Solved

Consider the Matrix
Which of These Is a Complete

Question 27

Multiple Choice

Consider the matrix  Consider the matrix   Which of these is a complete list of eigenvalue-eigenvector pairs of A? A)    \lambda_{1}=4, \quad \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right)  \quad \lambda_{2}=-4, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)    B)    \lambda_{1}=4, \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) , \lambda_{2}=-4, \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)    C)    \lambda_{1}=2, \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right)  \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)    D)    \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right)  \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
Which of these is a complete list of eigenvalue-eigenvector pairs of A?


A) λ1=4,ξ1=(31) λ2=4,ξ2=(11) \lambda_{1}=4, \quad \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-4, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
B) λ1=4,ξ1=(13) ,λ2=4,ξ2=(11) \lambda_{1}=4, \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) , \lambda_{2}=-4, \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
C) λ1=2,ξ1=(31) λ2=2,ξ2=(11) \lambda_{1}=2, \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) λ1=2,ξ1=(13) λ2=2,ξ2=(11) \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents