Solved

(Requires Matrix Algebra)The Population Multiple Regression Model Can Be Written Y=Xβ+U\boldsymbol { Y } = \boldsymbol { X } \boldsymbol { \beta } + \boldsymbol { U }

Question 34

Essay

(Requires Matrix Algebra)The population multiple regression model can be written in
matrix form as Y=Xβ+U\boldsymbol { Y } = \boldsymbol { X } \boldsymbol { \beta } + \boldsymbol { U } Where
Y=(Y1Y2Yn),U=(u1u2un),X=(1X11Xk1W11Wr11X12Xk2W12Wr21X1nXknW1nWrn) and β=(β0β1βk)\boldsymbol { Y } = \left( \begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\\vdots \\Y _ { n }\end{array} \right) , \boldsymbol { U } = \left( \begin{array} { l } u _ { 1 } \\u _ { 2 } \\\vdots \\u _ { n }\end{array} \right) , \boldsymbol { X } = \left( \begin{array} { c c c c c c c } 1 & X _ { 11 } & \cdots & X _ { k 1 } & W _ { 11 } & \cdots & W _ { r 1 } \\1 & X _ { 12 } & \cdots & X _ { k 2 } & W _ { 12 } & \cdots & W _ { r 2 } \\\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\1 & X _ { 1 n } & \cdots & X _ { k n } & W _ { 1 n } & \cdots & W _ { r n }\end{array} \right) \text { and } \beta = \left( \begin{array} { l } \beta _ { 0 } \\\beta _ { 1 } \\\vdots \\\beta _ { k }\end{array} \right) Note that the X matrix contains both k endogenous regressors and (r +1)included
exogenous regressors (the constant is obviously exogenous).
The instrumental variable estimator for the overidentified case is β^V=[XZ(ZZ)1ZX]1XZ(ZZ)1ZY,\hat { \beta } ^ { V } = \left[ X ^ { \prime } Z \left( Z ^ { \prime } Z \right) ^ { - 1 } Z ^ { \prime } X \right] ^ { - 1 } X ^ { \prime } Z \left( Z ^ { \prime } Z \right) ^ { - 1 } Z ^ { \prime } Y ,
where Z\boldsymbol { Z } is a matrix, which contains two types of variables: first the rr included exogenous regressors plus the constant, and second, mm instrumental variables.
Z=(1Z11Zm1W11Wr11Z12Zm2W12Wr21Z1nZmnW1nWm)Z = \left( \begin{array} { c c c c c c c } 1 & Z _ { 11 } & \cdots & Z _ { m 1 } & W _ { 11 } & \cdots & W _ { r 1 } \\1 & Z _ { 12 } & \cdots & Z _ { m 2 } & W _ { 12 } & \cdots & W _ { r 2 } \\\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\1 & Z _ { 1 n } & \cdots & Z _ { m n } & W _ { 1 n } & \cdots & W _ { m }\end{array} \right)
It is of order n×(m+r+1)\mathrm { n } \times ( \mathrm { m } + \mathrm { r } + 1 ) .
For this estimator to exist, both (ZZ)\left( Z ^ { \prime } Z \right) and [XZ(ZZ)1ZX]\left[ X ^ { \prime } Z \left( Z ^ { \prime } Z \right) ^ { - 1 } Z ^ { \prime } X \right] must be invertible. State the conditions under which this will be the case and relate them to the degree of overidentification.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents