Solved

Find the Asymptotes of the Hyperbola y2259x216=1\frac { y ^ { 2 } } { \frac { 25 } { 9 } } - \frac { x ^ { 2 } } { 16 } = 1

Question 61

Multiple Choice

Find the asymptotes of the hyperbola.
-A satellite following the hyperbolic path shown in the picture turns rapidly at (0, 4) and then moves closer and closer to the line y = 125 x as it gets farther from the tracking station at the origin. Find the equation that Describes the path of the rocket if the center of the hyperbola is at (0, 0) .
 Find the asymptotes of the hyperbola. -A satellite following the hyperbolic path shown in the picture turns rapidly at (0, 4)  and then moves closer and closer to the line y = 125 x as it gets farther from the tracking station at the origin. Find the equation that Describes the path of the rocket if the center of the hyperbola is at (0, 0) .   A)   \frac { y ^ { 2 } } { \frac { 25 } { 9 } } - \frac { x ^ { 2 } } { 16 } = 1   B)   \frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { \left( \frac { 36 } { 5 } \right)  ^ { 2 } } = 1   C)   \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { \frac { 25 } { 9 } } = 1   D)   \frac { x ^ { 2 } } { \left( \frac { 36 } { 5 } \right)  ^ { 2 } } - \frac { y ^ { 2 } } { 16 } = 1


A) y2259x216=1\frac { y ^ { 2 } } { \frac { 25 } { 9 } } - \frac { x ^ { 2 } } { 16 } = 1

B) x216y2(365) 2=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { \left( \frac { 36 } { 5 } \right) ^ { 2 } } = 1

C) y216x2259=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { \frac { 25 } { 9 } } = 1

D) x2(365) 2y216=1\frac { x ^ { 2 } } { \left( \frac { 36 } { 5 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 16 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents