Solved

Express the Limit as a Definite Integral limP0k=1n(sec2ck)Δxk\lim _{\mathrm||{P}|| \rightarrow 0} \sum_{k=1}^{n}\left(\sec ^{2} \mathrm{c}_{\mathrm{k}}\right) \Delta \mathrm{x}_{\mathrm{k}}

Question 67

Multiple Choice

Express the limit as a definite integral.

- limP0k=1n(sec2ck) Δxk\lim _{\mathrm||{P}|| \rightarrow 0} \sum_{k=1}^{n}\left(\sec ^{2} \mathrm{c}_{\mathrm{k}}\right) \Delta \mathrm{x}_{\mathrm{k}} where P\mathrm { P } is a partition of [5π,5π][ - 5 \pi , 5 \pi ]


A) 5π5πtanxdx\int _ { - 5 \pi } ^ { 5 \pi } \tan x d x
B) 5π5πsec2xdx\int _ { 5 \pi } ^ { - 5 \pi } \sec ^ { 2 } x d x
C) 1nsecxdx\int _ { 1 } ^ { n } \sec x d x
D) 5π5πsec2xdx\int _ { - 5 \pi } ^ { 5 \pi } \sec ^ { 2 } x d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents