \\\text { 4) } & .000000 & 1.500000 \\\text { 5) } & .000000 & -2.500000\end{array} RANGES IN WHICH THE BASIS IS UNCHANGED:  OBJ. COEFFICIENT RANGES VARIABLEX1X2X3X4 CURRENT  COEFFICIENT  ALLOWABLE  INCREASE  ALLOWABLE  DECREASE 4.0000001.0000002.5000006.000000.500000 INFINITY 5.0000002.500000.5000003.500000 INFINITY .500000\begin{array}{c}\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\text { OBJ. COEFFICIENT RANGES }\\\begin{array}{c}VARIABLE \\X 1 \\X 2 \\X 3 \\X 4\end{array}\begin{array}{ccc}\frac{\text { CURRENT }}{\text { COEFFICIENT }} & \frac{\text { ALLOWABLE }}{\text { INCREASE }} & \frac{\text { ALLOWABLE }}{\text { DECREASE }}\\4.000000 & 1.000000 & 2.500000 \\6.000000 & .500000 & \text { INFINITY } \\5.000000 & 2.500000 & .500000 \\3.500000 & \text { INFINITY } & .500000\end{array}\end{array}  RIGHTHAND SIDE RANGES  CURRENT  ALLOWABLE  ALLOWABLE  ROW  RHS  INCREASE  DECREASE 2120.00000048.00000024.000000354.000000 INFINITY 36.000000472.00000024.00000048.000000512.00000012.00000012.000000\begin{array}{l}\begin{array} { c c c c } &&\quad\quad\quad\quad\quad\quad\quad\quad\text { RIGHTHAND SIDE RANGES }\\& \text { CURRENT } & \text { ALLOWABLE } & \text { ALLOWABLE } \\\hline\text { ROW } & \text { RHS } & \text { INCREASE } & \text { DECREASE } \\2 & 120.000000 & 48.000000 & 24.000000 \\3 & 54.000000 & \text { INFINITY } & 36.000000 \\4 & 72.000000 & 24.000000 & 48.000000 \\5 & 12.000000 & 12.000000 & 12.000000\end{array}\end{array} Use the output to answer the questions.
a.How many women's umbrellas should be stocked?
b.How many golf umbrellas should be stocked?
c.How many men's umbrellas should be stocked?
d.How many folding umbrellas should be stocked?
e.How much space is left unused?f. How many racks are used?g. By how much is the marketing restriction exceeded?h. What is the total profit?i. By how much can the profit on women's umbrellas increase before the solution would change?j. To what value can the profit on golf umbrellas increase before the solution would change?k. By how much can the amount of space increase before there is a change in the dual price?l. You are offered an advertisement that should increase the demand constraint from 72 to 86 for a total cost of $20. Would you say yes or no?

Correct Answer:

verifed

Verified

a.12
b.0
c.12
d.60
e.0
f.18
g....

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents