Solved

Sketch the Graph and Show All Local Extrema and Inflection =x4+2x210= - x ^ { 4 } + 2 x ^ { 2 } - 10

Question 189

Multiple Choice

Sketch the graph and show all local extrema and inflection points.
-y =x4+2x210= - x ^ { 4 } + 2 x ^ { 2 } - 10


A) Absolute maxima: (1,9) ,(1,9) ( - 1 , - 9 ) , ( 1 , - 9 )
Inflection points: (13,1) ,(13,1) \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right) , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)
 Sketch the graph and show all local extrema and inflection points. -y = - x ^ { 4 } + 2 x ^ { 2 } - 10  A)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)       B)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )    Local minimum:  ( 0 , - 10 )   No inflection points    C)  Absolute minima:  ( - 1,9 )  , ( 1,9 )   Inflection point:  \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)  , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)      D)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Local maximum:  ( 0,10 )   Local minimum:  ( 0 , - 10 )    Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)

B) Absolute maxima: (1,9) ,(1,9) ( - 1 , - 9 ) , ( 1 , - 9 )
Local minimum: (0,10) ( 0 , - 10 ) No inflection points
 Sketch the graph and show all local extrema and inflection points. -y = - x ^ { 4 } + 2 x ^ { 2 } - 10  A)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)       B)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )    Local minimum:  ( 0 , - 10 )   No inflection points    C)  Absolute minima:  ( - 1,9 )  , ( 1,9 )   Inflection point:  \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)  , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)      D)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Local maximum:  ( 0,10 )   Local minimum:  ( 0 , - 10 )    Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)

C) Absolute minima: (1,9) ,(1,9) ( - 1,9 ) , ( 1,9 )
Inflection point: (13,859) ,(13,859) \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right) , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)
 Sketch the graph and show all local extrema and inflection points. -y = - x ^ { 4 } + 2 x ^ { 2 } - 10  A)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)       B)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )    Local minimum:  ( 0 , - 10 )   No inflection points    C)  Absolute minima:  ( - 1,9 )  , ( 1,9 )   Inflection point:  \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)  , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)      D)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Local maximum:  ( 0,10 )   Local minimum:  ( 0 , - 10 )    Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)

D) Absolute maxima: (1,9) ,(1,9) ( - 1 , - 9 ) , ( 1 , - 9 ) Local maximum: (0,10) ( 0,10 ) Local minimum: (0,10) ( 0 , - 10 )

Inflection points: (13,1) ,(13,1) \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right) , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)
 Sketch the graph and show all local extrema and inflection points. -y = - x ^ { 4 } + 2 x ^ { 2 } - 10  A)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)       B)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )    Local minimum:  ( 0 , - 10 )   No inflection points    C)  Absolute minima:  ( - 1,9 )  , ( 1,9 )   Inflection point:  \left( - \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)  , \left( \sqrt { \frac { 1 } { 3 } } , \frac { 85 } { 9 } \right)      D)  Absolute maxima:  ( - 1 , - 9 )  , ( 1 , - 9 )   Local maximum:  ( 0,10 )   Local minimum:  ( 0 , - 10 )    Inflection points:  \left( - \sqrt { \frac { 1 } { 3 } } , 1 \right)  , \left( \sqrt { \frac { 1 } { 3 } } , 1 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents