Solved

Consider the First-Order Homogeneous System of Linear Differential Equations

Question 84

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   is an arbitrary constant vector. A)    \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t-\frac{1}{6}\right)  e^{4 t} \\ 6 e^{t} & -3 e^{4 t} & -3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right)  \mathbf{C}   B)    \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right)  e^{4 t} \\ 6 e^{t} & 3 e^{4 t} & 3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right)    C C)    \mathbf{x}(t) =\left[\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right)  e^{4 t} \\ -3 e^{t} & -3 e^{4 t} & 3 t e^{4 t} \\ 6 e^{t} & 0 & 0\end{array}\right]   C D)    \mathbf{x}(t) =\left[\begin{array}{lll}e^{-t} & e^{-4 t} & \left(t+\frac{1}{6}\right)  e^{-4 t} \\ 6 e^{-t} & 3 e^{-4 t} & 3 t e^{-4 t} \\ 3 e^{-t} & 0 & 0\end{array}\right]   C
What is the general solution of this system? Here,  Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   is an arbitrary constant vector. A)    \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t-\frac{1}{6}\right)  e^{4 t} \\ 6 e^{t} & -3 e^{4 t} & -3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right)  \mathbf{C}   B)    \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right)  e^{4 t} \\ 6 e^{t} & 3 e^{4 t} & 3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right)    C C)    \mathbf{x}(t) =\left[\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right)  e^{4 t} \\ -3 e^{t} & -3 e^{4 t} & 3 t e^{4 t} \\ 6 e^{t} & 0 & 0\end{array}\right]   C D)    \mathbf{x}(t) =\left[\begin{array}{lll}e^{-t} & e^{-4 t} & \left(t+\frac{1}{6}\right)  e^{-4 t} \\ 6 e^{-t} & 3 e^{-4 t} & 3 t e^{-4 t} \\ 3 e^{-t} & 0 & 0\end{array}\right]   C is an arbitrary constant vector.


A) x(t) =(ete4t(t16) e4t6et3e4t3te4t3et00) C \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t-\frac{1}{6}\right) e^{4 t} \\ 6 e^{t} & -3 e^{4 t} & -3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right) \mathbf{C}
B) x(t) =(ete4t(t+16) e4t6et3e4t3te4t3et00) \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right) e^{4 t} \\ 6 e^{t} & 3 e^{4 t} & 3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right) C
C) x(t) =[ete4t(t+16) e4t3et3e4t3te4t6et00] \mathbf{x}(t) =\left[\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right) e^{4 t} \\ -3 e^{t} & -3 e^{4 t} & 3 t e^{4 t} \\ 6 e^{t} & 0 & 0\end{array}\right] C
D) x(t) =[ete4t(t+16) e4t6et3e4t3te4t3et00] \mathbf{x}(t) =\left[\begin{array}{lll}e^{-t} & e^{-4 t} & \left(t+\frac{1}{6}\right) e^{-4 t} \\ 6 e^{-t} & 3 e^{-4 t} & 3 t e^{-4 t} \\ 3 e^{-t} & 0 & 0\end{array}\right] C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents