Solved

Find the First Three Nonzero Terms of the Maclaurin Series xx22x36+,1<x<1x - \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 3 } } { 6 } + \ldots , - 1 < x < 1

Question 373

Multiple Choice

Find the first three nonzero terms of the Maclaurin series for the given function and the values of x for which the series
converges absolutely.
-f(x) = (cos x) ln(1 + x)


A) xx22x36+,1<x<1x - \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 3 } } { 6 } + \ldots , - 1 < x < 1
B) xx23x35+,1<x<1x - \frac { x ^ { 2 } } { 3 } - \frac { x ^ { 3 } } { 5 } + \ldots , - 1 < x < 1
C) xx22+x36+,1<x<1x - \frac { x ^ { 2 } } { 2 } + \frac { x ^ { 3 } } { 6 } + \ldots , - 1 < x < 1
D) xx23x35+,1<x<1x - \frac { x ^ { 2 } } { 3 } - \frac { x ^ { 3 } } { 5 } + \ldots , - 1 < x < 1 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents