Solved

Solve the Problem Find a Sinusoidal Function of the Form y=Asin(ωxφ)+By = A \sin ( \omega x - \varphi ) + B

Question 342

Multiple Choice

Solve the problem.
-A town's average monthly temperature data is represented in the table below:  Month, x  Average Monthl  Temperature,  January, 127.9 February, 2 30.1 March, 339.8 April, 455.8 May, 5 70.4 June, 679.9 July, 782.6 August, 877.9 September, 977.9 October, 1056.3 November, 1143.4 December, 1231.1\begin{array} { l | c } { \text { Month, x } } & \begin{array} { c } \text { Average Monthl } \\\text { Temperature, }\end{array} \\\hline \text { January, } 1 & 27.9 \\\text { February, 2 } & 30.1 \\\text { March, } 3 & 39.8 \\\text { April, } 4 & 55.8 \\\text { May, 5 } & 70.4 \\\text { June, } 6 & 79.9 \\\text { July, } 7 & 82.6 \\\text { August, } 8 & 77.9 \\\text { September, } 9 & 77.9 \\\text { October, } 10 & 56.3 \\\text { November, } 11 & 43.4 \\\text { December, } 12 & 31.1\end{array} Find a sinusoidal function of the form y=Asin(ωxφ) +By = A \sin ( \omega x - \varphi ) + B that fits the data.


A) y=82.6sin(π6x2π3) +27.9y = 82.6 \sin \left( \frac { \pi } { 6 } x - \frac { 2 \pi } { 3 } \right) + 27.9
B) y=27.9sin(π6xπ4) +82.6y = 27.9 \sin \left( \frac { \pi } { 6 } x - \frac { \pi } { 4 } \right) + 82.6
C) y=55.25sin(π6xπ4) +27.35y = 55.25 \sin \left( \frac { \pi } { 6 } x - \frac { \pi } { 4 } \right) + 27.35
D) y=27.35sin(π6x2π3) +55.25y = 27.35 \sin \left( \frac { \pi } { 6 } x - \frac { 2 \pi } { 3 } \right) + 55.25

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents