Solved

Use Transformations to Graph the Function f(x)=4(x1)f(x)=4^{(x-1)} A) Domain of F (,)( - \infty , \infty )

Question 143

Multiple Choice

Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function.
- f(x) =4(x1) f(x) =4^{(x-1) }
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0


A) domain of f: (,) ( - \infty , \infty ) ; range of f:(0,) \mathrm { f } : ( 0 , \infty )
horizontal asymptote: y=0y = 0
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0

B) domain of f:(,) f : ( - \infty , \infty ) ; range of f:(0,) f : ( 0 , \infty ) ) horizontal asymptote: y=0y = 0
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0
C) domain of f:(,) \mathrm { f } : ( - \infty , \infty ) ; range of f:(,0) \mathrm { f } : ( - \infty , 0 )
horizontal asymptote: y=0y = 0

 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0

D) domain of f:(,) f : ( - \infty , \infty ) ; range of f:(,0) f : ( - \infty , 0 ) horizontal asymptote: y=0y = 0
 Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x) =4^{(x-1) }    A)  domain of f:  ( - \infty , \infty )  ; range of  \mathrm { f } : ( 0 , \infty )    horizontal asymptote:  y = 0     B)  domain of  f : ( - \infty , \infty )  ; range of  f : ( 0 , \infty )   )  horizontal asymptote:  y = 0    C)  domain of  \mathrm { f } : ( - \infty , \infty )  ; range of  \mathrm { f } : ( - \infty , 0 )    horizontal asymptote:  y = 0      D)  domain of  f : ( - \infty , \infty )  ; range of  f : ( - \infty , 0 )   horizontal asymptote:  y = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents