Solved

Point Corresponding to T = 5 x=t+10y=t2+4t\begin{array} { l } x = t + 10 \\y = t ^ { 2 } + 4 t\end{array}

Question 76

Multiple Choice

 Find dydx and d2ydt2 if possible, and find the slope and concavity (if possible)  at the \text { Find } \frac { d y } { d x } \text { and } \frac { d ^ { 2 } y } { d t ^ { 2 } } \text { if possible, and find the slope and concavity (if possible) at the } point corresponding to t = 5.
x=t+10y=t2+4t\begin{array} { l } x = t + 10 \\y = t ^ { 2 } + 4 t\end{array}


A) dydx=13t3+2t2,d2ydx2=3t2+4t\frac { d y } { d x } = \frac { 1 } { 3 } t ^ { 3 } + 2 t ^ { 2 } , \frac { d ^ { 2 } y } { d x ^ { 2 } } = 3 t ^ { 2 } + 4 t , at t=5t = 5 : slope 3256- \frac { 325 } { 6 } and concave up
B) dydx=2t+4,d2ydx2=2;\frac { d y } { d x } = - 2 t + 4 , \frac { d ^ { 2 } y } { d x ^ { 2 } } = - 2 ; at t=5t = 5 : slope 6- 6 and concave down
C) dydx=2t+4,d2ydx2=2\frac { d y } { d x } = 2 t + 4 , \frac { d ^ { 2 } y } { d x ^ { 2 } } = 2 ; at t=5t = 5 : slope 14 and concave up
D) dydx=2t+4,d2ydx2=2\frac { d y } { d x } = - 2 t + 4 , \frac { d ^ { 2 } y } { d x ^ { 2 } } = - 2 ; at t=5t = 5 : slope 6 and concave down
E) dydx=13t3+2t2,d2ydx2=3t2+4t\frac { d y } { d x } = \frac { 1 } { 3 } t ^ { 3 } + 2 t ^ { 2 } , \frac { d ^ { 2 } y } { d x ^ { 2 } } = 3 t ^ { 2 } + 4 t , at t=5:t = 5 : slope 3256\frac { 325 } { 6 } and concave up

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents