Deck 46: Linear Programming

ملء الشاشة (f)
exit full mode
سؤال
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 5y

Constraints:

X ≥ 0
​3x - y ≤ 9
2x + 3y ≥ 6
X + 4y ≤ 16
​​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 5y ​ Constraints: ​ X ≥ 0 ​3x - y ≤ 9 2x + 3y ≥ 6 X + 4y ≤ 16 ​​   ​</strong> A)Minimum at (0,2): 10 B)Minimum at (4,3): 31 C)Minimum at (0,3): 11 D)Minimum at (3,0): 12 E)Minimum at (0,4): 20 <div style=padding-top: 35px>

A)Minimum at (0,2): 10
B)Minimum at (4,3): 31
C)Minimum at (0,3): 11
D)Minimum at (3,0): 12
E)Minimum at (0,4): 20
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ?
Objective function:? z=7x+18yz = 7 x + \frac { 1 } { 8 } y ?
Constraints:? x0y012x+y8x+12y4\begin{aligned}x & \geq 0 \\y & \geq 0 \\\frac { 1 } { 2 } x + y & \leq 8 \\x + \frac { 1 } { 2 } y & \geq 4\end{aligned} ?

A)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00 <div style=padding-top: 35px>  Maximum at (4,0): 28.00
B)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00 <div style=padding-top: 35px>  Maximum at (8,0): 2.00
C)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00 <div style=padding-top: 35px>  Maximum at (16,0): 112.00
D)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00 <div style=padding-top: 35px>  No maximum
E)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00 <div style=padding-top: 35px>  Maximum at (0,8): 1.00
سؤال
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 5y

Constraints:

X ≥ 0
​3x - y ≤ 9
2x + 3y ≥ 6
X + 4y ≤ 16
​​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 5y ​ Constraints: ​ X ≥ 0 ​3x - y ≤ 9 2x + 3y ≥ 6 X + 4y ≤ 16 ​​   ​</strong> A)Maximum at (3,0): 12 B)Maximum at (3,4): 32 C)Maximum at (4,3): 31 D)Maximum at (0,4): 20 E)Maximum at (0,2): 10 <div style=padding-top: 35px>

A)Maximum at (3,0): 12
B)Maximum at (3,4): 32
C)Maximum at (4,3): 31
D)Maximum at (0,4): 20
E)Maximum at (0,2): 10
سؤال
Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 9x + 8y

Constraints:

X ≥ 0
Y ≥ 0
2x + 2y ≥ 10
X + 2y ≥ 6

A)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum <div style=padding-top: 35px> Minimum at (0,5): 40
B)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum <div style=padding-top: 35px> Minimum at (0,5): 41
C)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum <div style=padding-top: 35px> Minimum at (4,1): 44
D)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum <div style=padding-top: 35px> Minimum at (6,0): 54
E)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum <div style=padding-top: 35px> No minimum
سؤال
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 9x + 5y

Constraints:

0 ≤ x ≤ 60
0 ≤ y ≤ 45
5x + 6y ≤ 420​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 5y ​ Constraints: ​ 0 ≤ x ≤ 60 0 ≤ y ≤ 45 5x + 6y ≤ 420​   ​</strong> A)Maximum at (0,45): 225 B)Maximum at (0,0): 0 C)Maximum at (30,45): 495 D)Maximum at (60,20): 640 E)Maximum at (60,0): 540 <div style=padding-top: 35px>

A)Maximum at (0,45): 225
B)Maximum at (0,0): 0
C)Maximum at (30,45): 495
D)Maximum at (60,20): 640
E)Maximum at (60,0): 540
سؤال
Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 7x + 6y

Constraints:

X ≥ 0
​y ≥ 0
5x + 2y ≤ 20
5x + y ≥ 10

A) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 <div style=padding-top: 35px> ​Minimum at (2,0): 14
B) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 <div style=padding-top: 35px> Minimum at (0,2): 15
C) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 <div style=padding-top: 35px> Minimum at (0,10): 60
D) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 <div style=padding-top: 35px> Minimum at (0,4): 29
E) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 <div style=padding-top: 35px> Minimum at (4,0): 14
سؤال
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:


Z = 5x + 8y

Constraints:

X ≥ 0
Y ≥ 0
X + 3y ≤ 15
4x + y ≤ 16
​​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ ​ Z = 5x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 3y ≤ 15 4x + y ≤ 16 ​​   ​</strong> A)Maximum at (3,4): 47 B)Maximum at (4,0): 20 C)Maximum at (5,0): 44 D)Maximum at (0,5): 40 E)Maximum at (0,0): 0 <div style=padding-top: 35px>

A)Maximum at (3,4): 47
B)Maximum at (4,0): 20
C)Maximum at (5,0): 44
D)Maximum at (0,5): 40
E)Maximum at (0,0): 0
سؤال
Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 5x + 6y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≥ 8
3x + 5y ≥ 30

A) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 <div style=padding-top: 35px> No minimum
B) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 <div style=padding-top: 35px> Minimum at (10,0): 50
C) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 <div style=padding-top: 35px> Minimum at (8,0): 49
D) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 <div style=padding-top: 35px> Minimum at (5,3): 43
E) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 <div style=padding-top: 35px> Minimum at (0,8): 48
سؤال
Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 3x + 2y

Constraints:

X ≥ 0
​y ≥ 0
5x + 2y ≤ 20
5x + y ≥ 10


A) <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 <div style=padding-top: 35px> Maximum at (0,10): 20
B) <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 <div style=padding-top: 35px> Maximum at (2,0): 6
C)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 <div style=padding-top: 35px> Maximum at (10,0): 13
D)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 <div style=padding-top: 35px> Maximum at (0,4): 7
E)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 <div style=padding-top: 35px> Maximum at (4,0): 12
سؤال
Find the maximum value of the objective function and where it occurs,subject to the constraints: ​
Objective function:

Z = 7x + y

Constraints:

X ≥ 0
Y ≥ 0
3x + y ≤ 15
4x + 3y ≤ 30

A)Maximum at (0,0): 0
B)Maximum at (5,0): 35
C)Maximum at (0,6): 46
D)Maximum at (6,3): 45
E)Maximum at (3,0): 21
سؤال
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 16y

Constraints:

X ≥ 0
Y ≥ 0
2x + y ≤ 12​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 16y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + y ≤ 12​   ​</strong> A)Minimum at (0,0): 0 B)Minimum at (6,0): 49 C)Minimum at (0,6): 48 D)Minimum at (12,0): 192 E)Minimum at (0,12): 193 <div style=padding-top: 35px>

A)Minimum at (0,0): 0
B)Minimum at (6,0): 49
C)Minimum at (0,6): 48
D)Minimum at (12,0): 192
E)Minimum at (0,12): 193
سؤال
Find the minimum value of the objective function and where it occurs,subject to the constraints: ​
Objective function:

Z = 4x + y

Constraints:

X ≥ 0
Y ≥ 0
3x + y ≤ 15
4x + 3y ≤ 30

A)Minimum at (3,0): 12
B)Minimum at (0,6): 28
C)Minimum at (3,6): 18
D)Minimum at (0,0): 0
E)Minimum at (6,3): 27
سؤال
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 7y

Constraints:

X ≥ 0
Y ≥ 0
X + 3y ≤ 15
4x + y ≤ 16​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 3y ≤ 15 4x + y ≤ 16​   ​</strong> A)Minimum at (3,4): 40 B)Minimum at (0,0): 0 C)Minimum at (0,5): 35 D)Minimum at (4,3): 37 E)Minimum at (4,0): 16 <div style=padding-top: 35px>

A)Minimum at (3,4): 40
B)Minimum at (0,0): 0
C)Minimum at (0,5): 35
D)Minimum at (4,3): 37
E)Minimum at (4,0): 16
سؤال
Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 8x + 9y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≥ 8
3x + 5y ≥ 30

A)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum <div style=padding-top: 35px> Maximum at (10,0): 80
B)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum <div style=padding-top: 35px> Maximum at (3,5): 68
C)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum <div style=padding-top: 35px> Maximum at (5,3): 67
D)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum <div style=padding-top: 35px> Maximum at (0,8): 72
E)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum <div style=padding-top: 35px> No maximum
سؤال
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 3y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≤ 4​
​​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 4​ ​​   ​</strong> A)Maximum at (4,0): 17 B)Maximum at (0,4): 12 C)Maximum at (0,0): 0 D)Maximum at (4,0): 16 E)Maximum at (0,4): 13 <div style=padding-top: 35px>

A)Maximum at (4,0): 17
B)Maximum at (0,4): 12
C)Maximum at (0,0): 0
D)Maximum at (4,0): 16
E)Maximum at (0,4): 13
سؤال
Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ?
Objective function:? z=7x+14yz = 7 x + \frac { 1 } { 4 } y ?
Constraints:? x0y012x+y8x+12y4\begin{aligned}x & \geq 0 \\y & \geq 0 \\\frac { 1 } { 2 } x + y & \leq 8 \\x + \frac { 1 } { 2 } y & \geq 4\end{aligned} ?

A)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00 <div style=padding-top: 35px>  Minimum at (8,0): 3.00
B)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00 <div style=padding-top: 35px>  No minimum
C)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00 <div style=padding-top: 35px>  Minimum at (4,0): 28.00
D)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00 <div style=padding-top: 35px>  Minimum at (16,0): 112.00
E)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00 <div style=padding-top: 35px>  Minimum at (0,8): 2.00
سؤال
Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 8x + 7y

Constraints:

X ≥ 0
Y ≥ 0
2x + 2y ≥ 10
X + 2y ≥ 6

A)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum <div style=padding-top: 35px> Maximum at (0,5): 35
B)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum <div style=padding-top: 35px> Maximum at (5,0): 36
C)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum <div style=padding-top: 35px> Maximum at (6,0): 48
D)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum <div style=padding-top: 35px> Maximum at (4,1): 39
E)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum <div style=padding-top: 35px> No maximum
سؤال
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 5x + 4y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≤ 5​
​​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 5​ ​​   ​</strong> A)Minimum at (5,0): 26 B)Minimum at (0,5): 21 C)Minimum at (0,0): 0 D)Minimum at (0,5): 25 E)Minimum at (5,0): 20 <div style=padding-top: 35px>

A)Minimum at (5,0): 26
B)Minimum at (0,5): 21
C)Minimum at (0,0): 0
D)Minimum at (0,5): 25
E)Minimum at (5,0): 20
سؤال
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 2x + 8y

Constraints:

X ≥ 0
Y ≥ 0
2x + y ≤ 12​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 2x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + y ≤ 12​   ​</strong> A)Maximum at (6,0): 24 B)Maximum at (12,0): 97 C)Maximum at (0,6): 25 D)Maximum at (0,12): 96 E)Maximum at (0,0): 0 <div style=padding-top: 35px>

A)Maximum at (6,0): 24
B)Maximum at (12,0): 97
C)Maximum at (0,6): 25
D)Maximum at (0,12): 96
E)Maximum at (0,0): 0
سؤال
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 10x + 4y

Constraints:

0 ≤ x ≤ 60
0 ≤ y ≤ 45
5x + 6y ≤ 420
​​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 10x + 4y ​ Constraints: ​ 0 ≤ x ≤ 60 0 ≤ y ≤ 45 5x + 6y ≤ 420 ​​   ​</strong> A)Minimum at (0,0): 0 B)Minimum at (60,20): 680 C)Minimum at (0,45): 180 D)Minimum at (60,0): 600 E)Minimum at (30,45): 480 <div style=padding-top: 35px>

A)Minimum at (0,0): 0
B)Minimum at (60,20): 680
C)Minimum at (0,45): 180
D)Minimum at (60,0): 600
E)Minimum at (30,45): 480
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​
Objective function:

Z = -x + 2y

Constraints:

X ≥ 0
Y ≥ 0
X ≤ 10
X + y ≤ 8

A)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16
B) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.No minimum.
D) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ?
Objective function:
?
Z = 2.5x + y
?
Constraints:
?
X ? 0
Y ? 0
3x + 5y ? 15
?5x + 2y ? 10
?

A)  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97 <div style=padding-top: 35px>  Minimum at (0,0): 0
B)  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97 <div style=padding-top: 35px>  Minimum at (2019,4519)\left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right) : 5.00
C)?  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97 <div style=padding-top: 35px>  Minimum at (2019,0)\left( \frac { 20 } { 19 } , 0 \right) : 2.63
D)?  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97 <div style=padding-top: 35px>  No minimum
E)?  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97 <div style=padding-top: 35px>  Minimum at (4519,2019)\left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right) : 6.97
سؤال
Find the maximum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = x + 9y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Maximum at (0,5): 45
B)Maximum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 2156\frac { 215 } { 6 }
C)No maximum
D)Maximum at (0,0): 0
E)Maximum at (212,0)\left( \frac { 21 } { 2 } , 0 \right) : 212\frac { 21 } { 2 }
سؤال
According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​
Constraints:

X ≥ 0
Y ≥ 0
X + y = 1
86x + 91y = 90

A) <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​   <div style=padding-top: 35px>
B)​ <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​   <div style=padding-top: 35px>
C) <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​   <div style=padding-top: 35px>
D) <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​   <div style=padding-top: 35px>
E)​ <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​   <div style=padding-top: 35px>
سؤال
Find the minimum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = x + 4y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21

A)Minimum at (0,0): 0
B)Minimum at (0,5): 20
C)Minimum at (0,18): 72
D)Minimum at (0,212):42\left( 0 , \frac { 21 } { 2 } \right) : 42
E)No minimum
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​
Z = x + y

Constraints:

X ≥ 0
Y ≥ 0
-x + y ≤ 0
-5x + y ≥ 5

A) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. <div style=padding-top: 35px> Minimum at (0,0): 0
Maximum at (-1,0): -1
B) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. <div style=padding-top: 35px> Minimum at (0,0): 0
Maximum at (0,1): 1
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. <div style=padding-top: 35px> Minimum at (-1,0): -1
Maximum at (0,0): 0
D) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. <div style=padding-top: 35px> Minimum at (0,1): 1
Maximum at (0,0): 0
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. <div style=padding-top: 35px> The feasible set is empty.
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​
Objective function:

Z = x + y

Constraints:

X ≥ 0
Y ≥ 0
-x + y ≤ 1
-x + 5y ≤ 7

A) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 <div style=padding-top: 35px> Maximum at (0.5,1.5): 2
B) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 <div style=padding-top: 35px> The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z.
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 <div style=padding-top: 35px> Maximum at (0,1): 1
D) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 <div style=padding-top: 35px> Maximum at (0,0): 0
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 <div style=padding-top: 35px> Maximum at (1.5,0.5): 2
سؤال
Find the maximum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 5x + y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Maximum at (0,5): 5
B)Maximum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 2396\frac { 239 } { 6 }
C)Maximum at (0,0): 0
D)No maximum
E)Maximum at (212,0)\left( \frac { 21 } { 2 } , 0 \right) : 1052\frac { 105 } { 2 }
سؤال
Find the minimum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 5x + 6y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Minimum at (0,0): 0
B)Minimum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 1673\frac { 167 } { 3 }
C)Minimum at (0,196)\left( 0 , \frac { 19 } { 6 } \right) : 19
D)Minimum at (223,0)\left( \frac { 22 } { 3 } , 0 \right) : 1103\frac { 110 } { 3 }
E)No minimum
سؤال
According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (87-octane)gasoline was $2.07,and the price of premium unleaded (90-octane)gasoline was $2.25.Write an objective function that models the cost of the blend of mid-grade unleaded gasoline (89-octane). ​

A)C = 2.25x - 2.07y
B)C = 87x + 89y
C)C = 2.07x + 2.25y
D)C = 87x + 90y
E)C = 90x + 89y
سؤال
Find the minimum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 8x + y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Minimum at (0,0): 0
B)Minimum at (5,0): 40
C)Minimum at (212,0)\left( \frac { 21 } { 2 } , 0 \right) : 84
D)Minimum at (18,0): 144
E)No minimum
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​
Objective function:


Z = -x + 3y

Constraints:

X ≥ 0
Y ≥ 0
X ≤ 10
X + y ≤ 7

A) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21
B)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7
D)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. <div style=padding-top: 35px> The constraint x ≤ 10 is extraneous.No maximum.
سؤال
Find the maximum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 8x + 9y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Maximum at (223,0)\left( \frac { 22 } { 3 } , 0 \right) : 1763\frac { 176 } { 3 }
B)Maximum at (0,0): 0
C)Maximum at (0,196)\left( 0 , \frac { 19 } { 6 } \right) : 572\frac { 57 } { 2 }
D)Maximum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 5236\frac { 523 } { 6 }
E)No maximum
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​
Z = x + 3y

Constraints:

X ≥ 0
Y ≥ 0
X + 2y ≤ 4
2x + y ≤ 4

A)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum <div style=padding-top: 35px> Minimum at (0,2): 6
B)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum <div style=padding-top: 35px> Minimum at (2,0): 2
C)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum <div style=padding-top: 35px> Minimum at (0,0): 0
D)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum <div style=padding-top: 35px> Minimum at (2,2): 8
E)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum <div style=padding-top: 35px> No minimum
سؤال
Find the minimum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 4x + 16y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Minimum at (0,196)\left( 0 , \frac { 19 } { 6 } \right) : 1523\frac { 152 } { 3 }
B)Minimum at (223,0)\left( \frac { 22 } { 3 } , 0 \right) : 883\frac { 88 } { 3 }
C)Minimum at (0,0): 0
D)Minimum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 80
E)No minimum
سؤال
According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (85-octane)gasoline was $2.02,and the price of premium unleaded (93-octane)gasoline was $2.23.The cost of the blend of mid-grade unleaded gasoline (92-octane).Determine the constraints for the objective function. ​

A)x ≥ 0 y ≥ 0
X + y = 92
85x + 93y = 92
B)x ≥ 0 y ≥ 0
X + y = 1
85x + 93y = 92
C)x ≥ 0 y ≥ 0
X + y = 92
2)02x + 2.23y = 93
D)x ≥ 0 y ≥ 0
X + y = 92
2)02x + 2.23y = 92
E)x ≥ 0 y ≥ 0
X + y = 92
2)02x + 2.23y = 85
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​
Z = x + y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≤ 1
3x + y ≤ 6

A)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9
B)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.No minimum.
C)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4
D) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0
E)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​
Z = 3x + 4y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≤1
3x + y ≤ 6

A)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7
B)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3
C)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4
D)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0
E)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. <div style=padding-top: 35px> The constraint 3x + y ≤ 6 is extraneous.No maximum.
سؤال
Find the maximum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 12x + 24y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Maximum at (0,5): 120
B)Maximum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 164
C)No maximum
D)Maximum at (212,0)\left( \frac { 21 } { 2 } , 0 \right) : 126
E)Maximum at (0,0): 0
سؤال
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​
Objective function:

Z = x + y

Constraints:

X ≥ 0
Y ≥ 0
-x + y ≤ 1
-x + 5y ≤ 7

A) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. <div style=padding-top: 35px> Minimum at (0,1): 1
B) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. <div style=padding-top: 35px> Minimum at (1.5,0.5): 2
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. <div style=padding-top: 35px> Minimum at (0.5,1.5): 2
D)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. <div style=padding-top: 35px> Minimum at (0,0): 0
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. <div style=padding-top: 35px> No minimum.
سؤال
An animal shelter mixes two brands of dog food.Brand X costs $29 per bag and contains two units of nutritional element A,two units of element B,and two units of element C.Brand Y costs $22 per bag and contains one unit of nutritional element A,nine units of element B,and three units of element C.The minimum required amounts of nutrients A,B,and C are 12 units,36 units,and 24 units,respectively.What is the optimal number of bags of each brand that should be mixed? What is the optimal cost? ​

A)9 bags of brand X 2 bags of brand Y
Optimal cost: $305
B)6 bags of brand X 3 bags of brand Y
Optimal cost: $264
C)2 bags of brand X 9 bags of brand Y
Optimal cost: $522
D)18 bags of brand X 12 bags of brand Y
Optimal cost: $786
E)3 bags of brand X 6 bags of brand Y
Optimal cost: $219
سؤال
A manufacturer produces two models of elliptical cross-training exercise machines. The times for assembling,finishing,and packaging model X are 3 hours,3 hours,and 0.8 hour,respectively.The times for model Y are 4 hours,2.5 hours,and 0.4 hour.The total times available for assembling,finishing,and packaging are 6000 hours,4200 hours,and 950 hours,respectively.The profits per unit are $200 for model X and $275 for model Y.What is the optimal production level for each model? What is the optimal profit?

A)6000 units of model X 950 units of model Y
Optimal profit: $1,461,250
B)950 units of model X 6000 units of model Y
Optimal profit: $1,840,000
C)400 units of model X 1200 units of model Y
Optimal profit: $410,000
D)950 units of model X 4200 units of model Y
Optimal profit: $1,345,000
E)4200 units of model X 950 units of model Y
Optimal profit: $1,101,250
سؤال
An accounting firm has 780 hours of staff time and 272 hours of reviewing time available each week.The firm charges $1000 for an audit and $350 for a tax return.Each audit requires 60 hours of staff time and 16 hours of review time.Each tax return requires 10 hours of staff time and 4 hours of review time.What numbers of audits and tax returns will yield an optimal revenue? What is the optimal revenue? ​

A)0 audits 13 tax returns
Optimal revenue: $16,800
B)48 audits 5 tax returns
Optimal revenue: $21,800
C)0 audits 65 tax returns
Optimal revenue: $10,000
D)5 audits 48 tax returns
Optimal revenue: $21,800
E)10 audits 10 tax returns
Optimal revenue: $11,750
سؤال
A humanitarian agency can use two models of vehicles for a refugee rescue mission.Each model A vehicle costs $1000 and each model B vehicle costs $1500.Mission strategies and objectives indicate the following constraints.A total of at least 20 vehicles must be used.A model A vehicle can hold 45 boxes of supplies.A model B vehicle can hold 24 boxes of supplies.The agency must deliver at least 690 boxes of supplies to the refugee camp.A model A vehicle can hold 17 refugees.A model B vehicle can hold 35 refugees.The agency must rescue at least 520 refugees.What is the optimal number of vehicles of each model that should be used? What is the optimal cost? ​

A)30 model A vehicles 32 model B vehicles
Optimal cost: $78,000
B)20 model A vehicles 20 model B vehicles
Optimal cost: $50,000
C)10 model A vehicles 10 model B vehicles
Optimal cost: $25,000
D)45 model A vehicles 30 model B vehicles
Optimal cost: $90,000
E)20 model A vehicles 32 model B vehicles
Optimal cost: $68,000
سؤال
An accounting firm has 780 hours of staff time and 272 hours of reviewing time available each week.The firm charges $1700 for an audit and $410 for a tax return.Each audit requires 60 hours of staff time and 16 hours of review time.Each tax return requires 10 hours of staff time and 4 hours of review time.What numbers of audits and tax returns will yield an optimal revenue? What is the optimal revenue? ​

A)0 audit 65 tax returns
Optimal revenue: $6,560
B)5 audits 48 tax return
Optimal revenue: $28,180
C)16 audits 0 tax return
Optimal revenue: $27,200
D)10 audits 10 tax returns
Optimal revenue: $21,100
E)13 audit 0 tax returns
Optimal revenue: $28,180
سؤال
A merchant plans to sell two models of MP3 players at prices of $225 and $250.The $225 model yields a profit of $30 per unit and the $250 model yields a profit of $31 per unit.The merchant estimates that the total monthly demand will not exceed 280units.The merchant does not want to invest more than $55,776 in inventory for these products.What is the optimal inventory level for each model? What is the optimal profit? ​

A)231 units of the $225 model 49 units of the $250 model
Optimal profit: $8,449
B)225 units of the $225 model 30 units of the $250 model
Optimal profit: $7,680
C)250 units of the $225 model 31 units of the $250 model
Optimal profit: $8,461
D)275 units of the $225 model 30 units of the $250 model
Optimal profit: $9,180
E)275 units of the $225 model 31 units of the $250 model
Optimal profit: $9,211
سؤال
Find the minimum and maximum values of the objective function and where it occurs,subject to the indicated constraints. Objective function:
Z = 3x + 4y
Constraints: {y0xy22x+3y65x+2y25\left\{ \begin{array} { l } y \geq 0 \\x - y \geq - 2 \\2 x + 3 y \geq 6 \\5 x + 2 y \leq 25\end{array} \right. ?  <strong>Find the minimum and maximum values of the objective function and where it occurs,subject to the indicated constraints. Objective function: Z = 3x + 4y Constraints:  \left\{ \begin{array} { l } y \geq 0 \\ x - y \geq - 2 \\ 2 x + 3 y \geq 6 \\ 5 x + 2 y \leq 25 \end{array} \right.  ?  </strong> A)minimum = 8 at (0,2);maximum = 29 at (3,5) B)minimum = -11 at (3,5);maximum = 15 at (5,0) C)minimum = 8 at (0,2);maximum = 27 at (3,5) D)minimum = 0 at (0,0);maximum = 29 at (3,5) E)minimum = 9 at (3,0);maximum = 15 at (5,0) <div style=padding-top: 35px>

A)minimum = 8 at (0,2);maximum = 29 at (3,5)
B)minimum = -11 at (3,5);maximum = 15 at (5,0)
C)minimum = 8 at (0,2);maximum = 27 at (3,5)
D)minimum = 0 at (0,0);maximum = 29 at (3,5)
E)minimum = 9 at (3,0);maximum = 15 at (5,0)
سؤال
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints.(You should graph the feasible solutions on the grid below before you attempt to find the minimum and maximum values. ) Objective function:
Z = 6x - 7y
Constraints: {x0y05x+4y203x+2y6\left\{ \begin{array} { l } x \geq 0 \\y \geq 0 \\5 x + 4 y \leq 20 \\3 x + 2 y \leq 6\end{array} \right.  <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints.(You should graph the feasible solutions on the grid below before you attempt to find the minimum and maximum values. ) Objective function: Z = 6x - 7y Constraints:  \left\{ \begin{array} { l } x \geq 0 \\ y \geq 0 \\ 5 x + 4 y \leq 20 \\ 3 x + 2 y \leq 6 \end{array} \right.   </strong> A)maximum = 24 at (4,0) B)The maximum is unbounded. C)maximum = 35 at (0,5) D)maximum = 12 at (2,0) E)There is no maximum.The feasable solution set is empty. <div style=padding-top: 35px>

A)maximum = 24 at (4,0)
B)The maximum is unbounded.
C)maximum = 35 at (0,5)
D)maximum = 12 at (2,0)
E)There is no maximum.The feasable solution set is empty.
سؤال
An investor has $450,000 to invest in two types of investments.Type A pays 6% annually and type B pays 7% annually.To have a well-balanced portfolio,the investor imposes the following conditions.At least one-third of the total portfolio is to be allocated to type A investments and at least one-third of the portfolio is to be allocated to type B investments.What is the optimal amount that should be invested in each investment? <strong>An investor has $450,000 to invest in two types of investments.Type A pays 6% annually and type B pays 7% annually.To have a well-balanced portfolio,the investor imposes the following conditions.At least one-third of the total portfolio is to be allocated to type A investments and at least one-third of the portfolio is to be allocated to type B investments.What is the optimal amount that should be invested in each investment?  </strong> A)$160,000 in type A (6%),$290,000 in type B (7%) B)$0 in type A (6%),$450,000 in type B (7%) C)$450,000 in type A (6%),$0 in type B (7%) D)$300,000 in type A (6%),$150,000 in type B (7%) E)$150,000 in type A (6%),$300,000 in type B (7%) <div style=padding-top: 35px>

A)$160,000 in type A (6%),$290,000 in type B (7%)
B)$0 in type A (6%),$450,000 in type B (7%)
C)$450,000 in type A (6%),$0 in type B (7%)
D)$300,000 in type A (6%),$150,000 in type B (7%)
E)$150,000 in type A (6%),$300,000 in type B (7%)
سؤال
According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (88-octane)gasoline was $2.08,and the price of premium unleaded (93-octane)gasoline was $2.27.Write an objective function that models the cost of the blend of mid-grade unleaded gasoline (89-octane).What is the optimal cost? ​

A)$2.23/gal
B)$1.66/gal
C)$2.12/gal
D)$3.12/gal
E)$3.23/gal
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 46: Linear Programming
1
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 5y

Constraints:

X ≥ 0
​3x - y ≤ 9
2x + 3y ≥ 6
X + 4y ≤ 16
​​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 5y ​ Constraints: ​ X ≥ 0 ​3x - y ≤ 9 2x + 3y ≥ 6 X + 4y ≤ 16 ​​   ​</strong> A)Minimum at (0,2): 10 B)Minimum at (4,3): 31 C)Minimum at (0,3): 11 D)Minimum at (3,0): 12 E)Minimum at (0,4): 20

A)Minimum at (0,2): 10
B)Minimum at (4,3): 31
C)Minimum at (0,3): 11
D)Minimum at (3,0): 12
E)Minimum at (0,4): 20
Minimum at (0,2): 10
2
Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ?
Objective function:? z=7x+18yz = 7 x + \frac { 1 } { 8 } y ?
Constraints:? x0y012x+y8x+12y4\begin{aligned}x & \geq 0 \\y & \geq 0 \\\frac { 1 } { 2 } x + y & \leq 8 \\x + \frac { 1 } { 2 } y & \geq 4\end{aligned} ?

A)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00  Maximum at (4,0): 28.00
B)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00  Maximum at (8,0): 2.00
C)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00  Maximum at (16,0): 112.00
D)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00  No maximum
E)  <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 8 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)   Maximum at (4,0): 28.00 B)   Maximum at (8,0): 2.00 C)   Maximum at (16,0): 112.00 D)   No maximum E)   Maximum at (0,8): 1.00  Maximum at (0,8): 1.00
  Maximum at (16,0): 112.00 Maximum at (16,0): 112.00
3
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 5y

Constraints:

X ≥ 0
​3x - y ≤ 9
2x + 3y ≥ 6
X + 4y ≤ 16
​​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 5y ​ Constraints: ​ X ≥ 0 ​3x - y ≤ 9 2x + 3y ≥ 6 X + 4y ≤ 16 ​​   ​</strong> A)Maximum at (3,0): 12 B)Maximum at (3,4): 32 C)Maximum at (4,3): 31 D)Maximum at (0,4): 20 E)Maximum at (0,2): 10

A)Maximum at (3,0): 12
B)Maximum at (3,4): 32
C)Maximum at (4,3): 31
D)Maximum at (0,4): 20
E)Maximum at (0,2): 10
Maximum at (4,3): 31
4
Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 9x + 8y

Constraints:

X ≥ 0
Y ≥ 0
2x + 2y ≥ 10
X + 2y ≥ 6

A)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum Minimum at (0,5): 40
B)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum Minimum at (0,5): 41
C)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum Minimum at (4,1): 44
D)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum Minimum at (6,0): 54
E)​ <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Minimum at (0,5): 40 B)​   Minimum at (0,5): 41 C)​   Minimum at (4,1): 44 D)​   Minimum at (6,0): 54 E)​   No minimum No minimum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
5
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 9x + 5y

Constraints:

0 ≤ x ≤ 60
0 ≤ y ≤ 45
5x + 6y ≤ 420​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 9x + 5y ​ Constraints: ​ 0 ≤ x ≤ 60 0 ≤ y ≤ 45 5x + 6y ≤ 420​   ​</strong> A)Maximum at (0,45): 225 B)Maximum at (0,0): 0 C)Maximum at (30,45): 495 D)Maximum at (60,20): 640 E)Maximum at (60,0): 540

A)Maximum at (0,45): 225
B)Maximum at (0,0): 0
C)Maximum at (30,45): 495
D)Maximum at (60,20): 640
E)Maximum at (60,0): 540
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
6
Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 7x + 6y

Constraints:

X ≥ 0
​y ≥ 0
5x + 2y ≤ 20
5x + y ≥ 10

A) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 ​Minimum at (2,0): 14
B) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 Minimum at (0,2): 15
C) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 Minimum at (0,10): 60
D) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 Minimum at (0,4): 29
E) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 7x + 6y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​</strong> A)   ​Minimum at (2,0): 14 B)   Minimum at (0,2): 15 C)   Minimum at (0,10): 60 D)   Minimum at (0,4): 29 E)   Minimum at (4,0): 14 Minimum at (4,0): 14
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:


Z = 5x + 8y

Constraints:

X ≥ 0
Y ≥ 0
X + 3y ≤ 15
4x + y ≤ 16
​​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ ​ Z = 5x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 3y ≤ 15 4x + y ≤ 16 ​​   ​</strong> A)Maximum at (3,4): 47 B)Maximum at (4,0): 20 C)Maximum at (5,0): 44 D)Maximum at (0,5): 40 E)Maximum at (0,0): 0

A)Maximum at (3,4): 47
B)Maximum at (4,0): 20
C)Maximum at (5,0): 44
D)Maximum at (0,5): 40
E)Maximum at (0,0): 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
8
Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 5x + 6y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≥ 8
3x + 5y ≥ 30

A) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 No minimum
B) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 Minimum at (10,0): 50
C) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 Minimum at (8,0): 49
D) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 Minimum at (5,3): 43
E) <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 6y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)   No minimum B)   Minimum at (10,0): 50 C)   Minimum at (8,0): 49 D)   Minimum at (5,3): 43 E)   Minimum at (0,8): 48 Minimum at (0,8): 48
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
9
Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 3x + 2y

Constraints:

X ≥ 0
​y ≥ 0
5x + 2y ≤ 20
5x + y ≥ 10


A) <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 Maximum at (0,10): 20
B) <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 Maximum at (2,0): 6
C)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 Maximum at (10,0): 13
D)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 Maximum at (0,4): 7
E)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 3x + 2y ​ Constraints: ​ X ≥ 0 ​y ≥ 0 5x + 2y ≤ 20 5x + y ≥ 10 ​ ​</strong> A)   Maximum at (0,10): 20 B)   Maximum at (2,0): 6 C)​   Maximum at (10,0): 13 D)​   Maximum at (0,4): 7 E)​   Maximum at (4,0): 12 Maximum at (4,0): 12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the maximum value of the objective function and where it occurs,subject to the constraints: ​
Objective function:

Z = 7x + y

Constraints:

X ≥ 0
Y ≥ 0
3x + y ≤ 15
4x + 3y ≤ 30

A)Maximum at (0,0): 0
B)Maximum at (5,0): 35
C)Maximum at (0,6): 46
D)Maximum at (6,3): 45
E)Maximum at (3,0): 21
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 16y

Constraints:

X ≥ 0
Y ≥ 0
2x + y ≤ 12​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 16y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + y ≤ 12​   ​</strong> A)Minimum at (0,0): 0 B)Minimum at (6,0): 49 C)Minimum at (0,6): 48 D)Minimum at (12,0): 192 E)Minimum at (0,12): 193

A)Minimum at (0,0): 0
B)Minimum at (6,0): 49
C)Minimum at (0,6): 48
D)Minimum at (12,0): 192
E)Minimum at (0,12): 193
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the minimum value of the objective function and where it occurs,subject to the constraints: ​
Objective function:

Z = 4x + y

Constraints:

X ≥ 0
Y ≥ 0
3x + y ≤ 15
4x + 3y ≤ 30

A)Minimum at (3,0): 12
B)Minimum at (0,6): 28
C)Minimum at (3,6): 18
D)Minimum at (0,0): 0
E)Minimum at (6,3): 27
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
13
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 7y

Constraints:

X ≥ 0
Y ≥ 0
X + 3y ≤ 15
4x + y ≤ 16​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 3y ≤ 15 4x + y ≤ 16​   ​</strong> A)Minimum at (3,4): 40 B)Minimum at (0,0): 0 C)Minimum at (0,5): 35 D)Minimum at (4,3): 37 E)Minimum at (4,0): 16

A)Minimum at (3,4): 40
B)Minimum at (0,0): 0
C)Minimum at (0,5): 35
D)Minimum at (4,3): 37
E)Minimum at (4,0): 16
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
14
Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 8x + 9y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≥ 8
3x + 5y ≥ 30

A)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum Maximum at (10,0): 80
B)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum Maximum at (3,5): 68
C)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum Maximum at (5,3): 67
D)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum Maximum at (0,8): 72
E)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 9y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≥ 8 3x + 5y ≥ 30 ​</strong> A)​   Maximum at (10,0): 80 B)​   Maximum at (3,5): 68 C)​   Maximum at (5,3): 67 D)​   Maximum at (0,8): 72 E)​   No maximum No maximum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 4x + 3y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≤ 4​
​​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 4x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 4​ ​​   ​</strong> A)Maximum at (4,0): 17 B)Maximum at (0,4): 12 C)Maximum at (0,0): 0 D)Maximum at (4,0): 16 E)Maximum at (0,4): 13

A)Maximum at (4,0): 17
B)Maximum at (0,4): 12
C)Maximum at (0,0): 0
D)Maximum at (4,0): 16
E)Maximum at (0,4): 13
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
16
Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ?
Objective function:? z=7x+14yz = 7 x + \frac { 1 } { 4 } y ?
Constraints:? x0y012x+y8x+12y4\begin{aligned}x & \geq 0 \\y & \geq 0 \\\frac { 1 } { 2 } x + y & \leq 8 \\x + \frac { 1 } { 2 } y & \geq 4\end{aligned} ?

A)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00  Minimum at (8,0): 3.00
B)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00  No minimum
C)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00  Minimum at (4,0): 28.00
D)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00  Minimum at (16,0): 112.00
E)?  <strong>Select the region determined by the constraints.Then find the minimum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ? Objective function:?  z = 7 x + \frac { 1 } { 4 } y  ? Constraints:?  \begin{aligned} x & \geq 0 \\ y & \geq 0 \\ \frac { 1 } { 2 } x + y & \leq 8 \\ x + \frac { 1 } { 2 } y & \geq 4 \end{aligned}  ?</strong> A)?   Minimum at (8,0): 3.00 B)?   No minimum C)?   Minimum at (4,0): 28.00 D)?   Minimum at (16,0): 112.00 E)?   Minimum at (0,8): 2.00  Minimum at (0,8): 2.00
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
17
Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 8x + 7y

Constraints:

X ≥ 0
Y ≥ 0
2x + 2y ≥ 10
X + 2y ≥ 6

A)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum Maximum at (0,5): 35
B)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum Maximum at (5,0): 36
C)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum Maximum at (6,0): 48
D)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum Maximum at (4,1): 39
E)​ <strong>Select the region determined by the constraints.Then find the maximum value of the objective function (if possible)and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 8x + 7y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + 2y ≥ 10 X + 2y ≥ 6 ​</strong> A)​   Maximum at (0,5): 35 B)​   Maximum at (5,0): 36 C)​   Maximum at (6,0): 48 D)​   Maximum at (4,1): 39 E)​   No maximum No maximum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 5x + 4y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≤ 5​
​​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 5x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 5​ ​​   ​</strong> A)Minimum at (5,0): 26 B)Minimum at (0,5): 21 C)Minimum at (0,0): 0 D)Minimum at (0,5): 25 E)Minimum at (5,0): 20

A)Minimum at (5,0): 26
B)Minimum at (0,5): 21
C)Minimum at (0,0): 0
D)Minimum at (0,5): 25
E)Minimum at (5,0): 20
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
19
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 2x + 8y

Constraints:

X ≥ 0
Y ≥ 0
2x + y ≤ 12​ <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 2x + 8y ​ Constraints: ​ X ≥ 0 Y ≥ 0 2x + y ≤ 12​   ​</strong> A)Maximum at (6,0): 24 B)Maximum at (12,0): 97 C)Maximum at (0,6): 25 D)Maximum at (0,12): 96 E)Maximum at (0,0): 0

A)Maximum at (6,0): 24
B)Maximum at (12,0): 97
C)Maximum at (0,6): 25
D)Maximum at (0,12): 96
E)Maximum at (0,0): 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​
Objective function:

Z = 10x + 4y

Constraints:

0 ≤ x ≤ 60
0 ≤ y ≤ 45
5x + 6y ≤ 420
​​ <strong>Find the minimum value of the objective function and where it occurs,subject to the indicated constraints. ​ Objective function: ​ Z = 10x + 4y ​ Constraints: ​ 0 ≤ x ≤ 60 0 ≤ y ≤ 45 5x + 6y ≤ 420 ​​   ​</strong> A)Minimum at (0,0): 0 B)Minimum at (60,20): 680 C)Minimum at (0,45): 180 D)Minimum at (60,0): 600 E)Minimum at (30,45): 480

A)Minimum at (0,0): 0
B)Minimum at (60,20): 680
C)Minimum at (0,45): 180
D)Minimum at (60,0): 600
E)Minimum at (30,45): 480
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
21
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​
Objective function:

Z = -x + 2y

Constraints:

X ≥ 0
Y ≥ 0
X ≤ 10
X + y ≤ 8

A)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16
B) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 The constraint x ≤ 10 is extraneous.No minimum.
D) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = -x + 2y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 8 ​</strong> A)​   The constraint x ≤ 10 is extraneous.Minimum at (0,8): 16 B)   The constraint x ≤ 10 is extraneous.Minimum at (8,0): -8 C)   The constraint x ≤ 10 is extraneous.No minimum. D)   The constraint x ≤ 10 is extraneous.Minimum at (8,8): 8 E)   The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0 The constraint x ≤ 10 is extraneous.Minimum at (0,0): 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
22
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ?
Objective function:
?
Z = 2.5x + y
?
Constraints:
?
X ? 0
Y ? 0
3x + 5y ? 15
?5x + 2y ? 10
?

A)  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97  Minimum at (0,0): 0
B)  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97  Minimum at (2019,4519)\left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right) : 5.00
C)?  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97  Minimum at (2019,0)\left( \frac { 20 } { 19 } , 0 \right) : 2.63
D)?  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97  No minimum
E)?  <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ? Objective function: ? Z = 2.5x + y ? Constraints: ? X ? 0 Y ? 0 3x + 5y ? 15 ?5x + 2y ? 10 ?</strong> A)   Minimum at (0,0): 0 B)   Minimum at  \left( \frac { 20 } { 19 } , \frac { 45 } { 19 } \right)  : 5.00 C)?   Minimum at  \left( \frac { 20 } { 19 } , 0 \right)  : 2.63 D)?   No minimum E)?   Minimum at  \left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right)  : 6.97  Minimum at (4519,2019)\left( \frac { 45 } { 19 } , \frac { 20 } { 19 } \right) : 6.97
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
23
Find the maximum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = x + 9y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Maximum at (0,5): 45
B)Maximum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 2156\frac { 215 } { 6 }
C)No maximum
D)Maximum at (0,0): 0
E)Maximum at (212,0)\left( \frac { 21 } { 2 } , 0 \right) : 212\frac { 21 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
24
According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​
Constraints:

X ≥ 0
Y ≥ 0
X + y = 1
86x + 91y = 90

A) <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​
B)​ <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​
C) <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​
D) <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​
E)​ <strong>According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (86-octane)gasoline was $2.02,and the price of premium unleaded (91-octane)gasoline was $2.26.The cost of the blend of mid-grade unleaded gasoline (90-octane).Select a graph of the region determined by the constraints. ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y = 1 86x + 91y = 90 ​</strong> A)   B)​   C)   D)   E)​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
25
Find the minimum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = x + 4y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21

A)Minimum at (0,0): 0
B)Minimum at (0,5): 20
C)Minimum at (0,18): 72
D)Minimum at (0,212):42\left( 0 , \frac { 21 } { 2 } \right) : 42
E)No minimum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
26
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​
Z = x + y

Constraints:

X ≥ 0
Y ≥ 0
-x + y ≤ 0
-5x + y ≥ 5

A) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. Minimum at (0,0): 0
Maximum at (-1,0): -1
B) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. Minimum at (0,0): 0
Maximum at (0,1): 1
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. Minimum at (-1,0): -1
Maximum at (0,0): 0
D) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. Minimum at (0,1): 1
Maximum at (0,0): 0
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum and maximum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 0 -5x + y ≥ 5 ​</strong> A)   Minimum at (0,0): 0 Maximum at (-1,0): -1 B)   Minimum at (0,0): 0 Maximum at (0,1): 1 C)   Minimum at (-1,0): -1 Maximum at (0,0): 0 D)   Minimum at (0,1): 1 Maximum at (0,0): 0 E)   The feasible set is empty. The feasible set is empty.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
27
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​
Objective function:

Z = x + y

Constraints:

X ≥ 0
Y ≥ 0
-x + y ≤ 1
-x + 5y ≤ 7

A) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 Maximum at (0.5,1.5): 2
B) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z.
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 Maximum at (0,1): 1
D) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 Maximum at (0,0): 0
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Maximum at (0.5,1.5): 2 B)   The region determined by the constraints is unbounded.For this unbounded region,there is no maximum value of z. C)   Maximum at (0,1): 1 D)   Maximum at (0,0): 0 E)   Maximum at (1.5,0.5): 2 Maximum at (1.5,0.5): 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
28
Find the maximum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 5x + y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Maximum at (0,5): 5
B)Maximum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 2396\frac { 239 } { 6 }
C)Maximum at (0,0): 0
D)No maximum
E)Maximum at (212,0)\left( \frac { 21 } { 2 } , 0 \right) : 1052\frac { 105 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find the minimum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 5x + 6y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Minimum at (0,0): 0
B)Minimum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 1673\frac { 167 } { 3 }
C)Minimum at (0,196)\left( 0 , \frac { 19 } { 6 } \right) : 19
D)Minimum at (223,0)\left( \frac { 22 } { 3 } , 0 \right) : 1103\frac { 110 } { 3 }
E)No minimum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
30
According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (87-octane)gasoline was $2.07,and the price of premium unleaded (90-octane)gasoline was $2.25.Write an objective function that models the cost of the blend of mid-grade unleaded gasoline (89-octane). ​

A)C = 2.25x - 2.07y
B)C = 87x + 89y
C)C = 2.07x + 2.25y
D)C = 87x + 90y
E)C = 90x + 89y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the minimum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 8x + y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Minimum at (0,0): 0
B)Minimum at (5,0): 40
C)Minimum at (212,0)\left( \frac { 21 } { 2 } , 0 \right) : 84
D)Minimum at (18,0): 144
E)No minimum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
32
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​
Objective function:


Z = -x + 3y

Constraints:

X ≥ 0
Y ≥ 0
X ≤ 10
X + y ≤ 7

A) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21
B)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7
D)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ ​ Z = -x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X ≤ 10 X + y ≤ 7 ​</strong> A)   The constraint x ≤ 10 is extraneous.Maximum at (0,7): 21 B)​   The constraint x ≤ 10 is extraneous.Maximum at (7,7): 14 C)   The constraint x ≤ 10 is extraneous.Maximum at (7,0): -7 D)​   The constraint x ≤ 10 is extraneous.Maximum at (0,0): 0 E)   The constraint x ≤ 10 is extraneous.No maximum. The constraint x ≤ 10 is extraneous.No maximum.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the maximum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 8x + 9y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Maximum at (223,0)\left( \frac { 22 } { 3 } , 0 \right) : 1763\frac { 176 } { 3 }
B)Maximum at (0,0): 0
C)Maximum at (0,196)\left( 0 , \frac { 19 } { 6 } \right) : 572\frac { 57 } { 2 }
D)Maximum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 5236\frac { 523 } { 6 }
E)No maximum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
34
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​
Z = x + 3y

Constraints:

X ≥ 0
Y ≥ 0
X + 2y ≤ 4
2x + y ≤ 4

A)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum Minimum at (0,2): 6
B)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum Minimum at (2,0): 2
C)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum Minimum at (0,0): 0
D)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum Minimum at (2,2): 8
E)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + 3y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + 2y ≤ 4 2x + y ≤ 4 ​</strong> A)​   Minimum at (0,2): 6 B)​   Minimum at (2,0): 2 C)​   Minimum at (0,0): 0 D)​   Minimum at (2,2): 8 E)​   No minimum No minimum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the minimum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 4x + 16y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Minimum at (0,196)\left( 0 , \frac { 19 } { 6 } \right) : 1523\frac { 152 } { 3 }
B)Minimum at (223,0)\left( \frac { 22 } { 3 } , 0 \right) : 883\frac { 88 } { 3 }
C)Minimum at (0,0): 0
D)Minimum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 80
E)No minimum
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
36
According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (85-octane)gasoline was $2.02,and the price of premium unleaded (93-octane)gasoline was $2.23.The cost of the blend of mid-grade unleaded gasoline (92-octane).Determine the constraints for the objective function. ​

A)x ≥ 0 y ≥ 0
X + y = 92
85x + 93y = 92
B)x ≥ 0 y ≥ 0
X + y = 1
85x + 93y = 92
C)x ≥ 0 y ≥ 0
X + y = 92
2)02x + 2.23y = 93
D)x ≥ 0 y ≥ 0
X + y = 92
2)02x + 2.23y = 92
E)x ≥ 0 y ≥ 0
X + y = 92
2)02x + 2.23y = 85
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
37
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​
Z = x + y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≤ 1
3x + y ≤ 6

A)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9
B)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 The constraint 3x + y ≤ 6 is extraneous.No minimum.
C)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4
D) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0
E)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤ 1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,1): 9 B)​   The constraint 3x + y ≤ 6 is extraneous.No minimum. C)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (1,0): 4 D)   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5 The constraint 3x + y ≤ 6 is extraneous.Minimum at (0,1): 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
38
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​
Z = 3x + 4y

Constraints:

X ≥ 0
Y ≥ 0
X + y ≤1
3x + y ≤ 6

A)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7
B)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3
C)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4
D)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0
E)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the maximum value of the objective function (if possible)and where it occurs. ​ Z = 3x + 4y ​ Constraints: ​ X ≥ 0 Y ≥ 0 X + y ≤1 3x + y ≤ 6 ​</strong> A)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,1): 7 B)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (1,0): 3 C)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,1): 4 D)​   The constraint 3x + y ≤ 6 is extraneous.Maximum at (0,0): 0 E)​   The constraint 3x + y ≤ 6 is extraneous.No maximum. The constraint 3x + y ≤ 6 is extraneous.No maximum.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the maximum value of the objective function and where it occurs,subject to the constraints: ?
Objective function:
?
Z = 12x + 24y
?
Constraints:
?
X ? 0
Y ? 0
X + 4y ? 20
X + y ? 18
?2x + 2y ? 21
?

A)Maximum at (0,5): 120
B)Maximum at (223,196)\left( \frac { 22 } { 3 } , \frac { 19 } { 6 } \right) : 164
C)No maximum
D)Maximum at (212,0)\left( \frac { 21 } { 2 } , 0 \right) : 126
E)Maximum at (0,0): 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
40
The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​
Objective function:

Z = x + y

Constraints:

X ≥ 0
Y ≥ 0
-x + y ≤ 1
-x + 5y ≤ 7

A) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. Minimum at (0,1): 1
B) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. Minimum at (1.5,0.5): 2
C) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. Minimum at (0.5,1.5): 2
D)​ <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. Minimum at (0,0): 0
E) <strong>The linear programming problem has an unusual characteristic.Select a graph of the solution region for the problem and describe the unusual characteristic.Find the minimum value of the objective function (if possible)and where it occurs. ​ Objective function: ​ Z = x + y ​ Constraints: ​ X ≥ 0 Y ≥ 0 -x + y ≤ 1 -x + 5y ≤ 7 ​</strong> A)   Minimum at (0,1): 1 B)   Minimum at (1.5,0.5): 2 C)   Minimum at (0.5,1.5): 2 D)​   Minimum at (0,0): 0 E)   No minimum. No minimum.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
41
An animal shelter mixes two brands of dog food.Brand X costs $29 per bag and contains two units of nutritional element A,two units of element B,and two units of element C.Brand Y costs $22 per bag and contains one unit of nutritional element A,nine units of element B,and three units of element C.The minimum required amounts of nutrients A,B,and C are 12 units,36 units,and 24 units,respectively.What is the optimal number of bags of each brand that should be mixed? What is the optimal cost? ​

A)9 bags of brand X 2 bags of brand Y
Optimal cost: $305
B)6 bags of brand X 3 bags of brand Y
Optimal cost: $264
C)2 bags of brand X 9 bags of brand Y
Optimal cost: $522
D)18 bags of brand X 12 bags of brand Y
Optimal cost: $786
E)3 bags of brand X 6 bags of brand Y
Optimal cost: $219
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
42
A manufacturer produces two models of elliptical cross-training exercise machines. The times for assembling,finishing,and packaging model X are 3 hours,3 hours,and 0.8 hour,respectively.The times for model Y are 4 hours,2.5 hours,and 0.4 hour.The total times available for assembling,finishing,and packaging are 6000 hours,4200 hours,and 950 hours,respectively.The profits per unit are $200 for model X and $275 for model Y.What is the optimal production level for each model? What is the optimal profit?

A)6000 units of model X 950 units of model Y
Optimal profit: $1,461,250
B)950 units of model X 6000 units of model Y
Optimal profit: $1,840,000
C)400 units of model X 1200 units of model Y
Optimal profit: $410,000
D)950 units of model X 4200 units of model Y
Optimal profit: $1,345,000
E)4200 units of model X 950 units of model Y
Optimal profit: $1,101,250
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
43
An accounting firm has 780 hours of staff time and 272 hours of reviewing time available each week.The firm charges $1000 for an audit and $350 for a tax return.Each audit requires 60 hours of staff time and 16 hours of review time.Each tax return requires 10 hours of staff time and 4 hours of review time.What numbers of audits and tax returns will yield an optimal revenue? What is the optimal revenue? ​

A)0 audits 13 tax returns
Optimal revenue: $16,800
B)48 audits 5 tax returns
Optimal revenue: $21,800
C)0 audits 65 tax returns
Optimal revenue: $10,000
D)5 audits 48 tax returns
Optimal revenue: $21,800
E)10 audits 10 tax returns
Optimal revenue: $11,750
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
44
A humanitarian agency can use two models of vehicles for a refugee rescue mission.Each model A vehicle costs $1000 and each model B vehicle costs $1500.Mission strategies and objectives indicate the following constraints.A total of at least 20 vehicles must be used.A model A vehicle can hold 45 boxes of supplies.A model B vehicle can hold 24 boxes of supplies.The agency must deliver at least 690 boxes of supplies to the refugee camp.A model A vehicle can hold 17 refugees.A model B vehicle can hold 35 refugees.The agency must rescue at least 520 refugees.What is the optimal number of vehicles of each model that should be used? What is the optimal cost? ​

A)30 model A vehicles 32 model B vehicles
Optimal cost: $78,000
B)20 model A vehicles 20 model B vehicles
Optimal cost: $50,000
C)10 model A vehicles 10 model B vehicles
Optimal cost: $25,000
D)45 model A vehicles 30 model B vehicles
Optimal cost: $90,000
E)20 model A vehicles 32 model B vehicles
Optimal cost: $68,000
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
45
An accounting firm has 780 hours of staff time and 272 hours of reviewing time available each week.The firm charges $1700 for an audit and $410 for a tax return.Each audit requires 60 hours of staff time and 16 hours of review time.Each tax return requires 10 hours of staff time and 4 hours of review time.What numbers of audits and tax returns will yield an optimal revenue? What is the optimal revenue? ​

A)0 audit 65 tax returns
Optimal revenue: $6,560
B)5 audits 48 tax return
Optimal revenue: $28,180
C)16 audits 0 tax return
Optimal revenue: $27,200
D)10 audits 10 tax returns
Optimal revenue: $21,100
E)13 audit 0 tax returns
Optimal revenue: $28,180
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
46
A merchant plans to sell two models of MP3 players at prices of $225 and $250.The $225 model yields a profit of $30 per unit and the $250 model yields a profit of $31 per unit.The merchant estimates that the total monthly demand will not exceed 280units.The merchant does not want to invest more than $55,776 in inventory for these products.What is the optimal inventory level for each model? What is the optimal profit? ​

A)231 units of the $225 model 49 units of the $250 model
Optimal profit: $8,449
B)225 units of the $225 model 30 units of the $250 model
Optimal profit: $7,680
C)250 units of the $225 model 31 units of the $250 model
Optimal profit: $8,461
D)275 units of the $225 model 30 units of the $250 model
Optimal profit: $9,180
E)275 units of the $225 model 31 units of the $250 model
Optimal profit: $9,211
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find the minimum and maximum values of the objective function and where it occurs,subject to the indicated constraints. Objective function:
Z = 3x + 4y
Constraints: {y0xy22x+3y65x+2y25\left\{ \begin{array} { l } y \geq 0 \\x - y \geq - 2 \\2 x + 3 y \geq 6 \\5 x + 2 y \leq 25\end{array} \right. ?  <strong>Find the minimum and maximum values of the objective function and where it occurs,subject to the indicated constraints. Objective function: Z = 3x + 4y Constraints:  \left\{ \begin{array} { l } y \geq 0 \\ x - y \geq - 2 \\ 2 x + 3 y \geq 6 \\ 5 x + 2 y \leq 25 \end{array} \right.  ?  </strong> A)minimum = 8 at (0,2);maximum = 29 at (3,5) B)minimum = -11 at (3,5);maximum = 15 at (5,0) C)minimum = 8 at (0,2);maximum = 27 at (3,5) D)minimum = 0 at (0,0);maximum = 29 at (3,5) E)minimum = 9 at (3,0);maximum = 15 at (5,0)

A)minimum = 8 at (0,2);maximum = 29 at (3,5)
B)minimum = -11 at (3,5);maximum = 15 at (5,0)
C)minimum = 8 at (0,2);maximum = 27 at (3,5)
D)minimum = 0 at (0,0);maximum = 29 at (3,5)
E)minimum = 9 at (3,0);maximum = 15 at (5,0)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the maximum value of the objective function and where it occurs,subject to the indicated constraints.(You should graph the feasible solutions on the grid below before you attempt to find the minimum and maximum values. ) Objective function:
Z = 6x - 7y
Constraints: {x0y05x+4y203x+2y6\left\{ \begin{array} { l } x \geq 0 \\y \geq 0 \\5 x + 4 y \leq 20 \\3 x + 2 y \leq 6\end{array} \right.  <strong>Find the maximum value of the objective function and where it occurs,subject to the indicated constraints.(You should graph the feasible solutions on the grid below before you attempt to find the minimum and maximum values. ) Objective function: Z = 6x - 7y Constraints:  \left\{ \begin{array} { l } x \geq 0 \\ y \geq 0 \\ 5 x + 4 y \leq 20 \\ 3 x + 2 y \leq 6 \end{array} \right.   </strong> A)maximum = 24 at (4,0) B)The maximum is unbounded. C)maximum = 35 at (0,5) D)maximum = 12 at (2,0) E)There is no maximum.The feasable solution set is empty.

A)maximum = 24 at (4,0)
B)The maximum is unbounded.
C)maximum = 35 at (0,5)
D)maximum = 12 at (2,0)
E)There is no maximum.The feasable solution set is empty.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
49
An investor has $450,000 to invest in two types of investments.Type A pays 6% annually and type B pays 7% annually.To have a well-balanced portfolio,the investor imposes the following conditions.At least one-third of the total portfolio is to be allocated to type A investments and at least one-third of the portfolio is to be allocated to type B investments.What is the optimal amount that should be invested in each investment? <strong>An investor has $450,000 to invest in two types of investments.Type A pays 6% annually and type B pays 7% annually.To have a well-balanced portfolio,the investor imposes the following conditions.At least one-third of the total portfolio is to be allocated to type A investments and at least one-third of the portfolio is to be allocated to type B investments.What is the optimal amount that should be invested in each investment?  </strong> A)$160,000 in type A (6%),$290,000 in type B (7%) B)$0 in type A (6%),$450,000 in type B (7%) C)$450,000 in type A (6%),$0 in type B (7%) D)$300,000 in type A (6%),$150,000 in type B (7%) E)$150,000 in type A (6%),$300,000 in type B (7%)

A)$160,000 in type A (6%),$290,000 in type B (7%)
B)$0 in type A (6%),$450,000 in type B (7%)
C)$450,000 in type A (6%),$0 in type B (7%)
D)$300,000 in type A (6%),$150,000 in type B (7%)
E)$150,000 in type A (6%),$300,000 in type B (7%)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
50
According to automobile association of a country,on March 27,2009,the national average price per gallon of regular unleaded (88-octane)gasoline was $2.08,and the price of premium unleaded (93-octane)gasoline was $2.27.Write an objective function that models the cost of the blend of mid-grade unleaded gasoline (89-octane).What is the optimal cost? ​

A)$2.23/gal
B)$1.66/gal
C)$2.12/gal
D)$3.12/gal
E)$3.23/gal
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.