Solved

Provide an Appropriate Response 2e2xdx=12e4<0.0092\int _ { 2 } ^ { \infty } e ^ { - 2 x } \mathrm { dx } = \frac { 1 } { 2 } \mathrm { e } ^ { - 4 } < 0.0092

Question 416

Essay

Provide an appropriate response.
-(a) Show that 2e2xdx=12e4<0.0092\int _ { 2 } ^ { \infty } e ^ { - 2 x } \mathrm { dx } = \frac { 1 } { 2 } \mathrm { e } ^ { - 4 } < 0.0092 and hence that 2ex2dx<0.0092\int _ { 2 } ^ { \infty } \mathrm { e } ^ { - \mathrm { x } ^ { 2 } } \mathrm { dx } < 0.0092 .
(b) Explain why this means that 0ex2dx\int _ { 0 } ^ { \infty } \mathrm { e } ^ { - \mathrm { x } ^ { 2 } } \mathrm { dx } can be replaced by 02ex2dx\int _ { 0 } ^ { 2 } \mathrm { e } ^ { - \mathrm { x } ^ { 2 } } \mathrm { dx } without introducing an error of magnitude greater than 0.0092.0.0092 .

Correct Answer:

verifed

Verified

(a) blured image

(b) Since blured image for...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents