Solved

Solve the Problem A=[132251363]A = \left[ \begin{array} { r r r } 1 & - 3 & 2 \\ - 2 & 5 & - 1 \\ 3 & - 6 & - 3 \end{array} \right]

Question 41

Multiple Choice

Solve the problem.
-Let A=[132251363]A = \left[ \begin{array} { r r r } 1 & - 3 & 2 \\ - 2 & 5 & - 1 \\ 3 & - 6 & - 3 \end{array} \right] and b=[b1b2b3]\mathbf { b } = \left[ \begin{array} { l } b _ { 1 } \\ b _ { 2 } \\ b _ { 3 } \end{array} \right]
Determine if the equation Ax=b\mathrm { Ax } = \mathrm { b } is consistent for all possible b1, b2, b3\mathrm { b } _ { 1 } , \mathrm {~b} _ { 2 } , \mathrm {~b} _ { 3 } . If the equation is not consistent for all possible b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } , give a description of the set of all b\mathbf { b } for which the equation is consistent (i.e., a condition which must be satisfied by b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } ) .


A) Equation is consistent for all b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } satisfying b1+b2+b3=0- b _ { 1 } + b _ { 2 } + b _ { 3 } = 0 .
B) Equation is consistent for all b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } satisfying 3b1+b3=0- 3 b _ { 1 } + b _ { 3 } = 0 .
C) Equation is consistent for all b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } satisfying 3b1+3b2+b3=03 b _ { 1 } + 3 b _ { 2 } + b _ { 3 } = 0 .
D) Equation is consistent for all possible b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents