Solved

Find All the Complex Roots 8i- 8 \mathrm { i }

Question 102

Multiple Choice

Find all the complex roots. Leave your answers in polar form with the argument in degrees.
-The complex cube roots of 8i- 8 \mathrm { i }


A) 2(cos90+isin90) ,2(cos210+isin210) ,2(cos330+isin330) 2 \left( \cos 90 ^ { \circ } + i \sin 90 ^ { \circ } \right) , 2 \left( \cos 210 ^ { \circ } + i \sin 210 ^ { \circ } \right) , 2 \left( \cos 330 ^ { \circ } + i \sin 330 ^ { \circ } \right)
B) 512(cos90+isin90) ,512(cos210+isin210) ,512(cos330+isin330) 512 \left( \cos 90 ^ { \circ } + i \sin 90 ^ { \circ } \right) , 512 \left( \cos 210 ^ { \circ } + i \sin 210 ^ { \circ } \right) , 512 \left( \cos 330 ^ { \circ } + i \sin 330 ^ { \circ } \right)
C) 8(cos90+isin90) ,8(cos210+isin210) ,8(cos330+isin330) 8 \left( \cos 90 ^ { \circ } + i \sin 90 ^ { \circ } \right) , 8 \left( \cos 210 ^ { \circ } + i \sin 210 ^ { \circ } \right) , 8 \left( \cos 330 ^ { \circ } + i \sin 330 ^ { \circ } \right)
D) 2(cos180+isin180) ,2(cos300+isin300) ,2(cos60+isin60) 2 \left( \cos 180 ^ { \circ } + i \sin 180 ^ { \circ } \right) , 2 \left( \cos 300 ^ { \circ } + i \sin 300 ^ { \circ } \right) , 2 \left( \cos 60 ^ { \circ } + i \sin 60 ^ { \circ } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents