Solved

A Use Transformations to Graph the Function y=1+log5(x)y = 1 + \log _ { 5 } ( x )

Question 132

Multiple Choice

a. Use transformations to graph the function.
b. Write the domain and range in interval notation.
c. Determine the vertical asymptote.
- y=1+log5(x) y = 1 + \log _ { 5 } ( x )


A) a\mathrm { a } .
 a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. - y = 1 + \log _ { 5 } ( x )   A)   \mathrm { a } .    b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   B)   \mathrm { a } .   b. domain:  ( 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 1   C)   \mathrm { a } .   b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   D)   \mathrm { a } .   b. domain:  ( - 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = - 1

b. domain: (0,) ( 0 , \infty ) , range (,) ( - \infty , \infty )
c. vertical asymptote: x=0x = 0

B) a\mathrm { a } .
 a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. - y = 1 + \log _ { 5 } ( x )   A)   \mathrm { a } .    b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   B)   \mathrm { a } .   b. domain:  ( 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 1   C)   \mathrm { a } .   b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   D)   \mathrm { a } .   b. domain:  ( - 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = - 1
b. domain: (1,) ( 1 , \infty ) , range (,) ( - \infty , \infty )
c. vertical asymptote: x=1x = 1

C) a\mathrm { a } .
 a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. - y = 1 + \log _ { 5 } ( x )   A)   \mathrm { a } .    b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   B)   \mathrm { a } .   b. domain:  ( 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 1   C)   \mathrm { a } .   b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   D)   \mathrm { a } .   b. domain:  ( - 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = - 1
b. domain: (0,) ( 0 , \infty ) , range (,) ( - \infty , \infty )
c. vertical asymptote: x=0x = 0

D) a\mathrm { a } .
 a. Use transformations to graph the function. b. Write the domain and range in interval notation. c. Determine the vertical asymptote. - y = 1 + \log _ { 5 } ( x )   A)   \mathrm { a } .    b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   B)   \mathrm { a } .   b. domain:  ( 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 1   C)   \mathrm { a } .   b. domain:  ( 0 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = 0   D)   \mathrm { a } .   b. domain:  ( - 1 , \infty )  , range  ( - \infty , \infty )   c. vertical asymptote:  x = - 1
b. domain: (1,) ( - 1 , \infty ) , range (,) ( - \infty , \infty )
c. vertical asymptote: x=1x = - 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents