Solved

Let W Be the Region Between the Spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1

Question 75

Multiple Choice

Let W be the region between the spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .Given that W(x2+y2+z2) 1/2dV=15π\int _ { W } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 1 / 2 } d V = 15 \pi , evaluate the integral w(64x2+36y2+144z2) 1/2dV\int _ { w } \left( 64 x ^ { 2 } + 36 y ^ { 2 } + 144 z ^ { 2 } \right) ^ { 1 / 2 } d V , where Wˉ\bar{W} is the region between the ellipsoids x232+y242+z222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y242+z222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 4 .


A) 8640π8640 \pi
B) 2160π2160 \pi
C) 24π24 \pi
D) 360π360 \pi
E) 360π3360 \pi ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents