Solved

Find the First Eight Terms of the Power Series Representing ytt+11x2y=0y ^ { tt } + 11 x ^ { 2 } y = 0

Question 23

Multiple Choice

Find the first eight terms of the power series representing independent solutions of the differential equation ytt+11x2y=0y ^ { tt } + 11 x ^ { 2 } y = 0 .


A) y=a0(1x44!+x88!x1212!+) +a1(x1!x55!+x99!x1313!+) y = a _ { 0 } \left( 1 - \frac { x ^ { 4 } } { 4 ! } + \frac { x ^ { 8 } } { 8 ! } - \frac { x ^ { 12 } } { 12 ! } + \cdots \right) + a _ { 1 } \left( \frac { x } { 1 ! } - \frac { x ^ { 5 } } { 5 ! } + \frac { x ^ { 9 } } { 9 ! } - \frac { x ^ { 13 } } { 13 ! } + \cdots \right) , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
B) y=a0(111x443+112x88743113x1212118743+) +a1(x11x554+112x79854113x913129854+) \begin{aligned}y = & a _ { 0 } \left( 1 - \frac { 11 \cdot x ^ { 4 } } { 4 \cdot 3 } + \frac { 11 ^ { 2 } \cdot x ^ { 8 } } { 8 \cdot 7 \cdot 4 \cdot 3 } - \frac { 11 ^ { 3 } \cdot x ^ { 12 } } { 12 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 3 } + \cdots \right) \\& + a _ { 1 } \left( x - \frac { 11 \cdot x ^ { 5 } } { 5 \cdot 4 } + \frac { 11 ^ { 2 } \cdot x ^ { 7 } } { 9 \cdot 8 \cdot 5 \cdot 4 } - \frac { 11 ^ { 3 } \cdot x ^ { 9 } } { 13 \cdot 12 \cdot 9 \cdot 8 \cdot 5 \cdot 4 } + \cdots \right) \end{aligned}
where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
C) y=a0(111x42!+112x86!113x1210!+) +a1(x1!11x55!+112x97!113x1311!+) y = a _ { 0 } \left( 1 - \frac { 11 \cdot x ^ { 4 } } { 2 ! } + \frac { 11 ^ { 2 } \cdot x ^ { 8 } } { 6 ! } - \frac { 11 ^ { 3 } \cdot x ^ { 12 } } { 10 ! } + \cdots \right) + a _ { 1 } \left( \frac { x } { 1 ! } - \frac { 11 \cdot x ^ { 5 } } { 5 ! } + \frac { 11 ^ { 2 } \cdot x ^ { 9 } } { 7 ! } - \frac { 11 ^ { 3 } \cdot x ^ { 13 } } { 11 ! } + \cdots \right) , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
D) y=a0(1x22!x66!x1010!+) +a1(x1!x33!x77!x1111!+) y = a _ { 0 } \left( 1 - \frac { x ^ { 2 } } { 2 ! } - \frac { x ^ { 6 } } { 6 ! } - \frac { x ^ { 10 } } { 10 ! } + \cdots \right) + a _ { 1 } \left( \frac { x } { 1 ! } - \frac { x ^ { 3 } } { 3 ! } - \frac { x ^ { 7 } } { 7 ! } - \frac { x ^ { 11 } } { 11 ! } + \cdots \right) , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
E)
y=a0(111x443112x887113x121211+) +a1(x11x554112x998113x131312+) y = a _ { 0 } \left( 1 - \frac { 11 \cdot x ^ { 4 } } { 4 \cdot 3 } - \frac { 11 ^ { 2 } \cdot x ^ { 8 } } { 8 \cdot 7 } - \frac { 11 ^ { 3 } \cdot x ^ { 12 } } { 12 \cdot 11 } + \cdots \right) + a _ { 1 } \left( x - \frac { 11 \cdot x ^ { 5 } } { 5 \cdot 4 } - \frac { 11 ^ { 2 } \cdot x ^ { 9 } } { 9 \cdot 8 } - \frac { 11 ^ { 3 } \cdot x ^ { 13 } } { 13 \cdot 12 } + \cdots \right) where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents