Solved

Consider the First-Order Homogeneous System of Linear Differential Equations x(t)=C1(2516)e25t+C2(1625)e16t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}

Question 38

Multiple Choice

Consider the first-order homogeneous system of linear differential equations  Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right)  e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right)  e^{-16 t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{-16 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{16 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t} =  Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right)  e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right)  e^{-16 t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{-16 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{16 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t} x
Which of these is the genreal solution of the system? Here,  Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right)  e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right)  e^{-16 t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{-16 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{16 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t} and  Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right)  e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right)  e^{-16 t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{-16 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{16 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t} are arbitrary real constants.


A) x(t) =C1(2516) e25t+C2(1625) e16t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}
B) x(t) =C1(1625) e25t+C2(1625) e16t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}
C) x(t) =C1(5i4i) e20t+C2(5i4i) e20t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}
D) x(t) =C1(1625) e25t+C2(1625) e16t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}
E) x(t) =C1(5i4i) e20t+C2(5i4i) e20t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents