Deck 1: Introduction to Differential Equations

ملء الشاشة (f)
exit full mode
سؤال
The solution of the initial value problem y=2y+x,y(1)=1/2y ^ { \prime } = 2 y + x , y ( - 1 ) = 1 / 2 is y=x/21/4+ce2xy = - x / 2 - 1 / 4 + c e ^ { 2 x } , where c=c =

A) 2
B) e2/4e ^ { 2 } / 4
C) e2e ^ { 2 }
D) e2/2e ^ { 2 } / 2
E) 1
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
The initial value problem y=y216,y(x0)=y0y ^ { \prime } = \sqrt { y ^ { 2 } - 16 } , y \left( x _ { 0 } \right) = y _ { 0 } has a unique solution guaranteed by Theorem 1.1 if

A) y0=4y _ { 0 } = 4
B) y0=4y _ { 0 } = - 4
C) y0=0y _ { 0 } = 0
D) y0=8y _ { 0 } = 8
E) y0=1y _ { 0 } = 1
سؤال
In the previous problem, over a long period of time, the total amount of salt in the tank will approach

A) 300 pounds
B) 500 pounds
C) 1000 pounds
D) 3000 pounds
E) 5000 pounds
سؤال
The temperature of a cup of coffee obeys Newton's law of cooling. The initial temperature of the coffee is 140F140 ^ { \circ } \mathrm { F } and one minute later, it is 125F125 ^ { \circ } \mathrm { F } . The ambient temperature of the room is 65F65 ^ { \circ } \mathrm { F } . If T(t)T ( t ) represents the temperature of the coffee at time t, the correct differential equation for the temperature is

A) dTdt=k(T125)\frac { d T } { d t } = k ( T - 125 )
B) dTdt=k(T140)\frac { d T } { d t } = k ( T - 140 )
C) dTdt=k(T65)\frac { d T } { d t } = k ( T - 65 )
D) dTdt=T(T140)\frac { d T } { d t } = T ( T - 140 )
E) dTdt=T(T65)\frac { d T } { d t } = T ( T - 65 )
سؤال
A large mixing tank initially contains 1000 gallons of water in which 40 pounds of salt have been dissolved. Another brine solution is pumped into the tank at the rate of 5 gallons per minute, and the resulting mixture is pumped out at the same rate. The concentration of the incoming brine solution is 3 pounds of salt per gallon. If A(t)A ( t ) represents the amount of salt in the tank at time t, the correct differential equation for A is

A) dAdt=3.005A\frac { d A } { d t } = 3 - .005 A
B) dAdt=5.05A\frac { d A } { d t } = 5 - .05 A
C) dAdt=15.005A\frac { d A } { d t } = 15 - .005 A
D) dAdt=3.05A\frac { d A } { d t } = 3 - .05 A
E) dAdt=15+.05A\frac { d A } { d t } = 15 + .05 A
سؤال
The differential equation y+2y+3y+7y=0y ^ { \prime \prime \prime } + 2 y ^ { \prime \prime } + 3 y ^ { \prime } + 7 y = 0 is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
In the LRC circuit problem in the text, the units for C, are

A) ohms
B) farads
C) amperes
D) henrys
E) coulombs
سؤال
The differential equation y+3y=sinxy ^ { \prime } + 3 y = \sin x is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
The values of m for which y=emxy = e ^ { m x } is a solution of y6y7y=0y ^ { \prime \prime } - 6 y ^ { \prime } - 7 y = 0 are

A) 1 and 7
B) 1- 1 and 6
C) 1 and 6
D) 1 and 6- 6
E) 1- 1 and 7
سؤال
The values of m for which y=exxxy = e ^ { xxx } is a solution of y9y+20y=0y ^ { \prime \prime } - 9 y ^ { \prime } + 20 y = 0 are

A) 4 and 5- 5
B) 4- 4 and 5- 5
C) 3 and 6
D) 4 and 5
E) 3 and 5
سؤال
In the previous problem, after a long period of time, the temperature of the coffee approaches

A) 125F125 ^ { \circ } \mathrm { F }
B) 100F100 ^ { \circ } \mathrm { F }
C) 65F65 ^ { \circ } \mathrm { F }
D) 50F50 ^ { \circ } \mathrm { F }
E) 0F0 ^ { \circ } \mathrm { F }
سؤال
The values of m for which y=xmy = x ^ { m } is a solution of x2y7xy+12y=0x ^ { 2 } y ^ { \prime \prime } - 7 x y ^ { \prime } + 12 y = 0 are

A) 3- 3 and 4
B) 2- 2 and 6- 6
C) 3 and 4
D) 2 and 6
E) 3 and 4- 4
سؤال
The population of a town increases at a rate proportional to its population. Its initial population is 5000. The correct initial value problem for the population, P(t)P ( t ) , as a function of time, t, is

A) dPdt=kP,P(0)=5000\frac { d P } { d t } = k P , P ( 0 ) = 5000
B) dPdt=kP2,P(0)=500\frac { d P } { d t } = k P ^ { 2 } , P ( 0 ) = 500
C) dPdt=kP,P(0)=500\frac { d P } { d t } = k P , P ( 0 ) = 500
D) dPdt=kP(1P),P(0)=5000\frac { d P } { d t } = k P ( 1 - P ) , P ( 0 ) = 5000
E) dPdt=kP2,P(0)=5000\frac { d P } { d t } = k P ^ { 2 } , P ( 0 ) = 5000
سؤال
The values of c for which y=cy = c is a constant solution of y=y2+5y6y ^ { \prime } = y ^ { 2 } + 5 y - 6 are

A) 1 and 6
B) 1- 1 and 6
C) 1 and 6- 6
D) 2- 2 and 3
E) 2 and 3
سؤال
The differential equation y+2y+3y=sinyy ^ { \prime \prime } + 2 y ^ { \prime } + 3 y = \sin y is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
In the falling body problem, the units of acceleration might be

A) centimeters per second
B) feet per second
C) feet per second per second
D) kilograms per centimeter
E) kilograms per centimeter per second
سؤال
In the LRC circuit problem in the text, R stands for

A) capacitance
B) resistance
C) current
D) inductance
E) charge on the capacitor
سؤال
The differential equation y+2yy+3y=0y ^ { \prime \prime } + 2 y y ^ { \prime } + 3 y = 0 is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
The differential equation y+2y+3xy4exy=sinxy ^ { \prime \prime \prime } + 2 y ^ { \prime \prime } + 3 x y ^ { \prime } - 4 e ^ { x } y = \sin x is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
The solution of the initial value problem y=5y,y(1)=3y ^ { \prime } = 5 y , y ( 1 ) = 3 is y=ce5xy = c e ^ { 5 x } , where c=c =

A) 3e53 e ^ { - 5 }
B) 3
C) 3e53 e ^ { 5 }
D) 3e5- 3 e ^ { 5 }
E) 3- 3
سؤال
The differential equation y+2yy+3y=0y ^ { \prime \prime } + 2 y y ^ { \prime } + 3 y = 0 is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
The values of m for which y=xmy = x ^ { m } is a solution of x2y5xy+8y=0x ^ { 2 } y ^ { \prime \prime } - 5 x y ^ { \prime } + 8 y = 0 are

A) 2 and 4
B) 2- 2 and 4- 4
C) 3 and 5
D) 2 and 3
E) 1 and 5
سؤال
The temperature of a cup of coffee obeys Newton's law of cooling. The initial temperature of the coffee is 150F150 ^ { \circ } \mathrm { F } and one minute later, it is 135F135 ^ { \circ } \mathrm { F } . The ambient temperature of the room is 70F70 ^ { \circ } \mathrm { F } . If T(t)T ( t ) represents the temperature of the coffee at time t, the correct differential equation for the temperature with side conditions is

A) dTdt=k(T135)\frac { d T } { d t } = k ( T - 135 )
B) dTdt=k(T150)\frac { d T } { d t } = k ( T - 150 )
C) dTdt=k(T70)\frac { d T } { d t } = k ( T - 70 )
D) dTdt=T(T150)\frac { d T } { d t } = T ( T - 150 )
E) dTdt=T(T70)\frac { d T } { d t } = T ( T - 70 )
سؤال
The population of a town increases at a rate proportional to its population. Its initial population is 1000. The correct initial value problem for the population, P(t)P ( t ) , as a function of time, t, is

A) dPdt=kP,P(0)=1000\frac { d P } { d t } = k P , P ( 0 ) = 1000
B) dPdt=kP2,P(0)=100\frac { d P } { d t } = k P ^ { 2 } , P ( 0 ) = 100
C) dPdt=kP,P(0)=100\frac { d P } { d t } = k P , P ( 0 ) = 100
D) dPdt=kP(1P),P(0)=100\frac { d P } { d t } = k P ( 1 - P ) , P ( 0 ) = 100
E) dPdt=kP2,P(0)=1000\frac { d P } { d t } = k P ^ { 2 } , P ( 0 ) = 1000
سؤال
The values of m for which y=emxy = e ^ { m x } is a solution of y5y+6y=0y ^ { \prime \prime } - 5 y ^ { \prime } + 6 y = 0 are

A) 2 and 4
B) 2- 2 and 3- 3
C) 3 and 4
D) 2 and 3
E) 1 and 5
سؤال
In the LRC circuit problem in the text, C stands for

A) capacitance
B) resistance
C) current
D) inductance
E) charge on the capacitor
سؤال
The solution of the initial value problem y=3y,y(0)=2y ^ { \prime } = 3 y , y ( 0 ) = 2 is y=ce3xy = c e ^ { 3 x } , where c=c =

A) 2
B) 2- 2
C) 3
D) 3- 3
E) 1
سؤال
The values of c for which y=cy = c is a constant solution of y=y2+3y4y ^ { \prime } = y ^ { 2 } + 3 y - 4 are

A) 1 and 4
B) 1- 1 and 3- 3
C) 1 and 4- 4
D) 1- 1 and 3
E) 1 and 3
سؤال
The differential equation y+2y+3xy4exy=sinxy ^ { \prime \prime \prime } + 2 y ^ { \prime \prime } + 3 x y ^ { \prime } - 4 e ^ { x } y = \sin x is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
In the LRC circuit problem in the text, the units of inductance, L, are

A) ohms
B) farads
C) amperes
D) henrys
E) coulombs
سؤال
The solution of the initial value problem y=2y+x,y(1)=1/4y ^ { \prime } = 2 y + x , y ( 1 ) = 1 / 4 is y=x/21/4+ce2xy = - x / 2 - 1 / 4 + c e ^ { 2 x } , where c=c =

A) 2
B) e2e ^ { - 2 }
C) e1e ^ { - 1 }
D) e2/2e ^ { - 2 } / 2
E) 1
سؤال
The values of m for which y=emxy = e ^ { m x } is a solution of y4y5y=0y ^ { \prime \prime } - 4 y ^ { \prime } - 5 y = 0 are

A) 1 and 4
B) 1- 1 and 4
C) 2 and 3
D) 2- 2 and 3- 3
E) 1- 1 and 5
سؤال
In the previous problem, after a long period of time, the temperature of the coffee approaches

A) 120F120 ^ { \circ } \mathrm { F }
B) 100F100 ^ { \circ } \mathrm { F }
C) 70F70 ^ { \circ } \mathrm { F }
D) 65F65 ^ { \circ } \mathrm { F }
E) 0F0 ^ { \circ } \mathrm { F }
سؤال
The differential equation y+2y+3y=sinyy ^ { \prime \prime } + 2 y ^ { \prime } + 3 y = \sin y is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
The differential equation y+2y+3y=0y ^ { \prime \prime } + 2 y ^ { \prime } + 3 y = 0 is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
سؤال
In the previous problem, over a long period of time, the total amount of salt in the tank will approach

A) 30 pounds
B) 50 pounds
C) 100 pounds
D) 200 pounds
E) 300 pounds
سؤال
In the falling body problem, the units of acceleration might be

A) meters per second
B) feet per second
C) meters per second per second
D) kilograms per meter
E) kilograms per meter per second
سؤال
A large mixing tank initially contains 100 gallons of water in which 30 pounds of salt have been dissolved. Another brine solution is pumped into the tank at the rate of 4 gallons per minute, and the resulting mixture is pumped out at the same rate. The concentration of the incoming brine solution is 2 pounds of salt per gallon. If A(t)A ( t ) represents the amount of salt in the tank at time t, the correct differential equation for A is

A) dAdt=8.02A\frac { d A } { d t } = 8 - .02 A
B) dAdt=8.04A\frac { d A } { d t } = 8 - .04 A
C) dAdt=4.04A\frac { d A } { d t } = 4 - .04 A
D) dAdt=2.04A\frac { d A } { d t } = 2 - .04 A
E) dAdt=4.08A\frac { d A } { d t } = 4 - .08 A
سؤال
The initial value problem y=y29,y(x0)=y0y ^ { \prime } = \sqrt { y ^ { 2 } - 9 } , y \left( x _ { 0 } \right) = y _ { 0 } has a unique solution guaranteed by Theorem 1.1 if

A) y0=3y _ { 0 } = 3
B) y0=3y _ { 0 } = - 3
C) y0=5y _ { 0 } = 5
D) y0=0y _ { 0 } = 0
E) y0=1y _ { 0 } = 1
سؤال
The differential equation y+3y=sinxy ^ { \prime } + 3 y = \sin x is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 1: Introduction to Differential Equations
1
The solution of the initial value problem y=2y+x,y(1)=1/2y ^ { \prime } = 2 y + x , y ( - 1 ) = 1 / 2 is y=x/21/4+ce2xy = - x / 2 - 1 / 4 + c e ^ { 2 x } , where c=c =

A) 2
B) e2/4e ^ { 2 } / 4
C) e2e ^ { 2 }
D) e2/2e ^ { 2 } / 2
E) 1
e2/4e ^ { 2 } / 4
2
The initial value problem y=y216,y(x0)=y0y ^ { \prime } = \sqrt { y ^ { 2 } - 16 } , y \left( x _ { 0 } \right) = y _ { 0 } has a unique solution guaranteed by Theorem 1.1 if

A) y0=4y _ { 0 } = 4
B) y0=4y _ { 0 } = - 4
C) y0=0y _ { 0 } = 0
D) y0=8y _ { 0 } = 8
E) y0=1y _ { 0 } = 1
y0=8y _ { 0 } = 8
3
In the previous problem, over a long period of time, the total amount of salt in the tank will approach

A) 300 pounds
B) 500 pounds
C) 1000 pounds
D) 3000 pounds
E) 5000 pounds
D
4
The temperature of a cup of coffee obeys Newton's law of cooling. The initial temperature of the coffee is 140F140 ^ { \circ } \mathrm { F } and one minute later, it is 125F125 ^ { \circ } \mathrm { F } . The ambient temperature of the room is 65F65 ^ { \circ } \mathrm { F } . If T(t)T ( t ) represents the temperature of the coffee at time t, the correct differential equation for the temperature is

A) dTdt=k(T125)\frac { d T } { d t } = k ( T - 125 )
B) dTdt=k(T140)\frac { d T } { d t } = k ( T - 140 )
C) dTdt=k(T65)\frac { d T } { d t } = k ( T - 65 )
D) dTdt=T(T140)\frac { d T } { d t } = T ( T - 140 )
E) dTdt=T(T65)\frac { d T } { d t } = T ( T - 65 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
5
A large mixing tank initially contains 1000 gallons of water in which 40 pounds of salt have been dissolved. Another brine solution is pumped into the tank at the rate of 5 gallons per minute, and the resulting mixture is pumped out at the same rate. The concentration of the incoming brine solution is 3 pounds of salt per gallon. If A(t)A ( t ) represents the amount of salt in the tank at time t, the correct differential equation for A is

A) dAdt=3.005A\frac { d A } { d t } = 3 - .005 A
B) dAdt=5.05A\frac { d A } { d t } = 5 - .05 A
C) dAdt=15.005A\frac { d A } { d t } = 15 - .005 A
D) dAdt=3.05A\frac { d A } { d t } = 3 - .05 A
E) dAdt=15+.05A\frac { d A } { d t } = 15 + .05 A
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
6
The differential equation y+2y+3y+7y=0y ^ { \prime \prime \prime } + 2 y ^ { \prime \prime } + 3 y ^ { \prime } + 7 y = 0 is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
7
In the LRC circuit problem in the text, the units for C, are

A) ohms
B) farads
C) amperes
D) henrys
E) coulombs
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
8
The differential equation y+3y=sinxy ^ { \prime } + 3 y = \sin x is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
9
The values of m for which y=emxy = e ^ { m x } is a solution of y6y7y=0y ^ { \prime \prime } - 6 y ^ { \prime } - 7 y = 0 are

A) 1 and 7
B) 1- 1 and 6
C) 1 and 6
D) 1 and 6- 6
E) 1- 1 and 7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
10
The values of m for which y=exxxy = e ^ { xxx } is a solution of y9y+20y=0y ^ { \prime \prime } - 9 y ^ { \prime } + 20 y = 0 are

A) 4 and 5- 5
B) 4- 4 and 5- 5
C) 3 and 6
D) 4 and 5
E) 3 and 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
11
In the previous problem, after a long period of time, the temperature of the coffee approaches

A) 125F125 ^ { \circ } \mathrm { F }
B) 100F100 ^ { \circ } \mathrm { F }
C) 65F65 ^ { \circ } \mathrm { F }
D) 50F50 ^ { \circ } \mathrm { F }
E) 0F0 ^ { \circ } \mathrm { F }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
12
The values of m for which y=xmy = x ^ { m } is a solution of x2y7xy+12y=0x ^ { 2 } y ^ { \prime \prime } - 7 x y ^ { \prime } + 12 y = 0 are

A) 3- 3 and 4
B) 2- 2 and 6- 6
C) 3 and 4
D) 2 and 6
E) 3 and 4- 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
13
The population of a town increases at a rate proportional to its population. Its initial population is 5000. The correct initial value problem for the population, P(t)P ( t ) , as a function of time, t, is

A) dPdt=kP,P(0)=5000\frac { d P } { d t } = k P , P ( 0 ) = 5000
B) dPdt=kP2,P(0)=500\frac { d P } { d t } = k P ^ { 2 } , P ( 0 ) = 500
C) dPdt=kP,P(0)=500\frac { d P } { d t } = k P , P ( 0 ) = 500
D) dPdt=kP(1P),P(0)=5000\frac { d P } { d t } = k P ( 1 - P ) , P ( 0 ) = 5000
E) dPdt=kP2,P(0)=5000\frac { d P } { d t } = k P ^ { 2 } , P ( 0 ) = 5000
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
14
The values of c for which y=cy = c is a constant solution of y=y2+5y6y ^ { \prime } = y ^ { 2 } + 5 y - 6 are

A) 1 and 6
B) 1- 1 and 6
C) 1 and 6- 6
D) 2- 2 and 3
E) 2 and 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
15
The differential equation y+2y+3y=sinyy ^ { \prime \prime } + 2 y ^ { \prime } + 3 y = \sin y is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
16
In the falling body problem, the units of acceleration might be

A) centimeters per second
B) feet per second
C) feet per second per second
D) kilograms per centimeter
E) kilograms per centimeter per second
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
17
In the LRC circuit problem in the text, R stands for

A) capacitance
B) resistance
C) current
D) inductance
E) charge on the capacitor
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
18
The differential equation y+2yy+3y=0y ^ { \prime \prime } + 2 y y ^ { \prime } + 3 y = 0 is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
19
The differential equation y+2y+3xy4exy=sinxy ^ { \prime \prime \prime } + 2 y ^ { \prime \prime } + 3 x y ^ { \prime } - 4 e ^ { x } y = \sin x is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
20
The solution of the initial value problem y=5y,y(1)=3y ^ { \prime } = 5 y , y ( 1 ) = 3 is y=ce5xy = c e ^ { 5 x } , where c=c =

A) 3e53 e ^ { - 5 }
B) 3
C) 3e53 e ^ { 5 }
D) 3e5- 3 e ^ { 5 }
E) 3- 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
21
The differential equation y+2yy+3y=0y ^ { \prime \prime } + 2 y y ^ { \prime } + 3 y = 0 is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
22
The values of m for which y=xmy = x ^ { m } is a solution of x2y5xy+8y=0x ^ { 2 } y ^ { \prime \prime } - 5 x y ^ { \prime } + 8 y = 0 are

A) 2 and 4
B) 2- 2 and 4- 4
C) 3 and 5
D) 2 and 3
E) 1 and 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
23
The temperature of a cup of coffee obeys Newton's law of cooling. The initial temperature of the coffee is 150F150 ^ { \circ } \mathrm { F } and one minute later, it is 135F135 ^ { \circ } \mathrm { F } . The ambient temperature of the room is 70F70 ^ { \circ } \mathrm { F } . If T(t)T ( t ) represents the temperature of the coffee at time t, the correct differential equation for the temperature with side conditions is

A) dTdt=k(T135)\frac { d T } { d t } = k ( T - 135 )
B) dTdt=k(T150)\frac { d T } { d t } = k ( T - 150 )
C) dTdt=k(T70)\frac { d T } { d t } = k ( T - 70 )
D) dTdt=T(T150)\frac { d T } { d t } = T ( T - 150 )
E) dTdt=T(T70)\frac { d T } { d t } = T ( T - 70 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
24
The population of a town increases at a rate proportional to its population. Its initial population is 1000. The correct initial value problem for the population, P(t)P ( t ) , as a function of time, t, is

A) dPdt=kP,P(0)=1000\frac { d P } { d t } = k P , P ( 0 ) = 1000
B) dPdt=kP2,P(0)=100\frac { d P } { d t } = k P ^ { 2 } , P ( 0 ) = 100
C) dPdt=kP,P(0)=100\frac { d P } { d t } = k P , P ( 0 ) = 100
D) dPdt=kP(1P),P(0)=100\frac { d P } { d t } = k P ( 1 - P ) , P ( 0 ) = 100
E) dPdt=kP2,P(0)=1000\frac { d P } { d t } = k P ^ { 2 } , P ( 0 ) = 1000
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
25
The values of m for which y=emxy = e ^ { m x } is a solution of y5y+6y=0y ^ { \prime \prime } - 5 y ^ { \prime } + 6 y = 0 are

A) 2 and 4
B) 2- 2 and 3- 3
C) 3 and 4
D) 2 and 3
E) 1 and 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
26
In the LRC circuit problem in the text, C stands for

A) capacitance
B) resistance
C) current
D) inductance
E) charge on the capacitor
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
27
The solution of the initial value problem y=3y,y(0)=2y ^ { \prime } = 3 y , y ( 0 ) = 2 is y=ce3xy = c e ^ { 3 x } , where c=c =

A) 2
B) 2- 2
C) 3
D) 3- 3
E) 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
28
The values of c for which y=cy = c is a constant solution of y=y2+3y4y ^ { \prime } = y ^ { 2 } + 3 y - 4 are

A) 1 and 4
B) 1- 1 and 3- 3
C) 1 and 4- 4
D) 1- 1 and 3
E) 1 and 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
29
The differential equation y+2y+3xy4exy=sinxy ^ { \prime \prime \prime } + 2 y ^ { \prime \prime } + 3 x y ^ { \prime } - 4 e ^ { x } y = \sin x is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
30
In the LRC circuit problem in the text, the units of inductance, L, are

A) ohms
B) farads
C) amperes
D) henrys
E) coulombs
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
31
The solution of the initial value problem y=2y+x,y(1)=1/4y ^ { \prime } = 2 y + x , y ( 1 ) = 1 / 4 is y=x/21/4+ce2xy = - x / 2 - 1 / 4 + c e ^ { 2 x } , where c=c =

A) 2
B) e2e ^ { - 2 }
C) e1e ^ { - 1 }
D) e2/2e ^ { - 2 } / 2
E) 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
32
The values of m for which y=emxy = e ^ { m x } is a solution of y4y5y=0y ^ { \prime \prime } - 4 y ^ { \prime } - 5 y = 0 are

A) 1 and 4
B) 1- 1 and 4
C) 2 and 3
D) 2- 2 and 3- 3
E) 1- 1 and 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
33
In the previous problem, after a long period of time, the temperature of the coffee approaches

A) 120F120 ^ { \circ } \mathrm { F }
B) 100F100 ^ { \circ } \mathrm { F }
C) 70F70 ^ { \circ } \mathrm { F }
D) 65F65 ^ { \circ } \mathrm { F }
E) 0F0 ^ { \circ } \mathrm { F }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
34
The differential equation y+2y+3y=sinyy ^ { \prime \prime } + 2 y ^ { \prime } + 3 y = \sin y is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
35
The differential equation y+2y+3y=0y ^ { \prime \prime } + 2 y ^ { \prime } + 3 y = 0 is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
36
In the previous problem, over a long period of time, the total amount of salt in the tank will approach

A) 30 pounds
B) 50 pounds
C) 100 pounds
D) 200 pounds
E) 300 pounds
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
37
In the falling body problem, the units of acceleration might be

A) meters per second
B) feet per second
C) meters per second per second
D) kilograms per meter
E) kilograms per meter per second
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
38
A large mixing tank initially contains 100 gallons of water in which 30 pounds of salt have been dissolved. Another brine solution is pumped into the tank at the rate of 4 gallons per minute, and the resulting mixture is pumped out at the same rate. The concentration of the incoming brine solution is 2 pounds of salt per gallon. If A(t)A ( t ) represents the amount of salt in the tank at time t, the correct differential equation for A is

A) dAdt=8.02A\frac { d A } { d t } = 8 - .02 A
B) dAdt=8.04A\frac { d A } { d t } = 8 - .04 A
C) dAdt=4.04A\frac { d A } { d t } = 4 - .04 A
D) dAdt=2.04A\frac { d A } { d t } = 2 - .04 A
E) dAdt=4.08A\frac { d A } { d t } = 4 - .08 A
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
39
The initial value problem y=y29,y(x0)=y0y ^ { \prime } = \sqrt { y ^ { 2 } - 9 } , y \left( x _ { 0 } \right) = y _ { 0 } has a unique solution guaranteed by Theorem 1.1 if

A) y0=3y _ { 0 } = 3
B) y0=3y _ { 0 } = - 3
C) y0=5y _ { 0 } = 5
D) y0=0y _ { 0 } = 0
E) y0=1y _ { 0 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
40
The differential equation y+3y=sinxy ^ { \prime } + 3 y = \sin x is

A) first order linear
B) second order linear
C) third order linear
D) first order nonlinear
E) second order nonlinear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.