Solved

Consider a Reaction Given By
-In the Standard Notation, the Fractional Surface Coverage

Question 2

Multiple Choice

Consider a reaction given by Mk1k1Mads++eMads+k2k2Msol+\begin{array} { l } M \underset { k _ { - 1 } } { \stackrel { k _ { 1 } } { \rightleftarrows } } M _ { a ds } ^ { + } + e ^ { - } \\M _ { a d s } ^ { + }\underset { k _ { - 2 } } { \stackrel { k _ { 2 } } { \rightleftarrows } } M _ { sol } ^ { + }\end{array} .
-In the standard notation, the fractional surface coverage ( θ\theta ) of the adsorbed intermediate Mat+M _ { a t } ^ { + }
is described by


A) Γdθdt=k1(1θ) k2θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { 2 } \theta
B) Γdθdt=k1(1θ) k1θk2θ+k2(1θ) CM2ad2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta + k _ { - 2 } ( 1 - \theta ) C _ { M _ { 2a d } ^ { 2 + } }
C) Γdθdt=k1(1θ) k1θ\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta
D) Γdθdt=k1(1θ) k1θk2θ+k2CMsa2+\Gamma \frac { d \theta } { d t } = k _ { 1 } ( 1 - \theta ) - k _ { - 1 } \theta - k _ { 2 } \theta + k _ { - 2 } C _ { M _ { s a } ^ { 2+ } }

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents